mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1228 lines
42 KiB
1228 lines
42 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_core.hpp" |
|
#include "opencv2/core/opencl/runtime/opencl_clamdblas.hpp" |
|
#include "opencv2/core/opencl/runtime/opencl_core.hpp" |
|
#include "intel_gpu_gemm.inl.hpp" |
|
|
|
#include "matmul.simd.hpp" |
|
#include "matmul.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content |
|
|
|
namespace cv |
|
{ |
|
|
|
/****************************************************************************************\ |
|
* GEMM * |
|
\****************************************************************************************/ |
|
|
|
#ifdef HAVE_CLAMDBLAS |
|
|
|
static bool ocl_gemm_amdblas( InputArray matA, InputArray matB, double alpha, |
|
InputArray matC, double beta, OutputArray matD, int flags ) |
|
{ |
|
int type = matA.type(), esz = CV_ELEM_SIZE(type); |
|
bool haveC = matC.kind() != cv::_InputArray::NONE; |
|
Size sizeA = matA.size(), sizeB = matB.size(), sizeC = haveC ? matC.size() : Size(0, 0); |
|
bool atrans = (flags & GEMM_1_T) != 0, btrans = (flags & GEMM_2_T) != 0, ctrans = (flags & GEMM_3_T) != 0; |
|
|
|
if (atrans) |
|
sizeA = Size(sizeA.height, sizeA.width); |
|
if (btrans) |
|
sizeB = Size(sizeB.height, sizeB.width); |
|
if (haveC && ctrans) |
|
sizeC = Size(sizeC.height, sizeC.width); |
|
|
|
Size sizeD(sizeB.width, sizeA.height); |
|
|
|
CV_Assert( matB.type() == type && (!haveC || matC.type() == type) ); |
|
CV_Assert( sizeA.width == sizeB.height && (!haveC || sizeC == sizeD) ); |
|
|
|
matD.create(sizeD, type); |
|
if ( matA.offset() % esz != 0 || matA.step() % esz != 0 || |
|
matB.offset() % esz != 0 || matB.step() % esz != 0 || |
|
(haveC && (matC.offset() % esz != 0 || matC.step() % esz != 0)) ) |
|
return false; |
|
|
|
UMat A = matA.getUMat(), B = matB.getUMat(), D = matD.getUMat(); |
|
if (!ocl::internal::isCLBuffer(A) || !ocl::internal::isCLBuffer(B) || !ocl::internal::isCLBuffer(D)) |
|
{ |
|
return false; |
|
} |
|
if (haveC) |
|
{ |
|
UMat C = matC.getUMat(); |
|
if (!ocl::internal::isCLBuffer(C)) |
|
return false; |
|
} |
|
if (haveC) |
|
ctrans ? transpose(matC, D) : matC.copyTo(D); |
|
else |
|
D.setTo(Scalar::all(0)); |
|
|
|
int M = sizeD.height, N = sizeD.width, K = sizeA.width; |
|
int lda = (int)A.step / esz, ldb = (int)B.step / esz, ldc = (int)D.step / esz; |
|
int offa = (int)A.offset / esz, offb = (int)B.offset / esz, offc = (int)D.offset / esz; |
|
|
|
cl_command_queue clq = (cl_command_queue)ocl::Queue::getDefault().ptr(); |
|
clAmdBlasTranspose transA = atrans ? clAmdBlasTrans : clAmdBlasNoTrans; |
|
clAmdBlasTranspose transB = btrans ? clAmdBlasTrans : clAmdBlasNoTrans; |
|
clAmdBlasOrder order = clAmdBlasRowMajor; |
|
clAmdBlasStatus status = clAmdBlasSuccess; |
|
|
|
if (type == CV_32FC1) |
|
status = clAmdBlasSgemmEx(order, transA, transB, M, N, K, |
|
(cl_float)alpha, (const cl_mem)A.handle(ACCESS_READ), offa, lda, |
|
(const cl_mem)B.handle(ACCESS_READ), offb, ldb, |
|
(cl_float)beta, (cl_mem)D.handle(ACCESS_RW), offc, ldc, |
|
1, &clq, 0, NULL, NULL); |
|
else if (type == CV_64FC1) |
|
status = clAmdBlasDgemmEx(order, transA, transB, M, N, K, |
|
alpha, (const cl_mem)A.handle(ACCESS_READ), offa, lda, |
|
(const cl_mem)B.handle(ACCESS_READ), offb, ldb, |
|
beta, (cl_mem)D.handle(ACCESS_RW), offc, ldc, |
|
1, &clq, 0, NULL, NULL); |
|
else if (type == CV_32FC2) |
|
{ |
|
cl_float2 alpha_2 = { { (cl_float)alpha, 0 } }; |
|
cl_float2 beta_2 = { { (cl_float)beta, 0 } }; |
|
status = clAmdBlasCgemmEx(order, transA, transB, M, N, K, |
|
alpha_2, (const cl_mem)A.handle(ACCESS_READ), offa, lda, |
|
(const cl_mem)B.handle(ACCESS_READ), offb, ldb, |
|
beta_2, (cl_mem)D.handle(ACCESS_RW), offc, ldc, |
|
1, &clq, 0, NULL, NULL); |
|
} |
|
else if (type == CV_64FC2) |
|
{ |
|
cl_double2 alpha_2 = { { alpha, 0 } }; |
|
cl_double2 beta_2 = { { beta, 0 } }; |
|
status = clAmdBlasZgemmEx(order, transA, transB, M, N, K, |
|
alpha_2, (const cl_mem)A.handle(ACCESS_READ), offa, lda, |
|
(const cl_mem)B.handle(ACCESS_READ), offb, ldb, |
|
beta_2, (cl_mem)D.handle(ACCESS_RW), offc, ldc, |
|
1, &clq, 0, NULL, NULL); |
|
} |
|
else |
|
CV_Error(Error::StsUnsupportedFormat, ""); |
|
|
|
return status == clAmdBlasSuccess; |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
static bool ocl_gemm( InputArray matA, InputArray matB, double alpha, |
|
InputArray matC, double beta, OutputArray matD, int flags ) |
|
{ |
|
int depth = matA.depth(), cn = matA.channels(); |
|
int type = CV_MAKETYPE(depth, cn); |
|
|
|
CV_Assert_N( type == matB.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); |
|
|
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
bool doubleSupport = dev.doubleFPConfig() > 0; |
|
|
|
