Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

818 lines
34 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_USAC_USAC_HPP
#define OPENCV_USAC_USAC_HPP
namespace cv { namespace usac {
enum EstimationMethod { Homography, Fundamental, Fundamental8, Essential, Affine, P3P, P6P};
enum VerificationMethod { NullVerifier, SprtVerifier };
enum PolishingMethod { NonePolisher, LSQPolisher };
enum ErrorMetric {DIST_TO_LINE, SAMPSON_ERR, SGD_ERR, SYMM_REPR_ERR, FORW_REPR_ERR, RERPOJ};
// Abstract Error class
class Error : public Algorithm {
public:
// set model to use getError() function
virtual void setModelParameters (const Mat &model) = 0;
// returns error of point wih @point_idx w.r.t. model
virtual float getError (int point_idx) const = 0;
virtual const std::vector<float> &getErrors (const Mat &model) = 0;
virtual Ptr<Error> clone () const = 0;
};
// Symmetric Reprojection Error for Homography
class ReprojectionErrorSymmetric : public Error {
public:
static Ptr<ReprojectionErrorSymmetric> create(const Mat &points);
};
// Forward Reprojection Error for Homography
class ReprojectionErrorForward : public Error {
public:
static Ptr<ReprojectionErrorForward> create(const Mat &points);
};
// Sampson Error for Fundamental matrix
class SampsonError : public Error {
public:
static Ptr<SampsonError> create(const Mat &points);
};
// Symmetric Geometric Distance (to epipolar lines) for Fundamental and Essential matrix
class SymmetricGeometricDistance : public Error {
public:
static Ptr<SymmetricGeometricDistance> create(const Mat &points);
};
// Reprojection Error for Projection matrix
class ReprojectionErrorPmatrix : public Error {
public:
static Ptr<ReprojectionErrorPmatrix> create(const Mat &points);
};
// Reprojection Error for Affine matrix
class ReprojectionErrorAffine : public Error {
public:
static Ptr<ReprojectionErrorAffine> create(const Mat &points);
};
// Normalizing transformation of data points
class NormTransform : public Algorithm {
public:
/*
* @norm_points is output matrix of size pts_size x 4
* @sample constains indices of points
* @sample_number is number of used points in sample <0; sample_number)
* @T1, T2 are output transformation matrices
*/
virtual void getNormTransformation (Mat &norm_points, const std::vector<int> &sample,
int sample_number, Matx33d &T1, Matx33d &T2) const = 0;
static Ptr<NormTransform> create (const Mat &points);
};
/////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////// SOLVER ///////////////////////////////////////////
class MinimalSolver : public Algorithm {
public:
// Estimate models from minimal sample. models.size() == number of found solutions
virtual int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const = 0;
// return minimal sample size required for estimation.
virtual int getSampleSize() const = 0;
// return maximum number of possible solutions.
virtual int getMaxNumberOfSolutions () const = 0;
virtual Ptr<MinimalSolver> clone () const = 0;
};
//-------------------------- HOMOGRAPHY MATRIX -----------------------
class HomographyMinimalSolver4ptsGEM : public MinimalSolver {
public:
static Ptr<HomographyMinimalSolver4ptsGEM> create(const Mat &points_);
};
//-------------------------- FUNDAMENTAL MATRIX -----------------------
class FundamentalMinimalSolver7pts : public MinimalSolver {
public:
static Ptr<FundamentalMinimalSolver7pts> create(const Mat &points_);
};
class FundamentalMinimalSolver8pts : public MinimalSolver {
public:
static Ptr<FundamentalMinimalSolver8pts> create(const Mat &points_);
};
//-------------------------- ESSENTIAL MATRIX -----------------------
class EssentialMinimalSolverStewenius5pts : public MinimalSolver {
public:
static Ptr<EssentialMinimalSolverStewenius5pts> create(const Mat &points_);
};
//-------------------------- PNP -----------------------
class PnPMinimalSolver6Pts : public MinimalSolver {
public:
static Ptr<PnPMinimalSolver6Pts> create(const Mat &points_);
};
class P3PSolver : public MinimalSolver {
public:
static Ptr<P3PSolver> create(const Mat &points_, const Mat &calib_norm_pts, const Matx33d &K);
};
//-------------------------- AFFINE -----------------------
class AffineMinimalSolver : public MinimalSolver {
public:
static Ptr<AffineMinimalSolver> create(const Mat &points_);
};
//////////////////////////////////////// NON MINIMAL SOLVER ///////////////////////////////////////
class NonMinimalSolver : public Algorithm {
public:
// Estimate models from non minimal sample. models.size() == number of found solutions
virtual int estimate (const std::vector<int> &sample, int sample_size,
std::vector<Mat> &models, const std::vector<double> &weights) const = 0;
// return minimal sample size required for non-minimal estimation.
