Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
374 lines
12 KiB
374 lines
12 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// Copyright (c) 2020-2021 darkliang wangberlinT Certseeds |
|
|
|
#include "precomp.hpp" |
|
#include <opencv2/objdetect/barcode.hpp> |
|
#include <opencv2/core/utils/filesystem.hpp> |
|
#include "barcode_decoder/ean13_decoder.hpp" |
|
#include "barcode_decoder/ean8_decoder.hpp" |
|
#include "barcode_detector/bardetect.hpp" |
|
#include "barcode_decoder/common/super_scale.hpp" |
|
#include "barcode_decoder/common/utils.hpp" |
|
#include "graphical_code_detector_impl.hpp" |
|
|
|
using std::string; |
|
using std::vector; |
|
using std::make_shared; |
|
using std::array; |
|
using std::shared_ptr; |
|
using std::dynamic_pointer_cast; |
|
|
|
namespace cv { |
|
namespace barcode { |
|
|
|
//================================================================================================== |
|
|
|
static bool checkBarInputImage(InputArray img, Mat &gray) |
|
{ |
|
CV_Assert(!img.empty()); |
|
CV_CheckDepthEQ(img.depth(), CV_8U, ""); |
|
if (img.cols() <= 40 || img.rows() <= 40) |
|
{ |
|
return false; // image data is not enough for providing reliable results |
|
} |
|
int incn = img.channels(); |
|
CV_Check(incn, incn == 1 || incn == 3 || incn == 4, ""); |
|
if (incn == 3 || incn == 4) |
|
{ |
|
cvtColor(img, gray, COLOR_BGR2GRAY); |
|
} |
|
else |
|
{ |
|
gray = img.getMat(); |
|
} |
|
return true; |
|
} |
|
|
|
static void updatePointsResult(OutputArray points_, const vector<Point2f> &points) |
|
{ |
|
if (points_.needed()) |
|
{ |
|
int N = int(points.size() / 4); |
|
if (N > 0) |
|
{ |
|
Mat m_p(N, 4, CV_32FC2, (void *) &points[0]); |
|
int points_type = points_.fixedType() ? points_.type() : CV_32FC2; |
|
m_p.reshape(2, points_.rows()).convertTo(points_, points_type); // Mat layout: N x 4 x 2cn |
|
} |
|
else |
|
{ |
|
points_.release(); |
|
} |
|
} |
|
} |
|
|
|
inline const array<shared_ptr<AbsDecoder>, 2> &getDecoders() |
|
{ |
|
//indicate Decoder |
|
static const array<shared_ptr<AbsDecoder>, 2> decoders{ |
|
shared_ptr<AbsDecoder>(new Ean13Decoder()), shared_ptr<AbsDecoder>(new Ean8Decoder())}; |
|
return decoders; |
|
} |
|
|
|
//================================================================================================== |
|
|
|
class BarDecode |
|
{ |
|
public: |
|
void init(const vector<Mat> &bar_imgs_); |
|
|
|
const vector<Result> &getDecodeInformation() |
|
{ return result_info; } |
|
|
|
bool decodeMultiplyProcess(); |
|
|
|
private: |
|
vector<Mat> bar_imgs; |
|
vector<Result> result_info; |
|
}; |
|
|
|
void BarDecode::init(const vector<Mat> &bar_imgs_) |
|
{ |
|
bar_imgs = bar_imgs_; |
|
} |
|
|
|
bool BarDecode::decodeMultiplyProcess() |
|
{ |
|
static float constexpr THRESHOLD_CONF = 0.6f; |
|
result_info.clear(); |
|
result_info.resize(bar_imgs.size()); |
|
parallel_for_(Range(0, int(bar_imgs.size())), [&](const Range &range) { |
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
Mat bin_bar; |
|
Result max_res; |
|
float max_conf = -1.f; |
|
bool decoded = false; |
|
for (const auto &decoder:getDecoders()) |
|
{ |
|
if (decoded) |
|
{ break; } |
|
for (const auto binary_type : binary_types) |
|
{ |
|
binarize(bar_imgs[i], bin_bar, binary_type); |
|
auto cur_res = decoder->decodeROI(bin_bar); |
|
if (cur_res.second > max_conf) |
|
{ |
|
max_res = cur_res.first; |
|
max_conf = cur_res.second; |
|
if (max_conf > THRESHOLD_CONF) |
|
{ |
|
// code decoded |
|
decoded = true; |
|
break; |
|
} |
|
} |
|
} //binary types |
|
} //decoder types |
|
|
|
result_info[i] = max_res; |
|
} |
|
}); |
|
return !result_info.empty(); |
|
} |
|
|
|
//================================================================================================== |