if (!doubleSupport && depth == CV_64F) |
|
return false; |
|
|
|
bool haveC = matC.kind() != cv::_InputArray::NONE; |
|
Size sizeA = matA.size(), sizeB = matB.size(), sizeC = haveC ? matC.size() : Size(0, 0); |
|
bool atrans = (flags & GEMM_1_T) != 0, btrans = (flags & GEMM_2_T) != 0, ctrans = (flags & GEMM_3_T) != 0; |
|
|
|
CV_Assert( !haveC || matC.type() == type ); |
|
|
|
Size sizeD(((btrans)? sizeB.height : sizeB.width), |
|
((atrans)? sizeA.width : sizeA.height)); |
|
matD.create(sizeD, type); |
|
|
|
UMat A = matA.getUMat(), B = matB.getUMat(), D = matD.getUMat(); |
|
|
|
|
|
if (!dev.intelSubgroupsSupport() || (depth == CV_64F) || cn != 1) |
|
{ |
|
String opts; |
|
|
|
if (atrans) |
|
sizeA = Size(sizeA.height, sizeA.width); |
|
if (btrans) |
|
sizeB = Size(sizeB.height, sizeB.width); |
|
if (haveC && ctrans) |
|
sizeC = Size(sizeC.height, sizeC.width); |
|
|
|
CV_Assert( sizeA.width == sizeB.height && (!haveC || sizeC == sizeD) ); |
|
|
|
int max_wg_size = (int)dev.maxWorkGroupSize(); |
|
int block_size = (max_wg_size / (32*cn) < 32) ? (max_wg_size / (16*cn) < 16) ? (max_wg_size / (8*cn) < 8) ? 1 : 8 : 16 : 32; |
|
|
|
if (atrans) |
|
A = A.t(); |
|
|
|
if (btrans) |
|
B = B.t(); |
|
|
|
if (haveC) |
|
ctrans ? transpose(matC, D) : matC.copyTo(D); |
|
|
|
int vectorWidths[] = { 4, 4, 2, 2, 1, 4, cn, -1 }; |
|
int kercn = ocl::checkOptimalVectorWidth(vectorWidths, B, D); |
|
|
|
opts += format(" -D T=%s -D T1=%s -D WT=%s -D cn=%d -D kercn=%d -D LOCAL_SIZE=%d%s%s%s", |
|
ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(CV_MAKETYPE(depth, kercn)), |
|
cn, kercn, block_size, |
|
(sizeA.width % block_size !=0) ? " -D NO_MULT" : "", |
|
haveC ? " -D HAVE_C" : "", |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : ""); |
|
|
|
ocl::Kernel k("gemm", cv::ocl::core::gemm_oclsrc, opts); |
|
if (k.empty()) |
|
return false; |
|
|
|
if (depth == CV_64F) |
|
k.args(ocl::KernelArg::ReadOnlyNoSize(A), |
|
ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn), |
|
ocl::KernelArg::ReadWrite(D, cn, kercn), |
|
sizeA.width, alpha, beta); |
|
else |
|
k.args(ocl::KernelArg::ReadOnlyNoSize(A), |
|
ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn), |
|
ocl::KernelArg::ReadWrite(D, cn, kercn), |
|
sizeA.width, (float)alpha, (float)beta); |
|
|
|
size_t globalsize[2] = { (size_t)sizeD.width * cn / kercn, (size_t)sizeD.height}; |
|
size_t localsize[2] = { (size_t)block_size, (size_t)block_size}; |
|
|
|
return k.run(2, globalsize, block_size!=1 ? localsize : NULL, false); |
|
} |
|
else |
|
{ |
|
if (haveC && beta != 0.0) |
|
{ |
|
ctrans ? transpose(matC, D) : matC.copyTo(D); |
|
} |
|
else |
|
{ |
|
beta = 0.0; |
|
} |
|
|
|
return intel_gpu_gemm(A, sizeA, |
|
B, sizeB, |
|
D, sizeD, |
|
alpha, |
|
beta, |
|
atrans, btrans); |
|
} |
|
} |
|
#endif |
|
|
|
|
|
namespace hal { |
|
|
|
void gemm32f(const float* src1, size_t src1_step, const float* src2, size_t src2_step, |
|
float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, |
|
int m_a, int n_a, int n_d, int flags) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CALL_HAL(gemm32f, cv_hal_gemm32f, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags) |
|
#ifdef CV_GEMM_BASELINE_ONLY |
|
CV_CPU_CALL_BASELINE(gemm32f, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)); |
|
#else |
|
CV_CPU_DISPATCH(gemm32f, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
#endif |
|
} |
|
|
|
void gemm64f(const double* src1, size_t src1_step, const double* src2, size_t src2_step, |
|
double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, |
|
int m_a, int n_a, int n_d, int flags) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CALL_HAL(gemm64f, cv_hal_gemm64f, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags) |
|
#ifdef CV_GEMM_BASELINE_ONLY |
|
CV_CPU_CALL_BASELINE(gemm64f, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)); |
|
#else |
|
CV_CPU_DISPATCH(gemm64f, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
#endif |
|
} |
|
|
|
void gemm32fc(const float* src1, size_t src1_step, const float* src2, size_t src2_step, |
|
float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, |
|
int m_a, int n_a, int n_d, int flags) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CALL_HAL(gemm32fc, cv_hal_gemm32fc, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags) |
|
#ifdef CV_GEMM_BASELINE_ONLY |
|
CV_CPU_CALL_BASELINE(gemm32fc, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)); |
|
#else |
|
CV_CPU_DISPATCH(gemm32fc, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
#endif |
|
} |
|
|
|
void gemm64fc(const double* src1, size_t src1_step, const double* src2, size_t src2_step, |
|
double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, |
|