virtual int getMinimumRequiredSampleSize() const = 0;
// return maximum number of possible solutions.
virtual int getMaxNumberOfSolutions () const = 0;
virtual Ptr<NonMinimalSolver> clone () const = 0;
};
//-------------------------- HOMOGRAPHY MATRIX -----------------------
class HomographyNonMinimalSolver : public NonMinimalSolver {
public:
static Ptr<HomographyNonMinimalSolver> create(const Mat &points_);
};
//-------------------------- FUNDAMENTAL MATRIX -----------------------
class FundamentalNonMinimalSolver : public NonMinimalSolver {
public:
static Ptr<FundamentalNonMinimalSolver> create(const Mat &points_);
};
//-------------------------- ESSENTIAL MATRIX -----------------------
class EssentialNonMinimalSolver : public NonMinimalSolver {
public:
static Ptr<EssentialNonMinimalSolver> create(const Mat &points_);
};
//-------------------------- PNP -----------------------
class PnPNonMinimalSolver : public NonMinimalSolver {
public:
static Ptr<PnPNonMinimalSolver> create(const Mat &points);
};
class DLSPnP : public NonMinimalSolver {
public:
static Ptr<DLSPnP> create(const Mat &points_, const Mat &calib_norm_pts, const Matx33d &K);
};
//-------------------------- AFFINE -----------------------
class AffineNonMinimalSolver : public NonMinimalSolver {
public:
static Ptr<AffineNonMinimalSolver> create(const Mat &points_);
};
//////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////// SCORE ///////////////////////////////////////////
class Score {
public:
int inlier_number;
double score;
Score () { // set worst case
inlier_number = 0;
score = std::numeric_limits<double>::max();
}
Score (int inlier_number_, double score_) { // copy constructor
inlier_number = inlier_number_;
score = score_;
}
// Compare two scores. Objective is minimization of score. Lower score is better.
inline bool isBetter (const Score &score2) const {
return score < score2.score;
}
};
class GammaValues
{
const double max_range_complete /*= 4.62*/, max_range_gamma /*= 1.52*/;
const int max_size_table /* = 3000 */;
std::vector<double> gamma_complete, gamma_incomplete, gamma;
GammaValues(); // use getSingleton()
public:
static const GammaValues& getSingleton();
const std::vector<double>& getCompleteGammaValues() const;
const std::vector<double>& getIncompleteGammaValues() const;
const std::vector<double>& getGammaValues() const;
double getScaleOfGammaCompleteValues () const;
double getScaleOfGammaValues () const;
int getTableSize () const;
};
////////////////////////////////////////// QUALITY ///////////////////////////////////////////
class Quality : public Algorithm {
public:
virtual ~Quality() override = default;
/*
* Calculates number of inliers and score of the @model.
* return Score with calculated inlier_number and score.
* @model: Mat current model, e.g., H matrix.
