mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
339 lines
13 KiB
339 lines
13 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
const string FEATURES2D_DIR = "features2d"; |
|
const string IMAGE_FILENAME = "tsukuba.png"; |
|
const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors"; |
|
|
|
/****************************************************************************************\ |
|
* Regression tests for descriptor extractors. * |
|
\****************************************************************************************/ |
|
static void writeMatInBin( const Mat& mat, const string& filename ) |
|
{ |
|
FILE* f = fopen( filename.c_str(), "wb"); |
|
if( f ) |
|
{ |
|
int type = mat.type(); |
|
fwrite( (void*)&mat.rows, sizeof(int), 1, f ); |
|
fwrite( (void*)&mat.cols, sizeof(int), 1, f ); |
|
fwrite( (void*)&type, sizeof(int), 1, f ); |
|
int dataSize = (int)(mat.step * mat.rows * mat.channels()); |
|
fwrite( (void*)&dataSize, sizeof(int), 1, f ); |
|
fwrite( (void*)mat.data, 1, dataSize, f ); |
|
fclose(f); |
|
} |
|
} |
|
|
|
static Mat readMatFromBin( const string& filename ) |
|
{ |
|
FILE* f = fopen( filename.c_str(), "rb" ); |
|
if( f ) |
|
{ |
|
int rows, cols, type, dataSize; |
|
size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f ); |
|
size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f ); |
|
size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f ); |
|
size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f ); |
|
CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1); |
|
|
|
uchar* data = (uchar*)cvAlloc(dataSize); |
|
size_t elements_read = fread( (void*)data, 1, dataSize, f ); |
|
CV_Assert(elements_read == (size_t)(dataSize)); |
|
fclose(f); |
|
|
|
return Mat( rows, cols, type, data ); |
|
} |
|
return Mat(); |
|
} |
|
|
|
template<class Distance> |
|
class CV_DescriptorExtractorTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
typedef typename Distance::ValueType ValueType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor, |
|
Distance d = Distance() ): |
|
name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) {} |
|
protected: |
|
virtual void createDescriptorExtractor() {} |
|
|
|
void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors ) |
|
{ |
|
if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
CV_Assert( DataType<ValueType>::type == validDescriptors.type() ); |
|
|
|
int dimension = validDescriptors.cols; |
|
DistanceType curMaxDist = std::numeric_limits<DistanceType>::min(); |
|
for( int y = 0; y < validDescriptors.rows; y++ ) |
|
{ |
|
DistanceType dist = distance( validDescriptors.ptr<ValueType>(y), calcDescriptors.ptr<ValueType>(y), dimension ); |
|
if( dist > curMaxDist ) |
|
curMaxDist = dist; |
|
} |
|
|
|
stringstream ss; |
|
ss << "Max distance between valid and computed descriptors " << curMaxDist; |
|
if( curMaxDist < maxDist ) |
|
ss << "." << endl; |
|
else |
|
{ |
|
ss << ">" << maxDist << " - bad accuracy!"<< endl; |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
} |
|
ts->printf(cvtest::TS::LOG, ss.str().c_str() ); |
|
} |
|
|
|
void emptyDataTest() |
|
{ |
|
assert( !dextractor.empty() ); |
|
|
|
// One image. |
|
Mat image; |
|
vector<KeyPoint> keypoints; |
|
Mat descriptors; |
|
|
|
try |
|
{ |
|
dextractor->compute( image, keypoints, descriptors ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
|
|
image.create( 50, 50, CV_8UC3 ); |
|
try |
|
{ |
|
dextractor->compute( image, keypoints, descriptors ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
|
|
// Several images. |
|
vector<Mat> images; |
|
vector<vector<KeyPoint> > keypointsCollection; |
|
vector<Mat> descriptorsCollection; |
|
try |
|
{ |
|
dextractor->compute( images, keypointsCollection, descriptorsCollection ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
} |
|
|
|
void regressionTest() |
|
{ |
|
assert( !dextractor.empty() ); |
|
|
|
// Read the test image. |
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; |
|
|
|
Mat img = imread( imgFilename ); |
|
if( img.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
vector<KeyPoint> keypoints; |
|
FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ ); |
|
if( fs.isOpened() ) |
|
{ |
|
read( fs.getFirstTopLevelNode(), keypoints ); |
|
|
|
Mat calcDescriptors; |
|
double t = (double)getTickCount(); |
|
dextractor->compute( img, keypoints, calcDescriptors ); |
|
t = getTickCount() - t; |
|
ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)cvGetTickFrequency()*1000.)/calcDescriptors.rows); |
|
|
|
if( calcDescriptors.rows != (int)keypoints.size() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" ); |
|
ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() ); |
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
if( calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" ); |
|
ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() ); |
|
ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols ); |
|
ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() ); |
|
ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
// TODO read and write descriptor extractor parameters and check them |
|
Mat validDescriptors = readDescriptors(); |
|
if( !validDescriptors.empty() ) |
|
compareDescriptors( validDescriptors, calcDescriptors ); |
|
else |
|
{ |
|
if( !writeDescriptors( calcDescriptors ) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Descriptors can not be written.\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Compute and write keypoints.\n" ); |
|
fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE ); |
|
if( fs.isOpened() ) |
|
{ |
|
ORB fd; |
|
fd.detect(img, keypoints); |
|
write( fs, "keypoints", keypoints ); |
|
} |
|
else |
|
{ |
|
ts->printf(cvtest::TS::LOG, "File for writting keypoints can not be opened.\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
void run(int) |
|
{ |
|
createDescriptorExtractor(); |
|
if( dextractor.empty() ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
emptyDataTest(); |
|
regressionTest(); |
|
|
|
ts->set_failed_test_info( cvtest::TS::OK ); |
|
} |
|
|
|
virtual Mat readDescriptors() |
|
{ |
|
Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); |
|
return res; |
|
} |
|
|
|
virtual bool writeDescriptors( Mat& descs ) |
|
{ |
|
writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); |
|
return true; |
|
} |
|
|
|
string name; |
|
const DistanceType maxDist; |
|
Ptr<DescriptorExtractor> dextractor; |
|
Distance distance; |
|
|
|
private: |
|
CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; } |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Tests registrations * |
|
\****************************************************************************************/ |
|
|
|
TEST( Features2d_DescriptorExtractor_BRISK, regression ) |
|
{ |
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-brisk", (CV_DescriptorExtractorTest<Hamming>::DistanceType)2.f, |
|
DescriptorExtractor::create("BRISK") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor_ORB, regression ) |
|
{ |
|
// TODO adjust the parameters below |
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-orb", (CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f, |
|
DescriptorExtractor::create("ORB") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor_FREAK, regression ) |
|
{ |
|
// TODO adjust the parameters below |
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-freak", (CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f, |
|
DescriptorExtractor::create("FREAK") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor_BRIEF, regression ) |
|
{ |
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-brief", 1, |
|
DescriptorExtractor::create("BRIEF") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor_OpponentBRIEF, regression ) |
|
{ |
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-opponent-brief", 1, |
|
DescriptorExtractor::create("OpponentBRIEF") ); |
|
test.safe_run(); |
|
}
|
|
|