int m_a, int n_a, int n_d, int flags) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CALL_HAL(gemm64fc, cv_hal_gemm64fc, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags) |
|
#ifdef CV_GEMM_BASELINE_ONLY |
|
CV_CPU_CALL_BASELINE(gemm64fc, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)); |
|
#else |
|
CV_CPU_DISPATCH(gemm64fc, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
#endif |
|
} |
|
|
|
} // namespace hal |
|
|
|
void gemm(InputArray matA, InputArray matB, double alpha, |
|
InputArray matC, double beta, OutputArray _matD, int flags) |
|
{ |
|
#ifdef HAVE_CLAMDBLAS |
|
CV_OCL_RUN(ocl::haveAmdBlas() && matA.dims() <= 2 && matB.dims() <= 2 && matC.dims() <= 2 && _matD.isUMat() && |
|
matA.cols() > 20 && matA.rows() > 20 && matB.cols() > 20, // since it works incorrect for small sizes |
|
ocl_gemm_amdblas(matA, matB, alpha, matC, beta, _matD, flags)) |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
CV_OCL_RUN(_matD.isUMat() && matA.dims() <= 2 && matB.dims() <= 2 && matC.dims() <= 2, |
|
ocl_gemm(matA, matB, alpha, matC, beta, _matD, flags)) |
|
#endif |
|
|
|
Mat A = matA.getMat(), B = matB.getMat(), C = beta != 0.0 ? matC.getMat() : Mat(); |
|
Size a_size = A.size(), d_size; |
|
int len = 0, type = A.type(); |
|
|
|
CV_Assert_N( type == B.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); |
|
|
|
switch( flags & (GEMM_1_T|GEMM_2_T) ) |
|
{ |
|
case 0: |
|
d_size = Size( B.cols, a_size.height ); |
|
len = B.rows; |
|
CV_Assert( a_size.width == len ); |
|
break; |
|
case 1: |
|
d_size = Size( B.cols, a_size.width ); |
|
len = B.rows; |
|
CV_Assert( a_size.height == len ); |
|
break; |
|
case 2: |
|
d_size = Size( B.rows, a_size.height ); |
|
len = B.cols; |
|
CV_Assert( a_size.width == len ); |
|
break; |
|
case 3: |
|
d_size = Size( B.rows, a_size.width ); |
|
len = B.cols; |
|
CV_Assert( a_size.height == len ); |
|
break; |
|
} |
|
|
|
if( !C.empty() ) |
|
{ |
|
CV_Assert_N( C.type() == type, |
|
(((flags&GEMM_3_T) == 0 && C.rows == d_size.height && C.cols == d_size.width) || |
|
((flags&GEMM_3_T) != 0 && C.rows == d_size.width && C.cols == d_size.height))); |
|
} |
|
|
|
_matD.create( d_size.height, d_size.width, type ); |
|
Mat D = _matD.getMat(); |
|
if( (flags & GEMM_3_T) != 0 && C.data == D.data ) |
|
{ |
|
transpose( C, C ); |
|
flags &= ~GEMM_3_T; |
|
} |
|
|
|
Mat *DProxyPtr = &D, DProxy; |
|
if( D.data == A.data || D.data == B.data ) |
|
{ |
|
DProxy = Mat(d_size.height, d_size.width, D.type()); |
|
DProxyPtr = &DProxy; |
|
} |
|
|
|
if( type == CV_32FC1 ) |
|
hal::gemm32f(A.ptr<float>(), A.step, B.ptr<float>(), B.step, static_cast<float>(alpha), |
|
C.ptr<float>(), C.step, static_cast<float>(beta), |
|
DProxyPtr->ptr<float>(), DProxyPtr->step, |
|
a_size.height, a_size.width, DProxyPtr->cols, flags); |
|
else if( type == CV_64FC1 ) |
|
hal::gemm64f(A.ptr<double>(), A.step, B.ptr<double>(), B.step, alpha, |
|
C.ptr<double>(), C.step, beta, |
|
DProxyPtr->ptr<double>(), DProxyPtr->step, |
|
a_size.height, a_size.width, DProxyPtr->cols, flags); |
|
else if( type == CV_32FC2 ) |
|
hal::gemm32fc(A.ptr<float>(), A.step, B.ptr<float>(), B.step, static_cast<float>(alpha), |
|
C.ptr<float>(), C.step, static_cast<float>(beta), |
|
DProxyPtr->ptr<float>(), DProxyPtr->step, |
|
a_size.height, a_size.width, DProxyPtr->cols, flags); |
|
else |
|
{ |
|
CV_Assert( type == CV_64FC2 ); |
|
hal::gemm64fc(A.ptr<double>(), A.step, B.ptr<double>(), B.step, alpha, |
|
C.ptr<double>(), C.step, beta, |
|
D.ptr<double>(), D.step, |
|
a_size.height, a_size.width, DProxyPtr->cols, flags); |
|
} |
|
|
|
if(DProxyPtr != &D) |
|
DProxyPtr->copyTo(D); |
|
} |
|
|
|
|
|
|
|
/****************************************************************************************\ |
|
* Transform * |
|
\****************************************************************************************/ |
|
|
|
static TransformFunc getTransformFunc(int depth) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(getTransformFunc, (depth), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
static TransformFunc getDiagTransformFunc(int depth) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(getDiagTransformFunc, (depth), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
void transform(InputArray _src, OutputArray _dst, InputArray _mtx) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src = _src.getMat(), m = _mtx.getMat(); |
|
int depth = src.depth(), scn = src.channels(), dcn = m.rows; |
|
CV_Assert( scn == m.cols || scn + 1 == m.cols ); |
|
bool isDiag = false; |
|
|
|
_dst.create( src.size(), CV_MAKETYPE(depth, dcn) ); |
|
Mat dst = _dst.getMat(); |
|
|
|
if (src.data == dst.data) // inplace case |
|
{ |
|
CV_Assert(scn == dcn); |
|
src = src.clone(); // TODO Add performance warning |
|