*/
virtual Score getScore (const Mat &model) const = 0;
virtual Score getScore (const std::vector<float> &/*errors*/) const {
CV_Error(cv::Error::StsNotImplemented, "getScore(errors)");
}
// get @inliers of the @model. Assume threshold is given
// @inliers must be preallocated to maximum points size.
virtual int getInliers (const Mat &model, std::vector<int> &inliers) const = 0;
// get @inliers of the @model for given threshold
virtual int getInliers (const Mat &model, std::vector<int> &inliers, double thr) const = 0;
// Set the best score, so evaluation of the model can terminate earlier
virtual void setBestScore (double best_score_) = 0;
// set @inliers_mask: true if point i is inlier, false - otherwise.
virtual int getInliers (const Mat &model, std::vector<bool> &inliers_mask) const = 0;
virtual int getPointsSize() const = 0;
virtual Ptr<Quality> clone () const = 0;
static int getInliers (const Ptr<Error> &error, const Mat &model,
std::vector<bool> &inliers_mask, double threshold);
static int getInliers (const Ptr<Error> &error, const Mat &model,
std::vector<int> &inliers, double threshold);
};
// RANSAC (binary) quality
class RansacQuality : public Quality {
public:
static Ptr<RansacQuality> create(int points_size_, double threshold_,const Ptr<Error> &error_);
};
// M-estimator quality - truncated Squared error
class MsacQuality : public Quality {
public:
static Ptr<MsacQuality> create(int points_size_, double threshold_, const Ptr<Error> &error_);
};
// Marginlizing Sample Consensus quality, D. Barath et al.
class MagsacQuality : public Quality {
public:
static Ptr<MagsacQuality> create(double maximum_thr, int points_size_,const Ptr<Error> &error_,
double tentative_inlier_threshold_, int DoF, double sigma_quantile,
double upper_incomplete_of_sigma_quantile,
double lower_incomplete_of_sigma_quantile, double C_);
};
// Least Median of Squares Quality
class LMedsQuality : public Quality {
public:
static Ptr<LMedsQuality> create(int points_size_, double threshold_, const Ptr<Error> &error_);
};
//////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////// DEGENERACY //////////////////////////////////
class Degeneracy : public Algorithm {
public:
virtual ~Degeneracy() override = default;
/*
* Check if sample causes degenerate configurations.
* For example, test if points are collinear.
*/
virtual bool isSampleGood (const std::vector<int> &/*sample*/) const {
return true;
}
/*
* Check if model satisfies constraints.
* For example, test if epipolar geometry satisfies oriented constraint.
*/
virtual bool isModelValid (const Mat &/*model*/, const std::vector<int> &/*sample*/) const {
return true;
}
/*
* Fix degenerate model.
* Return true if model is degenerate, false - otherwise
*/
virtual bool recoverIfDegenerate (const std::vector<int> &/*sample*/,const Mat &/*best_model*/,
Mat &/*non_degenerate_model*/, Score &/*non_degenerate_model_score*/) {
return false;
}
virtual Ptr<Degeneracy> clone(int /*state*/) const { return makePtr<Degeneracy>(); }
};
class EpipolarGeometryDegeneracy : public Degeneracy {
public:
static void recoverRank (Mat &model, bool is_fundamental_mat);
static Ptr<EpipolarGeometryDegeneracy> create (const Mat &points_, int sample_size_);
};
class EssentialDegeneracy : public EpipolarGeometryDegeneracy {
public:
static Ptr<EssentialDegeneracy>create (const Mat &points, int sample_size);
};
class HomographyDegeneracy : public Degeneracy {
public:
static Ptr<HomographyDegeneracy> create(const Mat &points_);
};
class FundamentalDegeneracy : public EpipolarGeometryDegeneracy {
public:
// threshold for homography is squared so is around 2.236 pixels
static Ptr<FundamentalDegeneracy> create (int state, const Ptr<Quality> &quality_,
const Mat &points_, int sample_size_, double homography_threshold);
};
/////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////// ESTIMATOR //////////////////////////////////
class Estimator : public Algorithm{
public:
/*
* Estimate models with minimal solver.
* Return number of valid solutions after estimation.
* Return models accordingly to number of solutions.
* Note, vector of models must allocated before.
* Note, not all degenerate tests are included in estimation.
*/
virtual int
estimateModels (const std::vector<int> &sample, std::vector<Mat> &models) const = 0;
/*
* Estimate model with non-minimal solver.
* Return number of valid solutions after estimation.
* Note, not all degenerate tests are included in estimation.