|
// Private class definition and implementation (pimpl) |
|
|
|
struct BarcodeImpl : public GraphicalCodeDetector::Impl |
|
{ |
|
public: |
|
shared_ptr<SuperScale> sr; |
|
bool use_nn_sr = false; |
|
|
|
public: |
|
//================= |
|
// own methods |
|
BarcodeImpl() = default; |
|
vector<Mat> initDecode(const Mat &src, const vector<vector<Point2f>> &points) const; |
|
bool decodeWithType(InputArray img, |
|
InputArray points, |
|
vector<string> &decoded_info, |
|
vector<string> &decoded_type) const; |
|
bool detectAndDecodeWithType(InputArray img, |
|
vector<string> &decoded_info, |
|
vector<string> &decoded_type, |
|
OutputArray points_) const; |
|
|
|
//================= |
|
// implement interface |
|
~BarcodeImpl() CV_OVERRIDE {} |
|
bool detect(InputArray img, OutputArray points) const CV_OVERRIDE; |
|
string decode(InputArray img, InputArray points, OutputArray straight_code) const CV_OVERRIDE; |
|
string detectAndDecode(InputArray img, OutputArray points, OutputArray straight_code) const CV_OVERRIDE; |
|
bool detectMulti(InputArray img, OutputArray points) const CV_OVERRIDE; |
|
bool decodeMulti(InputArray img, InputArray points, vector<string>& decoded_info, OutputArrayOfArrays straight_code) const CV_OVERRIDE; |
|
bool detectAndDecodeMulti(InputArray img, vector<string>& decoded_info, OutputArray points, OutputArrayOfArrays straight_code) const CV_OVERRIDE; |
|
}; |
|
|
|
// return cropped and scaled bar img |
|
vector<Mat> BarcodeImpl::initDecode(const Mat &src, const vector<vector<Point2f>> &points) const |
|
{ |
|
vector<Mat> bar_imgs; |
|
for (auto &corners : points) |
|
{ |
|
Mat bar_img; |
|
cropROI(src, bar_img, corners); |
|
// sharpen(bar_img, bar_img); |
|
// empirical settings |
|
if (bar_img.cols < 320 || bar_img.cols > 640) |
|
{ |
|
float scale = 560.0f / static_cast<float>(bar_img.cols); |
|
sr->processImageScale(bar_img, bar_img, scale, use_nn_sr); |
|
} |
|
bar_imgs.emplace_back(bar_img); |
|
} |
|
return bar_imgs; |
|
} |
|
|
|
bool BarcodeImpl::decodeWithType(InputArray img, |
|
InputArray points, |
|
vector<string> &decoded_info, |
|
vector<string> &decoded_type) const |
|
{ |
|
Mat inarr; |
|
if (!checkBarInputImage(img, inarr)) |
|
{ |
|
return false; |
|
} |
|
CV_Assert(points.size().width > 0); |
|
CV_Assert((points.size().width % 4) == 0); |
|
vector<vector<Point2f>> src_points; |
|
Mat bar_points = points.getMat(); |
|
bar_points = bar_points.reshape(2, 1); |
|
for (int i = 0; i < bar_points.size().width; i += 4) |
|
{ |
|
vector<Point2f> tempMat = bar_points.colRange(i, i + 4); |
|
if (contourArea(tempMat) > 0.0) |
|
{ |
|
src_points.push_back(tempMat); |
|
} |
|
} |
|
CV_Assert(!src_points.empty()); |
|
vector<Mat> bar_imgs = initDecode(inarr, src_points); |
|
BarDecode bardec; |
|
bardec.init(bar_imgs); |
|
bardec.decodeMultiplyProcess(); |
|
const vector<Result> info = bardec.getDecodeInformation(); |
|
decoded_info.clear(); |
|
decoded_type.clear(); |
|
bool ok = false; |
|
for (const auto &res : info) |
|
{ |
|
if (res.isValid()) |
|
{ |
|
ok = true; |
|
} |
|
|
|
decoded_info.emplace_back(res.result); |
|
decoded_type.emplace_back(res.typeString()); |
|
} |
|
return ok; |
|
} |
|
|
|
bool BarcodeImpl::detectAndDecodeWithType(InputArray img, |
|
vector<string> &decoded_info, |
|
vector<string> &decoded_type, |
|
OutputArray points_) const |
|
{ |
|
Mat inarr; |
|
if (!checkBarInputImage(img, inarr)) |
|
{ |
|
points_.release(); |
|
return false; |
|
} |
|
vector<Point2f> points; |
|
bool ok = this->detect(inarr, points); |
|
if (!ok) |
|
{ |
|
points_.release(); |
|
return false; |
|
} |
|
updatePointsResult(points_, points); |
|
decoded_info.clear(); |
|
decoded_type.clear(); |
|