} |
|
|
|
int mtype = depth == CV_32S || depth == CV_64F ? CV_64F : CV_32F; |
|
AutoBuffer<double> _mbuf; |
|
double* mbuf; |
|
|
|
if( !m.isContinuous() || m.type() != mtype || m.cols != scn + 1 ) |
|
{ |
|
_mbuf.allocate(dcn*(scn+1)); |
|
mbuf = _mbuf.data(); |
|
Mat tmp(dcn, scn+1, mtype, mbuf); |
|
memset(tmp.ptr(), 0, tmp.total()*tmp.elemSize()); |
|
if( m.cols == scn+1 ) |
|
m.convertTo(tmp, mtype); |
|
else |
|
{ |
|
Mat tmppart = tmp.colRange(0, m.cols); |
|
m.convertTo(tmppart, mtype); |
|
} |
|
m = tmp; |
|
} |
|
else |
|
mbuf = m.ptr<double>(); |
|
|
|
if( scn == dcn ) |
|
{ |
|
int i, j; |
|
double eps = mtype == CV_32F ? FLT_EPSILON : DBL_EPSILON; |
|
|
|
if( scn == 1 ) |
|
{ |
|
double alpha, beta; |
|
if( mtype == CV_32F ) |
|
alpha = m.at<float>(0), beta = m.at<float>(1); |
|
else |
|
alpha = m.at<double>(0), beta = m.at<double>(1); |
|
src.convertTo(dst, dst.type(), alpha, beta); |
|
return; |
|
} |
|
|
|
for( i = 0, isDiag = true; isDiag && i < scn; i++ ) |
|
{ |
|
for( j = 0; isDiag && j < scn; j++ ) |
|
{ |
|
double v = mtype == CV_32F ? m.at<float>(i, j) : m.at<double>(i, j); |
|
if( i != j && fabs(v) > eps ) |
|
isDiag = false; |
|
} |
|
} |
|
} |
|
|
|
TransformFunc func = isDiag ? getDiagTransformFunc(depth): getTransformFunc(depth); |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2] = {}; |
|
NAryMatIterator it(arrays, ptrs); |
|
size_t i, total = it.size; |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
func( ptrs[0], ptrs[1], (uchar*)mbuf, (int)total, scn, dcn ); |
|
} |
|
|
|
|
|
|
|
/****************************************************************************************\ |
|
* Perspective Transform * |
|
\****************************************************************************************/ |
|
|
|
static TransformFunc getPerspectiveTransform(int depth) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(getPerspectiveTransform, (depth), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
void perspectiveTransform(InputArray _src, OutputArray _dst, InputArray _mtx) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src = _src.getMat(), m = _mtx.getMat(); |
|
int depth = src.depth(), scn = src.channels(), dcn = m.rows-1; |
|
CV_Assert( scn + 1 == m.cols ); |
|
CV_Assert( depth == CV_32F || depth == CV_64F ); |
|
|
|
_dst.create( src.size(), CV_MAKETYPE(depth, dcn) ); |
|
Mat dst = _dst.getMat(); |
|
|
|
const int mtype = CV_64F; |
|
AutoBuffer<double> _mbuf; |
|
double* mbuf = m.ptr<double>(); |
|
|
|
if( !m.isContinuous() || m.type() != mtype ) |
|
{ |
|
_mbuf.allocate((dcn+1)*(scn+1)); |
|
mbuf = _mbuf.data(); |
|
Mat tmp(dcn+1, scn+1, mtype, mbuf); |
|
m.convertTo(tmp, mtype); |
|
m = tmp; |
|
} |
|
|
|
TransformFunc func = getPerspectiveTransform(depth); |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2] = {}; |
|
NAryMatIterator it(arrays, ptrs); |
|
size_t i, total = it.size; |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
func( ptrs[0], ptrs[1], (uchar*)mbuf, (int)total, scn, dcn ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* ScaleAdd * |
|
\****************************************************************************************/ |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_scaleAdd( InputArray _src1, double alpha, InputArray _src2, OutputArray _dst, int type ) |
|
{ |
|
const ocl::Device & d = ocl::Device::getDefault(); |
|
|
|
bool doubleSupport = d.doubleFPConfig() > 0; |
|
Size size = _src1.size(); |
|
int depth = CV_MAT_DEPTH(type); |
|
if ( (!doubleSupport && depth == CV_64F) || size != _src2.size() ) |
|
return false; |
|
|
|
_dst.create(size, type); |
|
int cn = CV_MAT_CN(type), wdepth = std::max(depth, CV_32F); |
|
int kercn = ocl::predictOptimalVectorWidthMax(_src1, _src2, _dst), |
|
rowsPerWI = d.isIntel() ? 4 : 1; |
|
|
|
char cvt[2][50]; |
|
ocl::Kernel k("KF", ocl::core::arithm_oclsrc, |
|
format("-D OP_SCALE_ADD -D BINARY_OP -D dstT=%s -D DEPTH_dst=%d -D workT=%s -D convertToWT1=%s" |
|
" -D srcT1=dstT -D srcT2=dstT -D convertToDT=%s -D workT1=%s" |
|
" -D wdepth=%d%s -D rowsPerWI=%d", |
|
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), depth, |
|
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)), |
|
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]), |
|
ocl::convertTypeStr(wdepth, depth, kercn, cvt[1]), |
|
ocl::typeToStr(wdepth), wdepth, |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "", rowsPerWI)); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src1 = _src1.getUMat(), src2 = _src2.getUMat(), dst = _dst.getUMat(); |
|
|
|
ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1), |
|
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2), |
|
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn); |
|
|
|
if (wdepth == CV_32F) |