*/
virtual int
estimateModelNonMinimalSample (const std::vector<int> &sample, int sample_size,
std::vector<Mat> &models, const std::vector<double> &weights) const = 0;
// return minimal sample size required for minimal estimation.
virtual int getMinimalSampleSize () const = 0;
// return minimal sample size required for non-minimal estimation.
virtual int getNonMinimalSampleSize () const = 0;
// return maximum number of possible solutions of minimal estimation.
virtual int getMaxNumSolutions () const = 0;
// return maximum number of possible solutions of non-minimal estimation.
virtual int getMaxNumSolutionsNonMinimal () const = 0;
virtual Ptr<Estimator> clone() const = 0;
};
class HomographyEstimator : public Estimator {
public:
static Ptr<HomographyEstimator> create (const Ptr<MinimalSolver> &min_solver_,
const Ptr<NonMinimalSolver> &non_min_solver_, const Ptr<Degeneracy> &degeneracy_);
};
class FundamentalEstimator : public Estimator {
public:
static Ptr<FundamentalEstimator> create (const Ptr<MinimalSolver> &min_solver_,
const Ptr<NonMinimalSolver> &non_min_solver_, const Ptr<Degeneracy> &degeneracy_);
};
class EssentialEstimator : public Estimator {
public:
static Ptr<EssentialEstimator> create (const Ptr<MinimalSolver> &min_solver_,
const Ptr<NonMinimalSolver> &non_min_solver_, const Ptr<Degeneracy> &degeneracy_);
};
class AffineEstimator : public Estimator {
public:
static Ptr<AffineEstimator> create (const Ptr<MinimalSolver> &min_solver_,
const Ptr<NonMinimalSolver> &non_min_solver_);
};
class PnPEstimator : public Estimator {
public:
static Ptr<PnPEstimator> create (const Ptr<MinimalSolver> &min_solver_,
const Ptr<NonMinimalSolver> &non_min_solver_);
};
//////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////// MODEL VERIFIER ////////////////////////////////////
class ModelVerifier : public Algorithm {
public:
virtual ~ModelVerifier() override = default;
// Return true if model is good, false - otherwise.
virtual bool isModelGood(const Mat &model) = 0;
// Return true if score was computed during evaluation.
virtual bool getScore(Score &score) const = 0;
// update verifier by given inlier number
virtual void update (int highest_inlier_number) = 0;
virtual const std::vector<float> &getErrors() const = 0;
virtual bool hasErrors () const = 0;
virtual Ptr<ModelVerifier> clone (int state) const = 0;
static Ptr<ModelVerifier> create();
};
struct SPRT_history {
/*
* delta:
* The probability of a data point being consistent
* with a ‘bad’ model is modeled as a probability of
* a random event with Bernoulli distribution with parameter
* δ : p(1|Hb) = δ.
* epsilon:
* The probability p(1|Hg) = ε
* that any randomly chosen data point is consistent with a ‘good’ model
* is approximated by the fraction of inliers ε among the data
* points
* A is the decision threshold, the only parameter of the Adapted SPRT
*/
double epsilon, delta, A;
// number of samples processed by test
int tested_samples; // k
SPRT_history () : epsilon(0), delta(0), A(0) {
tested_samples = 0;
}
};
///////////////////////////////// SPRT VERIFIER /////////////////////////////////////////
/*
* Matas, Jiri, and Ondrej Chum. "Randomized RANSAC with sequential probability ratio test."
* Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. Vol. 2. IEEE, 2005.
*/
class SPRT : public ModelVerifier {
public:
// return constant reference of vector of SPRT histories for SPRT termination.
virtual const std::vector<SPRT_history> &getSPRTvector () const = 0;
static Ptr<SPRT> create (int state, const Ptr<Error> &err_, int points_size_,
double inlier_threshold_, double prob_pt_of_good_model,
double prob_pt_of_bad_model, double time_sample, double avg_num_models,
ScoreMethod score_type_);
};
//////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////// SAMPLER ///////////////////////////////////////
class Sampler : public Algorithm {
public:
virtual ~Sampler() override = default;
// set new points size
virtual void setNewPointsSize (int points_size) = 0;
// generate sample. Fill @sample with indices of points.
