mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
362 lines
12 KiB
362 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the OpenCV Foundation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
#include <climits> |
|
#include <algorithm> |
|
#include <cstdarg> |
|
|
|
#define dprintf(x) |
|
#define print_matrix(x) |
|
|
|
namespace cv |
|
{ |
|
|
|
using std::vector; |
|
|
|
#ifdef ALEX_DEBUG |
|
static void print_simplex_state(const Mat& c,const Mat& b,double v,const std::vector<int> N,const std::vector<int> B){ |
|
printf("\tprint simplex state\n"); |
|
|
|
printf("v=%g\n",v); |
|
|
|
printf("here c goes\n"); |
|
print_matrix(c); |
|
|
|
printf("non-basic: "); |
|
print(Mat(N)); |
|
printf("\n"); |
|
|
|
printf("here b goes\n"); |
|
print_matrix(b); |
|
printf("basic: "); |
|
|
|
print(Mat(B)); |
|
printf("\n"); |
|
} |
|
#else |
|
#define print_simplex_state(c,b,v,N,B) |
|
#endif |
|
|
|
/**Due to technical considerations, the format of input b and c is somewhat special: |
|
*both b and c should be one column bigger than corresponding b and c of linear problem and the leftmost column will be used internally |
|
by this procedure - it should not be cleaned before the call to procedure and may contain mess after |
|
it also initializes N and B and does not make any assumptions about their init values |
|
* @return SOLVELP_UNFEASIBLE if problem is unfeasible, 0 if feasible. |
|
*/ |
|
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow); |
|
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,int leaving_index, |
|
int entering_index,vector<unsigned int>& indexToRow); |
|
/**@return SOLVELP_UNBOUNDED means the problem is unbdd, SOLVELP_MULTI means multiple solutions, SOLVELP_SINGLE means one solution. |
|
*/ |
|
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow); |
|
static void swap_columns(Mat_<double>& A,int col1,int col2); |
|
#define SWAP(type,a,b) {type tmp=(a);(a)=(b);(b)=tmp;} |
|
|
|
//return codes:-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm) |
|
int solveLP(const Mat& Func, const Mat& Constr, Mat& z){ |
|
dprintf(("call to solveLP\n")); |
|
|
|
//sanity check (size, type, no. of channels) |
|
CV_Assert(Func.type()==CV_64FC1 || Func.type()==CV_32FC1); |
|
CV_Assert(Constr.type()==CV_64FC1 || Constr.type()==CV_32FC1); |
|
CV_Assert((Func.rows==1 && (Constr.cols-Func.cols==1))|| |
|
(Func.cols==1 && (Constr.cols-Func.rows==1))); |
|
|
|
//copy arguments for we will shall modify them |
|
Mat_<double> bigC=Mat_<double>(1,(Func.rows==1?Func.cols:Func.rows)+1), |
|
bigB=Mat_<double>(Constr.rows,Constr.cols+1); |
|
if(Func.rows==1){ |
|
Func.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1); |
|
}else{ |
|
Mat FuncT=Func.t(); |
|
FuncT.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1); |
|
} |
|
Constr.convertTo(bigB.colRange(1,bigB.cols),CV_64FC1); |
|
double v=0; |
|
vector<int> N,B; |
|
vector<unsigned int> indexToRow; |
|
|
|
if(initialize_simplex(bigC,bigB,v,N,B,indexToRow)==SOLVELP_UNFEASIBLE){ |
|
return SOLVELP_UNFEASIBLE; |
|
} |
|
Mat_<double> c=bigC.colRange(1,bigC.cols), |
|
b=bigB.colRange(1,bigB.cols); |
|
|
|
int res=0; |
|
if((res=inner_simplex(c,b,v,N,B,indexToRow))==SOLVELP_UNBOUNDED){ |
|
return SOLVELP_UNBOUNDED; |
|
} |
|
|
|
//return the optimal solution |
|
z.create(c.cols,1,CV_64FC1); |
|
MatIterator_<double> it=z.begin<double>(); |
|
unsigned int nsize = (unsigned int)N.size(); |
|
for(int i=1;i<=c.cols;i++,it++){ |
|
if(indexToRow[i]<nsize){ |
|
*it=0; |
|
}else{ |
|
*it=b.at<double>(indexToRow[i]-nsize,b.cols-1); |
|
} |
|
} |
|
|
|
return res; |
|
} |
|
|
|
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow){ |
|
N.resize(c.cols); |
|
N[0]=0; |
|
for (std::vector<int>::iterator it = N.begin()+1 ; it != N.end(); ++it){ |
|
*it=it[-1]+1; |
|
} |
|
B.resize(b.rows); |
|
B[0]=(int)N.size(); |
|
for (std::vector<int>::iterator it = B.begin()+1 ; it != B.end(); ++it){ |
|
*it=it[-1]+1; |
|
} |
|
indexToRow.resize(c.cols+b.rows); |
|
indexToRow[0]=0; |
|
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){ |