|
k.args(src1arg, src2arg, dstarg, (float)alpha); |
|
else |
|
k.args(src1arg, src2arg, dstarg, alpha); |
|
|
|
size_t globalsize[2] = { (size_t)dst.cols * cn / kercn, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
static ScaleAddFunc getScaleAddFunc(int depth) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(getScaleAddFunc, (depth), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
void scaleAdd(InputArray _src1, double alpha, InputArray _src2, OutputArray _dst) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
int type = _src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
CV_Assert( type == _src2.type() ); |
|
|
|
CV_OCL_RUN(_src1.dims() <= 2 && _src2.dims() <= 2 && _dst.isUMat(), |
|
ocl_scaleAdd(_src1, alpha, _src2, _dst, type)) |
|
|
|
if( depth < CV_32F ) |
|
{ |
|
addWeighted(_src1, alpha, _src2, 1, 0, _dst, depth); |
|
return; |
|
} |
|
|
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(); |
|
CV_Assert(src1.size == src2.size); |
|
|
|
_dst.create(src1.dims, src1.size, type); |
|
Mat dst = _dst.getMat(); |
|
|
|
float falpha = (float)alpha; |
|
void* palpha = depth == CV_32F ? (void*)&falpha : (void*)α |
|
|
|
ScaleAddFunc func = getScaleAddFunc(depth); |
|
CV_Assert(func); |
|
|
|
if (src1.isContinuous() && src2.isContinuous() && dst.isContinuous()) |
|
{ |
|
size_t len = src1.total()*cn; |
|
func(src1.ptr(), src2.ptr(), dst.ptr(), (int)len, palpha); |
|
return; |
|
} |
|
|
|
const Mat* arrays[] = {&src1, &src2, &dst, 0}; |
|
uchar* ptrs[3] = {}; |
|
NAryMatIterator it(arrays, ptrs); |
|
size_t i, len = it.size*cn; |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
func( ptrs[0], ptrs[1], ptrs[2], (int)len, palpha ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Covariation Matrix * |
|
\****************************************************************************************/ |
|
|
|
void calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean, int flags, int ctype ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_Assert_N( data, nsamples > 0 ); |
|
Size size = data[0].size(); |
|
int sz = size.width * size.height, esz = (int)data[0].elemSize(); |
|
int type = data[0].type(); |
|
Mat mean; |
|
ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), _mean.depth()), CV_32F); |
|
|
|
if( (flags & CV_COVAR_USE_AVG) != 0 ) |
|
{ |
|
CV_Assert( _mean.size() == size ); |
|
if( _mean.isContinuous() && _mean.type() == ctype ) |
|
mean = _mean.reshape(1, 1); |
|
else |
|
{ |
|
_mean.convertTo(mean, ctype); |
|
mean = mean.reshape(1, 1); |
|
} |
|
} |
|
|
|
Mat _data(nsamples, sz, type); |
|
|
|
for( int i = 0; i < nsamples; i++ ) |
|
{ |
|
CV_Assert_N( data[i].size() == size, data[i].type() == type ); |
|
if( data[i].isContinuous() ) |
|
memcpy( _data.ptr(i), data[i].ptr(), sz*esz ); |
|
else |
|
{ |
|
Mat dataRow(size.height, size.width, type, _data.ptr(i)); |
|
data[i].copyTo(dataRow); |
|
} |
|
} |
|
|
|
calcCovarMatrix( _data, covar, mean, (flags & ~(CV_COVAR_ROWS|CV_COVAR_COLS)) | CV_COVAR_ROWS, ctype ); |
|
if( (flags & CV_COVAR_USE_AVG) == 0 ) |
|
_mean = mean.reshape(1, size.height); |
|
} |
|
|
|
void calcCovarMatrix( InputArray _src, OutputArray _covar, InputOutputArray _mean, int flags, int ctype ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
if(_src.kind() == _InputArray::STD_VECTOR_MAT || _src.kind() == _InputArray::STD_ARRAY_MAT) |
|
{ |
|
std::vector<cv::Mat> src; |
|
_src.getMatVector(src); |
|
|
|
CV_Assert( src.size() > 0 ); |
|
|
|
Size size = src[0].size(); |
|
int type = src[0].type(); |
|
|
|
ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), _mean.depth()), CV_32F); |
|
|
|
Mat _data(static_cast<int>(src.size()), size.area(), type); |
|
|
|
int i = 0; |
|
for(std::vector<cv::Mat>::iterator each = src.begin(); each != src.end(); ++each, ++i ) |
|
{ |
|
CV_Assert_N( (*each).size() == size, (*each).type() == type ); |
|
Mat dataRow(size.height, size.width, type, _data.ptr(i)); |
|
(*each).copyTo(dataRow); |
|
} |
|
|
|
Mat mean; |
|
if( (flags & CV_COVAR_USE_AVG) != 0 ) |
|
{ |
|
CV_Assert( _mean.size() == size ); |
|
|
|
if( mean.type() != ctype ) |
|
{ |
|
mean = _mean.getMat(); |
|
_mean.create(mean.size(), ctype); |
|
Mat tmp = _mean.getMat(); |
|
mean.convertTo(tmp, ctype); |
|
mean = tmp; |
|
} |
|
|
|
mean = _mean.getMat().reshape(1, 1); |
|
} |
|
|
|
calcCovarMatrix( _data, _covar, mean, (flags & ~(CV_COVAR_ROWS|CV_COVAR_COLS)) | CV_COVAR_ROWS, ctype ); |
|
|
|
if( (flags & CV_COVAR_USE_AVG) == 0 ) |
|
{ |
|
mean = mean.reshape(1, size.height); |
|
mean.copyTo(_mean); |
|
} |
|
return; |
|
} |
|
|
|
Mat data = _src.getMat(), mean; |
|
CV_Assert( ((flags & CV_COVAR_ROWS) != 0) ^ ((flags & CV_COVAR_COLS) != 0) ); |
|
bool takeRows = (flags & CV_COVAR_ROWS) != 0; |
|
int type = data.type(); |