virtual void generateSample (std::vector<int> &sample) = 0;
virtual Ptr<Sampler> clone (int state) const = 0;
};
////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////// NEIGHBORHOOD GRAPH /////////////////////////////////////////
class NeighborhoodGraph : public Algorithm {
public:
virtual ~NeighborhoodGraph() override = default;
// Return neighbors of the point with index @point_idx_ in the graph.
virtual const std::vector<int> &getNeighbors(int point_idx_) const = 0;
};
class RadiusSearchNeighborhoodGraph : public NeighborhoodGraph {
public:
static Ptr<RadiusSearchNeighborhoodGraph> create (const Mat &points, int points_size,
double radius_, int flann_search_params, int num_kd_trees);
};
class FlannNeighborhoodGraph : public NeighborhoodGraph {
public:
static Ptr<FlannNeighborhoodGraph> create(const Mat &points, int points_size,
int k_nearest_neighbors_, bool get_distances, int flann_search_params, int num_kd_trees);
virtual const std::vector<double> &getNeighborsDistances (int idx) const = 0;
};
class GridNeighborhoodGraph : public NeighborhoodGraph {
public:
static Ptr<GridNeighborhoodGraph> create(const Mat &points, int points_size,
int cell_size_x_img1_, int cell_size_y_img1_,
int cell_size_x_img2_, int cell_size_y_img2_, int max_neighbors);
};
////////////////////////////////////// UNIFORM SAMPLER ////////////////////////////////////////////
class UniformSampler : public Sampler {
public:
static Ptr<UniformSampler> create(int state, int sample_size_, int points_size_);
};
/////////////////////////////////// PROSAC (SIMPLE) SAMPLER ///////////////////////////////////////
class ProsacSimpleSampler : public Sampler {
public:
static Ptr<ProsacSimpleSampler> create(int state, int points_size_, int sample_size_,
int max_prosac_samples_count);
};
////////////////////////////////////// PROSAC SAMPLER ////////////////////////////////////////////
class ProsacSampler : public Sampler {
public:
static Ptr<ProsacSampler> create(int state, int points_size_, int sample_size_,
int growth_max_samples);
// return number of samples generated (for prosac termination).
virtual int getKthSample () const = 0;
// return constant reference of growth function of prosac sampler (for prosac termination)
virtual const std::vector<int> &getGrowthFunction () const = 0;
virtual void setTerminationLength (int termination_length) = 0;
};
////////////////////////// NAPSAC (N adjacent points sample consensus) SAMPLER ////////////////////
class NapsacSampler : public Sampler {
public:
static Ptr<NapsacSampler> create(int state, int points_size_, int sample_size_,
const Ptr<NeighborhoodGraph> &neighborhood_graph_);
};
////////////////////////////////////// P-NAPSAC SAMPLER /////////////////////////////////////////
class ProgressiveNapsac : public Sampler {
public:
static Ptr<ProgressiveNapsac> create(int state, int points_size_, int sample_size_,
const std::vector<Ptr<NeighborhoodGraph>> &layers, int sampler_length);
};
/////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////// TERMINATION ///////////////////////////////////////////
class TerminationCriteria : public Algorithm {
public:
// update termination object by given @model and @inlier number.
// and return maximum number of predicted iteration
virtual int update(const Mat &model, int inlier_number) = 0;
// clone termination
virtual Ptr<TerminationCriteria> clone () const = 0;
};
//////////////////////////////// STANDARD TERMINATION ///////////////////////////////////////////
class StandardTerminationCriteria : public TerminationCriteria {
public:
static Ptr<StandardTerminationCriteria> create(double confidence, int points_size_,
int sample_size_, int max_iterations_);
};
///////////////////////////////////// SPRT TERMINATION //////////////////////////////////////////
class SPRTTermination : public TerminationCriteria {
public:
static Ptr<SPRTTermination> create(const std::vector<SPRT_history> &sprt_histories_,
double confidence, int points_size_, int sample_size_, int max_iterations_);
};
///////////////////////////// PROGRESSIVE-NAPSAC-SPRT TERMINATION /////////////////////////////////
class SPRTPNapsacTermination : public TerminationCriteria {
public:
static Ptr<SPRTPNapsacTermination> create(const std::vector<SPRT_history>&
sprt_histories_, double confidence, int points_size_, int sample_size_,
int max_iterations_, double relax_coef_);
};
////////////////////////////////////// PROSAC TERMINATION /////////////////////////////////////////
class ProsacTerminationCriteria : public TerminationCriteria {
public:
static Ptr<ProsacTerminationCriteria> create(const Ptr<ProsacSampler> &sampler_,
const Ptr<Error> &error_, int points_size_, int sample_size, double confidence,
int max_iters, int min_termination_length, double beta, double non_randomness_phi,
double inlier_thresh);
};
//////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////// UTILS ////////////////////////////////////////////////
namespace Utils {
/*
* calibrate points: [x'; 1] = K^-1 [x; 1]
* @points is matrix N x 4.