ok = decodeWithType(inarr, points, decoded_info, decoded_type); |
|
return ok; |
|
} |
|
|
|
bool BarcodeImpl::detect(InputArray img, OutputArray points) const |
|
{ |
|
Mat inarr; |
|
if (!checkBarInputImage(img, inarr)) |
|
{ |
|
points.release(); |
|
return false; |
|
} |
|
|
|
Detect bardet; |
|
bardet.init(inarr); |
|
bardet.localization(); |
|
if (!bardet.computeTransformationPoints()) |
|
{ return false; } |
|
vector<vector<Point2f>> pnts2f = bardet.getTransformationPoints(); |
|
vector<Point2f> trans_points; |
|
for (auto &i : pnts2f) |
|
{ |
|
for (const auto &j : i) |
|
{ |
|
trans_points.push_back(j); |
|
} |
|
} |
|
updatePointsResult(points, trans_points); |
|
return true; |
|
} |
|
|
|
string BarcodeImpl::decode(InputArray img, InputArray points, OutputArray straight_code) const |
|
{ |
|
CV_UNUSED(straight_code); |
|
vector<string> decoded_info; |
|
vector<string> decoded_type; |
|
if (!decodeWithType(img, points, decoded_info, decoded_type)) |
|
return string(); |
|
if (decoded_info.size() < 1) |
|
return string(); |
|
return decoded_info[0]; |
|
} |
|
|
|
string BarcodeImpl::detectAndDecode(InputArray img, OutputArray points, OutputArray straight_code) const |
|
{ |
|
CV_UNUSED(straight_code); |
|
vector<string> decoded_info; |
|
vector<string> decoded_type; |
|
vector<Point> points_; |
|
if (!detectAndDecodeWithType(img, decoded_info, decoded_type, points_)) |
|
return string(); |
|
if (points_.size() < 4 || decoded_info.size() < 1) |
|
return string(); |
|
points_.resize(4); |
|
points.setTo(points_); |
|
return decoded_info[0]; |
|
} |
|
|
|
bool BarcodeImpl::detectMulti(InputArray img, OutputArray points) const |
|
{ |
|
return detect(img, points); |
|
} |
|
|
|
bool BarcodeImpl::decodeMulti(InputArray img, InputArray points, vector<string> &decoded_info, OutputArrayOfArrays straight_code) const |
|
{ |
|
CV_UNUSED(straight_code); |
|
vector<string> decoded_type; |
|
return decodeWithType(img, points, decoded_info, decoded_type); |
|
} |
|
|
|
bool BarcodeImpl::detectAndDecodeMulti(InputArray img, vector<string> &decoded_info, OutputArray points, OutputArrayOfArrays straight_code) const |
|
{ |
|
CV_UNUSED(straight_code); |
|
vector<string> decoded_type; |
|
return detectAndDecodeWithType(img, decoded_info, decoded_type, points); |
|
} |
|
|
|
//================================================================================================== |
|
// Public class implementation |
|
|
|
BarcodeDetector::BarcodeDetector() |
|
: BarcodeDetector(string(), string()) |
|
{ |
|
} |
|
|
|
BarcodeDetector::BarcodeDetector(const string &prototxt_path, const string &model_path) |
|
{ |
|
Ptr<BarcodeImpl> p_ = new BarcodeImpl(); |
|
p = p_; |
|
if (!prototxt_path.empty() && !model_path.empty()) |
|
{ |
|
CV_Assert(utils::fs::exists(prototxt_path)); |
|
CV_Assert(utils::fs::exists(model_path)); |
|
p_->sr = make_shared<SuperScale>(); |
|
int res = p_->sr->init(prototxt_path, model_path); |
|
CV_Assert(res == 0); |
|
p_->use_nn_sr = true; |
|
} |
|
} |
|
|
|
BarcodeDetector::~BarcodeDetector() = default; |
|
|
|
bool BarcodeDetector::decodeWithType(InputArray img, InputArray points, vector<string> &decoded_info, vector<string> &decoded_type) const |
|
{ |
|
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p); |
|
CV_Assert(p_); |
|
return p_->decodeWithType(img, points, decoded_info, decoded_type); |
|
} |
|
|
|
bool BarcodeDetector::detectAndDecodeWithType(InputArray img, vector<string> &decoded_info, vector<string> &decoded_type, OutputArray points_) const |
|
{ |
|
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p); |
|
CV_Assert(p_); |
|
return p_->detectAndDecodeWithType(img, decoded_info, decoded_type, points_); |
|
} |
|
|
|
}// namespace barcode |
|
} // namespace cv
|
|
|