|
int nsamples = takeRows ? data.rows : data.cols; |
|
CV_Assert( nsamples > 0 ); |
|
Size size = takeRows ? Size(data.cols, 1) : Size(1, data.rows); |
|
|
|
if( (flags & CV_COVAR_USE_AVG) != 0 ) |
|
{ |
|
mean = _mean.getMat(); |
|
ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), mean.depth()), CV_32F); |
|
CV_Assert( mean.size() == size ); |
|
if( mean.type() != ctype ) |
|
{ |
|
_mean.create(mean.size(), ctype); |
|
Mat tmp = _mean.getMat(); |
|
mean.convertTo(tmp, ctype); |
|
mean = tmp; |
|
} |
|
} |
|
else |
|
{ |
|
ctype = std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), CV_32F); |
|
reduce( _src, _mean, takeRows ? 0 : 1, CV_REDUCE_AVG, ctype ); |
|
mean = _mean.getMat(); |
|
} |
|
|
|
mulTransposed( data, _covar, ((flags & CV_COVAR_NORMAL) == 0) ^ takeRows, |
|
mean, (flags & CV_COVAR_SCALE) != 0 ? 1./nsamples : 1, ctype ); |
|
} |
|
|
|
|
|
|
|
/****************************************************************************************\ |
|
* Mahalanobis * |
|
\****************************************************************************************/ |
|
|
|
static MahalanobisImplFunc getMahalanobisImplFunc(int depth) |
|
{ |
|
#ifdef CV_MAHALANOBIS_BASELINE_ONLY |
|
CV_CPU_CALL_BASELINE(getMahalanobisImplFunc, (depth)); |
|
#else |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(getMahalanobisImplFunc, (depth), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
#endif |
|
} |
|
|
|
|
|
double Mahalanobis(InputArray _v1, InputArray _v2, InputArray _icovar) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat v1 = _v1.getMat(), v2 = _v2.getMat(), icovar = _icovar.getMat(); |
|
int type = v1.type(), depth = v1.depth(); |
|
Size sz = v1.size(); |
|
int len = sz.width*sz.height*v1.channels(); |
|
AutoBuffer<double> buf(len); |
|
|
|
CV_Assert_N( type == v2.type(), type == icovar.type(), |
|
sz == v2.size(), len == icovar.rows && len == icovar.cols ); |
|
|
|
sz.width *= v1.channels(); |
|
if( v1.isContinuous() && v2.isContinuous() ) |
|
{ |
|
sz.width *= sz.height; |
|
sz.height = 1; |
|
} |
|
|
|
MahalanobisImplFunc func = getMahalanobisImplFunc(depth); |
|
CV_Assert(func); |
|
|
|
double result = func(v1, v2, icovar, buf.data(), len); |
|
return std::sqrt(result); |
|
} |
|
|
|
|
|
|
|
/****************************************************************************************\ |
|
* MulTransposed * |
|
\****************************************************************************************/ |
|
|
|
static MulTransposedFunc getMulTransposedFunc(int stype, int dtype, bool ata) |
|
{ |
|
#ifdef CV_MULTRANSPOSED_BASELINE_ONLY |
|
CV_CPU_CALL_BASELINE(getMulTransposedFunc, (stype, dtype, ata)); |
|
#else |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(getMulTransposedFunc, (stype, dtype, ata), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
#endif |
|
} |
|
|
|
void mulTransposed(InputArray _src, OutputArray _dst, bool ata, |
|
InputArray _delta, double scale, int dtype) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src = _src.getMat(), delta = _delta.getMat(); |
|
const int gemm_level = 100; // boundary above which GEMM is faster. |
|
int stype = src.type(); |
|
dtype = std::max(std::max(CV_MAT_DEPTH(dtype >= 0 ? dtype : stype), delta.depth()), CV_32F); |
|
CV_Assert( src.channels() == 1 ); |
|
|
|
if( !delta.empty() ) |
|
{ |
|
CV_Assert_N( delta.channels() == 1, |
|
(delta.rows == src.rows || delta.rows == 1), |
|
(delta.cols == src.cols || delta.cols == 1)); |
|
if( delta.type() != dtype ) |
|
delta.convertTo(delta, dtype); |
|
} |
|
|
|
int dsize = ata ? src.cols : src.rows; |
|
_dst.create( dsize, dsize, dtype ); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( src.data == dst.data || (stype == dtype && |
|
(dst.cols >= gemm_level && dst.rows >= gemm_level && |
|
src.cols >= gemm_level && src.rows >= gemm_level))) |
|
{ |
|
Mat src2; |
|
const Mat* tsrc = &src; |
|
if( !delta.empty() ) |
|
{ |
|
if( delta.size() == src.size() ) |
|
subtract( src, delta, src2 ); |
|
else |
|
{ |
|
repeat(delta, src.rows/delta.rows, src.cols/delta.cols, src2); |
|
subtract( src, src2, src2 ); |
|
} |
|
tsrc = &src2; |
|
} |
|
gemm( *tsrc, *tsrc, scale, Mat(), 0, dst, ata ? GEMM_1_T : GEMM_2_T ); |
|
} |
|
else |
|
{ |
|
MulTransposedFunc func = getMulTransposedFunc(stype, dtype, ata); |
|
if( !func ) |
|
CV_Error( CV_StsUnsupportedFormat, "" ); |
|
|
|
func( src, dst, delta, scale ); |
|
completeSymm( dst, false ); |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Dot Product * |
|
\****************************************************************************************/ |
|
|
|
static double dotProd_8u(const uchar* src1, const uchar* src2, int len) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(dotProd_8u, (src1, src2, len), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