* @norm_points is output matrix N x 4 with calibrated points.
*/
void calibratePoints (const Matx33d &K1, const Matx33d &K2, const Mat &points, Mat &norm_points);
void calibrateAndNormalizePointsPnP (const Matx33d &K, const Mat &pts, Mat &calib_norm_pts);
void normalizeAndDecalibPointsPnP (const Matx33d &K, Mat &pts, Mat &calib_norm_pts);
void decomposeProjection (const Mat &P, Matx33d &K_, Mat &R, Mat &t, bool same_focal=false);
double getCalibratedThreshold (double threshold, const Matx33d &K1, const Matx33d &K2);
float findMedian (std::vector<float> &array);
}
namespace Math {
// return skew symmetric matrix
Matx33d getSkewSymmetric(const Vec3d &v_);
// eliminate matrix with m rows and n columns to be upper triangular.
bool eliminateUpperTriangular (std::vector<double> &a, int m, int n);
Matx33d rotVec2RotMat (const Vec3d &v);
Vec3d rotMat2RotVec (const Matx33d &R);
}
///////////////////////////////////////// RANDOM GENERATOR /////////////////////////////////////
class RandomGenerator : public Algorithm {
public:
virtual ~RandomGenerator() override = default;
// interval is <0, max_range);
virtual void resetGenerator (int max_range) = 0;
// return sample filled with random numbers
virtual void generateUniqueRandomSet (std::vector<int> &sample) = 0;
// fill @sample of size @subset_size with random numbers in range <0, @max_range)
virtual void generateUniqueRandomSet (std::vector<int> &sample, int subset_size,
int max_range) = 0;
// fill @sample of size @sample.size() with random numbers in range <0, @max_range)
virtual void generateUniqueRandomSet (std::vector<int> &sample, int max_range) = 0;
// return subset=sample size
virtual void setSubsetSize (int subset_sz) = 0;
virtual int getSubsetSize () const = 0;
// return random number from <0, max_range), where max_range is from constructor
virtual int getRandomNumber () = 0;
// return random number from <0, max_rng)
virtual int getRandomNumber (int max_rng) = 0;
virtual const std::vector<int> &generateUniqueRandomSubset (std::vector<int> &array1,
int size1) = 0;
virtual Ptr<RandomGenerator> clone (int state) const = 0;
};
class UniformRandomGenerator : public RandomGenerator {
public:
static Ptr<UniformRandomGenerator> create (int state);
static Ptr<UniformRandomGenerator> create (int state, int max_range, int subset_size_);
};
///////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////// LOCAL OPTIMIZATION /////////////////////////////////////////
class LocalOptimization : public Algorithm {
public:
virtual ~LocalOptimization() override = default;
/*
* Refine so-far-the-best RANSAC model in local optimization step.
* @best_model: so-far-the-best model
* @new_model: output refined new model.
* @new_model_score: score of @new_model.
