mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
6.2 KiB
170 lines
6.2 KiB
#include <iostream> |
|
#include <fstream> |
|
|
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/dnn/dnn.hpp> |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
std::string keys = |
|
"{ help h | | Print help message. }" |
|
"{ inputImage i | | Path to an input image. Skip this argument to capture frames from a camera. }" |
|
"{ detModelPath dmp | | Path to a binary .onnx model for detection. " |
|
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}" |
|
"{ recModelPath rmp | | Path to a binary .onnx model for recognition. " |
|
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}" |
|
"{ inputHeight ih |736| image height of the model input. It should be multiple by 32.}" |
|
"{ inputWidth iw |736| image width of the model input. It should be multiple by 32.}" |
|
"{ RGBInput rgb |0| 0: imread with flags=IMREAD_GRAYSCALE; 1: imread with flags=IMREAD_COLOR. }" |
|
"{ binaryThreshold bt |0.3| Confidence threshold of the binary map. }" |
|
"{ polygonThreshold pt |0.5| Confidence threshold of polygons. }" |
|
"{ maxCandidate max |200| Max candidates of polygons. }" |
|
"{ unclipRatio ratio |2.0| unclip ratio. }" |
|
"{ vocabularyPath vp | alphabet_36.txt | Path to benchmarks for evaluation. " |
|
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}"; |
|
|
|
void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result); |
|
bool sortPts(const Point& p1, const Point& p2); |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
// Parse arguments |
|
CommandLineParser parser(argc, argv, keys); |
|
parser.about("Use this script to run an end-to-end inference sample of textDetectionModel and textRecognitionModel APIs\n" |
|
"Use -h for more information"); |
|
if (argc == 1 || parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
float binThresh = parser.get<float>("binaryThreshold"); |
|
float polyThresh = parser.get<float>("polygonThreshold"); |
|
uint maxCandidates = parser.get<uint>("maxCandidate"); |
|
String detModelPath = parser.get<String>("detModelPath"); |
|
String recModelPath = parser.get<String>("recModelPath"); |
|
String vocPath = parser.get<String>("vocabularyPath"); |
|
double unclipRatio = parser.get<double>("unclipRatio"); |
|
int height = parser.get<int>("inputHeight"); |
|
int width = parser.get<int>("inputWidth"); |
|
int imreadRGB = parser.get<int>("RGBInput"); |
|
|
|
if (!parser.check()) |
|
{ |
|
parser.printErrors(); |
|
return 1; |
|
} |
|
|
|
// Load networks |
|
CV_Assert(!detModelPath.empty()); |
|
TextDetectionModel_DB detector(detModelPath); |
|
detector.setBinaryThreshold(binThresh) |
|
.setPolygonThreshold(polyThresh) |
|
.setUnclipRatio(unclipRatio) |
|
.setMaxCandidates(maxCandidates); |
|
|
|
CV_Assert(!recModelPath.empty()); |
|
TextRecognitionModel recognizer(recModelPath); |
|
|
|
// Load vocabulary |
|
CV_Assert(!vocPath.empty()); |
|
std::ifstream vocFile; |
|
vocFile.open(samples::findFile(vocPath)); |
|
CV_Assert(vocFile.is_open()); |
|
String vocLine; |
|
std::vector<String> vocabulary; |
|
while (std::getline(vocFile, vocLine)) { |
|
vocabulary.push_back(vocLine); |
|
} |
|
recognizer.setVocabulary(vocabulary); |
|
recognizer.setDecodeType("CTC-greedy"); |
|
|
|
// Parameters for Detection |
|
double detScale = 1.0 / 255.0; |
|
Size detInputSize = Size(width, height); |
|
Scalar detMean = Scalar(122.67891434, 116.66876762, 104.00698793); |
|
detector.setInputParams(detScale, detInputSize, detMean); |
|
|
|
// Parameters for Recognition |
|
double recScale = 1.0 / 127.5; |
|
Scalar recMean = Scalar(127.5); |
|
Size recInputSize = Size(100, 32); |
|
recognizer.setInputParams(recScale, recInputSize, recMean); |
|
|
|
// Create a window |
|
static const std::string winName = "Text_Spotting"; |
|
|
|
// Input data |
|
Mat frame = imread(samples::findFile(parser.get<String>("inputImage"))); |
|
std::cout << frame.size << std::endl; |
|
|
|
// Inference |
|
std::vector< std::vector<Point> > detResults; |
|
detector.detect(frame, detResults); |
|
Mat frame2 = frame.clone(); |
|
|
|
if (detResults.size() > 0) { |
|
// Text Recognition |
|
Mat recInput; |
|
if (!imreadRGB) { |
|
cvtColor(frame, recInput, cv::COLOR_BGR2GRAY); |
|
} else { |
|
recInput = frame; |
|
} |
|
std::vector< std::vector<Point> > contours; |
|
for (uint i = 0; i < detResults.size(); i++) |
|
{ |
|
const auto& quadrangle = detResults[i]; |
|
CV_CheckEQ(quadrangle.size(), (size_t)4, ""); |
|
|
|
contours.emplace_back(quadrangle); |
|
|
|
std::vector<Point2f> quadrangle_2f; |
|
for (int j = 0; j < 4; j++) |
|
quadrangle_2f.emplace_back(quadrangle[j]); |
|
|
|
// Transform and Crop |
|
Mat cropped; |
|
fourPointsTransform(recInput, &quadrangle_2f[0], cropped); |
|
|
|
std::string recognitionResult = recognizer.recognize(cropped); |
|
std::cout << i << ": '" << recognitionResult << "'" << std::endl; |
|
|
|
putText(frame2, recognitionResult, quadrangle[3], FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2); |
|
} |
|
polylines(frame2, contours, true, Scalar(0, 255, 0), 2); |
|
} else { |
|
std::cout << "No Text Detected." << std::endl; |
|
} |
|
imshow(winName, frame2); |
|
waitKey(); |
|
|
|
return 0; |
|
} |
|
|
|
void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result) |
|
{ |
|
const Size outputSize = Size(100, 32); |
|
|
|
Point2f targetVertices[4] = { |
|
Point(0, outputSize.height - 1), |
|
Point(0, 0), |
|
Point(outputSize.width - 1, 0), |
|
Point(outputSize.width - 1, outputSize.height - 1) |
|
}; |
|
Mat rotationMatrix = getPerspectiveTransform(vertices, targetVertices); |
|
|
|
warpPerspective(frame, result, rotationMatrix, outputSize); |
|
|
|
#if 0 |
|
imshow("roi", result); |
|
waitKey(); |
|
#endif |
|
} |
|
|
|
bool sortPts(const Point& p1, const Point& p2) |
|
{ |
|
return p1.x < p2.x; |
|
}
|
|
|