static double dotProd_8s(const schar* src1, const schar* src2, int len) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(dotProd_8s, (src1, src2, len), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
static double dotProd_16u(const ushort* src1, const ushort* src2, int len) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(dotProd_16u, (src1, src2, len), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
static double dotProd_16s(const short* src1, const short* src2, int len) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(dotProd_16s, (src1, src2, len), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
static double dotProd_32s(const int* src1, const int* src2, int len) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(dotProd_32s, (src1, src2, len), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
static double dotProd_32f(const float* src1, const float* src2, int len) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(dotProd_32f, (src1, src2, len), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
static double dotProd_64f(const double* src1, const double* src2, int len) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(dotProd_64f, (src1, src2, len), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
typedef double (*DotProdFunc)(const uchar* src1, const uchar* src2, int len); |
|
|
|
static DotProdFunc getDotProdFunc(int depth) |
|
{ |
|
static DotProdFunc dotProdTab[] = |
|
{ |
|
(DotProdFunc)GET_OPTIMIZED(dotProd_8u), (DotProdFunc)GET_OPTIMIZED(dotProd_8s), |
|
(DotProdFunc)dotProd_16u, (DotProdFunc)dotProd_16s, |
|
(DotProdFunc)dotProd_32s, (DotProdFunc)GET_OPTIMIZED(dotProd_32f), |
|
(DotProdFunc)dotProd_64f, 0 |
|
}; |
|
|
|
return dotProdTab[depth]; |
|
} |
|
|
|
double Mat::dot(InputArray _mat) const |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat mat = _mat.getMat(); |
|
int cn = channels(); |
|
DotProdFunc func = getDotProdFunc(depth()); |
|
CV_Assert_N( mat.type() == type(), mat.size == size, func != 0 ); |
|
|
|
if( isContinuous() && mat.isContinuous() ) |
|
{ |
|
size_t len = total()*cn; |
|
if( len == (size_t)(int)len ) |
|
return func(data, mat.data, (int)len); |
|
} |
|
|
|
const Mat* arrays[] = {this, &mat, 0}; |
|
uchar* ptrs[2] = {}; |
|
NAryMatIterator it(arrays, ptrs); |
|
int len = (int)(it.size*cn); |
|
double r = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
r += func( ptrs[0], ptrs[1], len ); |
|
|
|
return r; |
|
} |
|
|
|
} // namespace cv:: |
|
|
|
/****************************************************************************************\ |
|
* Earlier API * |
|
\****************************************************************************************/ |
|
|
|
CV_IMPL void cvGEMM( const CvArr* Aarr, const CvArr* Barr, double alpha, |
|
const CvArr* Carr, double beta, CvArr* Darr, int flags ) |
|
{ |
|
cv::Mat A = cv::cvarrToMat(Aarr), B = cv::cvarrToMat(Barr); |
|
cv::Mat C, D = cv::cvarrToMat(Darr); |
|
|
|
if( Carr ) |
|
C = cv::cvarrToMat(Carr); |
|
|
|
CV_Assert_N( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)), |
|
(D.cols == ((flags & CV_GEMM_B_T) == 0 ? B.cols : B.rows)), |
|
D.type() == A.type() ); |
|
|
|
gemm( A, B, alpha, C, beta, D, flags ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvTransform( const CvArr* srcarr, CvArr* dstarr, |
|
const CvMat* transmat, const CvMat* shiftvec ) |
|
{ |
|
cv::Mat m = cv::cvarrToMat(transmat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
if( shiftvec ) |
|
{ |
|
cv::Mat v = cv::cvarrToMat(shiftvec).reshape(1,m.rows), |
|
_m(m.rows, m.cols + 1, m.type()), m1 = _m.colRange(0,m.cols), v1 = _m.col(m.cols); |
|
m.convertTo(m1, m1.type()); |
|
v.convertTo(v1, v1.type()); |
|
m = _m; |
|
} |
|
|
|
CV_Assert_N( dst.depth() == src.depth(), dst.channels() == m.rows ); |
|
cv::transform( src, dst, m ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvPerspectiveTransform( const CvArr* srcarr, CvArr* dstarr, const CvMat* mat ) |
|
{ |
|
cv::Mat m = cv::cvarrToMat(mat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert_N( dst.type() == src.type(), dst.channels() == m.rows-1 ); |
|
cv::perspectiveTransform( src, dst, m ); |
|
} |
|
|
|
|
|
CV_IMPL void cvScaleAdd( const CvArr* srcarr1, CvScalar scale, |
|
const CvArr* srcarr2, CvArr* dstarr ) |
|
{ |
|
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert_N( src1.size == dst.size, src1.type() == dst.type() ); |
|
cv::scaleAdd( src1, scale.val[0], cv::cvarrToMat(srcarr2), dst ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvCalcCovarMatrix( const CvArr** vecarr, int count, |
|
CvArr* covarr, CvArr* avgarr, int flags ) |
|
{ |
|
cv::Mat cov0 = cv::cvarrToMat(covarr), cov = cov0, mean0, mean; |