* Returns bool if model was refined successfully, false - otherwise
*/
virtual bool refineModel (const Mat &best_model, const Score &best_model_score,
Mat &new_model, Score &new_model_score) = 0;
virtual Ptr<LocalOptimization> clone(int state) const = 0;
};
//////////////////////////////////// GRAPH CUT LO ////////////////////////////////////////
class GraphCut : public LocalOptimization {
public:
static Ptr<GraphCut>
create(const Ptr<Estimator> &estimator_, const Ptr<Error> &error_,
const Ptr<Quality> &quality_, const Ptr<NeighborhoodGraph> &neighborhood_graph_,
const Ptr<RandomGenerator> &lo_sampler_, double threshold_,
double spatial_coherence_term, int gc_iters);
};
//////////////////////////////////// INNER + ITERATIVE LO ///////////////////////////////////////
class InnerIterativeLocalOptimization : public LocalOptimization {
public:
static Ptr<InnerIterativeLocalOptimization>
create(const Ptr<Estimator> &estimator_, const Ptr<Quality> &quality_,
const Ptr<RandomGenerator> &lo_sampler_, int pts_size, double threshold_,
bool is_iterative_, int lo_iter_sample_size_, int lo_inner_iterations,
int lo_iter_max_iterations, double threshold_multiplier);
};
class SigmaConsensus : public LocalOptimization {
public:
static Ptr<SigmaConsensus>
create(const Ptr<Estimator> &estimator_, const Ptr<Error> &error_,
const Ptr<Quality> &quality, const Ptr<ModelVerifier> &verifier_,
int max_lo_sample_size, int number_of_irwls_iters_,
int DoF, double sigma_quantile, double upper_incomplete_of_sigma_quantile,
double C_, double maximum_thr);
};
///////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////// FINAL MODEL POLISHER //////////////////////////////////////
class FinalModelPolisher : public Algorithm {
public:
virtual ~FinalModelPolisher() override = default;
/*
* Polish so-far-the-best RANSAC model in the end of RANSAC.
* @model: input final RANSAC model.
* @new_model: output polished model.
* @new_score: score of output model.
* Return true if polishing was successful, false - otherwise.
*/
virtual bool polishSoFarTheBestModel (const Mat &model, const Score &best_model_score,
Mat &new_model, Score &new_model_score) = 0;
};
///////////////////////////////////// LEAST SQUARES POLISHER //////////////////////////////////////
class LeastSquaresPolishing : public FinalModelPolisher {
public:
static Ptr<LeastSquaresPolishing> create (const Ptr<Estimator> &estimator_,
const Ptr<Quality> &quality_, int lsq_iterations);
};
/////////////////////////////////// RANSAC OUTPUT ///////////////////////////////////
class RansacOutput : public Algorithm {
public:
virtual ~RansacOutput() override = default;
static Ptr<RansacOutput> create(const Mat &model_,
const std::vector<bool> &inliers_mask_,
int time_mcs_, double score_, int number_inliers_, int number_iterations_,
int number_estimated_models_, int number_good_models_);
// Return inliers' indices. size of vector = number of inliers
virtual const std::vector<int > &getInliers() = 0;
// Return inliers mask. Vector of points size. 1-inlier, 0-outlier.
virtual const std::vector<bool> &getInliersMask() const = 0;
virtual int getTimeMicroSeconds() const = 0;
virtual int getTimeMicroSeconds1() const = 0;
virtual int getTimeMilliSeconds2() const = 0;
virtual int getTimeSeconds3() const = 0;
virtual int getNumberOfInliers() const = 0;
virtual int getNumberOfMainIterations() const = 0;
virtual int getNumberOfGoodModels () const = 0;
virtual int getNumberOfEstimatedModels () const = 0;
virtual const Mat &getModel() const = 0;
};
////////////////////////////////////////////// MODEL /////////////////////////////////////////////
class Model : public Algorithm {
public:
virtual bool isFundamental () const = 0;
virtual bool isHomography () const = 0;
virtual bool isEssential () const = 0;
virtual bool isPnP () const = 0;
// getters
virtual int getSampleSize () const = 0;
virtual bool isParallel() const = 0;
virtual int getMaxNumHypothesisToTestBeforeRejection() const = 0;