|
CV_Assert_N( vecarr != 0, count >= 1 ); |
|
|
|
if( avgarr ) |
|
mean = mean0 = cv::cvarrToMat(avgarr); |
|
|
|
if( (flags & CV_COVAR_COLS) != 0 || (flags & CV_COVAR_ROWS) != 0 ) |
|
{ |
|
|
|
cv::Mat data = cv::cvarrToMat(vecarr[0]); |
|
cv::calcCovarMatrix( data, cov, mean, flags, cov.type() ); |
|
} |
|
else |
|
{ |
|
std::vector<cv::Mat> data(count); |
|
for( int i = 0; i < count; i++ ) |
|
data[i] = cv::cvarrToMat(vecarr[i]); |
|
cv::calcCovarMatrix( &data[0], count, cov, mean, flags, cov.type() ); |
|
} |
|
|
|
if( mean.data != mean0.data && mean0.data ) |
|
mean.convertTo(mean0, mean0.type()); |
|
|
|
if( cov.data != cov0.data ) |
|
cov.convertTo(cov0, cov0.type()); |
|
} |
|
|
|
|
|
CV_IMPL double |
|
cvMahalanobis( const CvArr* srcAarr, const CvArr* srcBarr, const CvArr* matarr ) |
|
{ |
|
return cv::Mahalanobis(cv::cvarrToMat(srcAarr), |
|
cv::cvarrToMat(srcBarr), cv::cvarrToMat(matarr)); |
|
} |
|
|
|
CV_IMPL void |
|
cvMulTransposed( const CvArr* srcarr, CvArr* dstarr, |
|
int order, const CvArr* deltaarr, double scale ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0, delta; |
|
if( deltaarr ) |
|
delta = cv::cvarrToMat(deltaarr); |
|
cv::mulTransposed( src, dst, order != 0, delta, scale, dst.type()); |
|
if( dst.data != dst0.data ) |
|
dst.convertTo(dst0, dst0.type()); |
|
} |
|
|
|
CV_IMPL double cvDotProduct( const CvArr* srcAarr, const CvArr* srcBarr ) |
|
{ |
|
return cv::cvarrToMat(srcAarr).dot(cv::cvarrToMat(srcBarr)); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvCalcPCA( const CvArr* data_arr, CvArr* avg_arr, CvArr* eigenvals, CvArr* eigenvects, int flags ) |
|
{ |
|
cv::Mat data = cv::cvarrToMat(data_arr), mean0 = cv::cvarrToMat(avg_arr); |
|
cv::Mat evals0 = cv::cvarrToMat(eigenvals), evects0 = cv::cvarrToMat(eigenvects); |
|
cv::Mat mean = mean0, evals = evals0, evects = evects0; |
|
|
|
cv::PCA pca; |
|
pca.mean = mean; |
|
pca.eigenvalues = evals; |
|
pca.eigenvectors = evects; |
|
|
|
pca(data, (flags & CV_PCA_USE_AVG) ? mean : cv::Mat(), |
|
flags, !evals.empty() ? evals.rows + evals.cols - 1 : 0); |
|
|
|
if( pca.mean.size() == mean.size() ) |
|
pca.mean.convertTo( mean, mean.type() ); |
|
else |
|
{ |
|
cv::Mat temp; pca.mean.convertTo( temp, mean.type() ); |
|
transpose( temp, mean ); |
|
} |
|
|
|
evals = pca.eigenvalues; |
|
evects = pca.eigenvectors; |
|
int ecount0 = evals0.cols + evals0.rows - 1; |
|
int ecount = evals.cols + evals.rows - 1; |
|
|
|
CV_Assert_N( (evals0.cols == 1 || evals0.rows == 1), |
|
ecount0 <= ecount, |
|
evects0.cols == evects.cols, |
|
evects0.rows == ecount0 ); |
|
|
|
cv::Mat temp = evals0; |
|
if( evals.rows == 1 ) |
|
evals.colRange(0, ecount0).convertTo(temp, evals0.type()); |
|
else |
|
evals.rowRange(0, ecount0).convertTo(temp, evals0.type()); |
|
if( temp.data != evals0.data ) |
|
transpose(temp, evals0); |
|
evects.rowRange(0, ecount0).convertTo( evects0, evects0.type() ); |
|
|
|
// otherwise some datatype's or size's were incorrect, so the output arrays have been reallocated |
|
CV_Assert( mean0.data == mean.data ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvProjectPCA( const CvArr* data_arr, const CvArr* avg_arr, |
|
const CvArr* eigenvects, CvArr* result_arr ) |
|
{ |
|
cv::Mat data = cv::cvarrToMat(data_arr), mean = cv::cvarrToMat(avg_arr); |
|
cv::Mat evects = cv::cvarrToMat(eigenvects), dst0 = cv::cvarrToMat(result_arr), dst = dst0; |
|
|
|
cv::PCA pca; |
|
pca.mean = mean; |
|
int n; |
|
if( mean.rows == 1 ) |
|
{ |
|
CV_Assert_N(dst.cols <= evects.rows, dst.rows == data.rows); |
|
n = dst.cols; |
|
} |
|
else |
|
{ |
|
CV_Assert_N(dst.rows <= evects.rows, dst.cols == data.cols); |
|
n = dst.rows; |
|
} |
|
pca.eigenvectors = evects.rowRange(0, n); |
|
|
|
cv::Mat result = pca.project(data); |
|
if( result.cols != dst.cols ) |
|
result = result.reshape(1, 1); |
|
result.convertTo(dst, dst.type()); |
|
|
|
CV_Assert(dst0.data == dst.data); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvBackProjectPCA( const CvArr* proj_arr, const CvArr* avg_arr, |
|
const CvArr* eigenvects, CvArr* result_arr ) |
|
{ |
|
cv::Mat data = cv::cvarrToMat(proj_arr), mean = cv::cvarrToMat(avg_arr); |
|
cv::Mat evects = cv::cvarrToMat(eigenvects), dst0 = cv::cvarrToMat(result_arr), dst = dst0; |
|
|
|
cv::PCA pca; |
|
pca.mean = mean; |
|
int n; |
|
if( mean.rows == 1 ) |
|
{ |
|
CV_Assert_N(data.cols <= evects.rows, dst.rows == data.rows); |
|
n = data.cols; |
|
} |
|
else |
|
{ |
|
CV_Assert_N(data.rows <= evects.rows, dst.cols == data.cols); |
|
n = data.rows; |
|
} |
|
pca.eigenvectors = evects.rowRange(0, n); |
|
|
|
cv::Mat result = pca.backProject(data); |
|
result.convertTo(dst, dst.type()); |
|
|
|
CV_Assert(dst0.data == dst.data); |
|
} |
|
|
|
/* End of file. */
|
|
|