virtual PolishingMethod getFinalPolisher () const = 0;
virtual LocalOptimMethod getLO () const = 0;
virtual ErrorMetric getError () const = 0;
virtual EstimationMethod getEstimator () const = 0;
virtual ScoreMethod getScore () const = 0;
virtual int getMaxIters () const = 0;
virtual double getConfidence () const = 0;
virtual double getThreshold () const = 0;
virtual VerificationMethod getVerifier () const = 0;
virtual SamplingMethod getSampler () const = 0;
virtual double getTimeForModelEstimation () const = 0;
virtual double getSPRTdelta () const = 0;
virtual double getSPRTepsilon () const = 0;
virtual double getSPRTavgNumModels () const = 0;
virtual NeighborSearchMethod getNeighborsSearch () const = 0;
virtual int getKNN () const = 0;
virtual int getCellSize () const = 0;
virtual int getGraphRadius() const = 0;
virtual double getRelaxCoef () const = 0;
virtual int getFinalLSQIterations () const = 0;
virtual int getDegreesOfFreedom () const = 0;
virtual double getSigmaQuantile () const = 0;
virtual double getUpperIncompleteOfSigmaQuantile () const = 0;
virtual double getLowerIncompleteOfSigmaQuantile () const = 0;
virtual double getC () const = 0;
virtual double getMaximumThreshold () const = 0;
virtual double getGraphCutSpatialCoherenceTerm () const = 0;
virtual int getLOSampleSize () const = 0;
virtual int getLOThresholdMultiplier() const = 0;
virtual int getLOIterativeSampleSize() const = 0;
virtual int getLOIterativeMaxIters() const = 0;
virtual int getLOInnerMaxIters() const = 0;
virtual const std::vector<int> &getGridCellNumber () const = 0;
virtual int getRandomGeneratorState () const = 0;
virtual int getMaxItersBeforeLO () const = 0;
// setters
virtual void setLocalOptimization (LocalOptimMethod lo_) = 0;
virtual void setKNearestNeighhbors (int knn_) = 0;
virtual void setNeighborsType (NeighborSearchMethod neighbors) = 0;
virtual void setCellSize (int cell_size_) = 0;
virtual void setParallel (bool is_parallel) = 0;
virtual void setVerifier (VerificationMethod verifier_) = 0;
virtual void setPolisher (PolishingMethod polisher_) = 0;
virtual void setError (ErrorMetric error_) = 0;
virtual void setLOIterations (int iters) = 0;
virtual void setLOIterativeIters (int iters) = 0;
virtual void setLOSampleSize (int lo_sample_size) = 0;
virtual void setThresholdMultiplierLO (double thr_mult) = 0;
virtual void setRandomGeneratorState (int state) = 0;
virtual void maskRequired (bool required) = 0;
virtual bool isMaskRequired () const = 0;
static Ptr<Model> create(double threshold_, EstimationMethod estimator_, SamplingMethod sampler_,
double confidence_=0.95, int max_iterations_=5000, ScoreMethod score_ =ScoreMethod::SCORE_METHOD_MSAC);
};
Mat findHomography(InputArray srcPoints, InputArray dstPoints, int method,
double ransacReprojThreshold, OutputArray mask,
const int maxIters, const double confidence);
Mat findFundamentalMat( InputArray points1, InputArray points2,
int method, double ransacReprojThreshold, double confidence,
int maxIters, OutputArray mask=noArray());
bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
InputArray cameraMatrix, InputArray distCoeffs,
OutputArray rvec, OutputArray tvec,
bool useExtrinsicGuess, int iterationsCount,
float reprojectionError, double confidence,
OutputArray inliers, int flags);
Mat findEssentialMat( InputArray points1, InputArray points2,
InputArray cameraMatrix1,
int method, double prob,
double threshold, OutputArray mask);
Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers,
int method, double ransacReprojThreshold, int maxIters,
double confidence, int refineIters);
void saveMask (OutputArray mask, const std::vector<bool> &inliers_mask);
void setParameters (Ptr<Model> &params, EstimationMethod estimator, const UsacParams &usac_params,
bool mask_need);
bool run (const Ptr<const Model> &params, InputArray points1, InputArray points2, int state,
Ptr<RansacOutput> &ransac_output, InputArray K1_, InputArray K2_,
InputArray dist_coeff1, InputArray dist_coeff2);
}}
#endif //OPENCV_USAC_USAC_HPP