|
*it=it[-1]+1; |
|
} |
|
v=0; |
|
|
|
int k=0; |
|
{ |
|
double min=DBL_MAX; |
|
for(int i=0;i<b.rows;i++){ |
|
if(b(i,b.cols-1)<min){ |
|
min=b(i,b.cols-1); |
|
k=i; |
|
} |
|
} |
|
} |
|
|
|
if(b(k,b.cols-1)>=0){ |
|
N.erase(N.begin()); |
|
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){ |
|
--(*it); |
|
} |
|
return 0; |
|
} |
|
|
|
Mat_<double> old_c=c.clone(); |
|
c=0; |
|
c(0,0)=-1; |
|
for(int i=0;i<b.rows;i++){ |
|
b(i,0)=-1; |
|
} |
|
|
|
print_simplex_state(c,b,v,N,B); |
|
|
|
dprintf(("\tWE MAKE PIVOT\n")); |
|
pivot(c,b,v,N,B,k,0,indexToRow); |
|
|
|
print_simplex_state(c,b,v,N,B); |
|
|
|
inner_simplex(c,b,v,N,B,indexToRow); |
|
|
|
dprintf(("\tAFTER INNER_SIMPLEX\n")); |
|
print_simplex_state(c,b,v,N,B); |
|
|
|
unsigned int nsize = (unsigned int)N.size(); |
|
if(indexToRow[0]>=nsize){ |
|
int iterator_offset=indexToRow[0]-nsize; |
|
if(b(iterator_offset,b.cols-1)>0){ |
|
return SOLVELP_UNFEASIBLE; |
|
} |
|
pivot(c,b,v,N,B,iterator_offset,0,indexToRow); |
|
} |
|
|
|
vector<int>::iterator iterator; |
|
{ |
|
int iterator_offset=indexToRow[0]; |
|
iterator=N.begin()+iterator_offset; |
|
std::iter_swap(iterator,N.begin()); |
|
SWAP(int,indexToRow[*iterator],indexToRow[0]); |
|
swap_columns(c,iterator_offset,0); |
|
swap_columns(b,iterator_offset,0); |
|
} |
|
|
|
dprintf(("after swaps\n")); |
|
print_simplex_state(c,b,v,N,B); |
|
|
|
//start from 1, because we ignore x_0 |
|
c=0; |
|
v=0; |
|
for(int I=1;I<old_c.cols;I++){ |
|
if(indexToRow[I]<nsize){ |
|
dprintf(("I=%d from nonbasic\n",I)); |
|
int iterator_offset=indexToRow[I]; |
|
c(0,iterator_offset)+=old_c(0,I); |
|
print_matrix(c); |
|
}else{ |
|
dprintf(("I=%d from basic\n",I)); |
|
int iterator_offset=indexToRow[I]-nsize; |
|
c-=old_c(0,I)*b.row(iterator_offset).colRange(0,b.cols-1); |
|
v+=old_c(0,I)*b(iterator_offset,b.cols-1); |
|
print_matrix(c); |
|
} |
|
} |
|
|
|
dprintf(("after restore\n")); |
|
print_simplex_state(c,b,v,N,B); |
|
|
|
N.erase(N.begin()); |
|
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){ |
|
--(*it); |
|
} |
|
return 0; |
|
} |
|
|
|
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow){ |
|
int count=0; |
|
for(;;){ |
|
dprintf(("iteration #%d\n",count)); |
|
count++; |
|
|
|
static MatIterator_<double> pos_ptr; |
|
int e=-1,pos_ctr=0,min_var=INT_MAX; |
|
bool all_nonzero=true; |
|
for(pos_ptr=c.begin();pos_ptr!=c.end();pos_ptr++,pos_ctr++){ |
|
if(*pos_ptr==0){ |
|
all_nonzero=false; |
|
} |
|
if(*pos_ptr>0){ |
|
if(N[pos_ctr]<min_var){ |
|
e=pos_ctr; |
|
min_var=N[pos_ctr]; |
|
} |
|
} |
|
} |
|
if(e==-1){ |
|
dprintf(("hello from e==-1\n")); |
|
print_matrix(c); |
|
if(all_nonzero==true){ |
|
return SOLVELP_SINGLE; |
|
}else{ |
|
return SOLVELP_MULTI; |
|
} |
|
} |
|
|
|
int l=-1; |
|
min_var=INT_MAX; |
|
double min=DBL_MAX; |
|
int row_it=0; |
|
MatIterator_<double> min_row_ptr=b.begin(); |
|
for(MatIterator_<double> it=b.begin();it!=b.end();it+=b.cols,row_it++){ |
|
double myite=0; |
|
//check constraints, select the tightest one, reinforcing Bland's rule |
|
if((myite=it[e])>0){ |
|
double val=it[b.cols-1]/myite; |
|
if(val<min || (val==min && B[row_it]<min_var)){ |
|
min_var=B[row_it]; |
|
min_row_ptr=it; |
|
min=val; |
|
l=row_it; |
|
} |
|
} |
|
} |
|
if(l==-1){ |
|
return SOLVELP_UNBOUNDED; |
|
} |
|
dprintf(("the tightest constraint is in row %d with %g\n",l,min)); |
|
|
|
pivot(c,b,v,N,B,l,e,indexToRow); |
|
|
|
dprintf(("objective, v=%g\n",v)); |
|
print_matrix(c); |
|
dprintf(("constraints\n")); |
|
print_matrix(b); |
|
dprintf(("non-basic: ")); |
|
print_matrix(Mat(N)); |
|
dprintf(("basic: ")); |
|
print_matrix(Mat(B)); |
|
} |
|
} |
|
|
|
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, |
|
int leaving_index,int entering_index,vector<unsigned int>& indexToRow){ |
|
double Coef=b(leaving_index,entering_index); |
|
for(int i=0;i<b.cols;i++){ |
|
if(i==entering_index){ |
|
b(leaving_index,i)=1/Coef; |
|
}else{ |
|
b(leaving_index,i)/=Coef; |
|
} |
|
} |
|
|
|
for(int i=0;i<b.rows;i++){ |
|
if(i!=leaving_index){ |
|
double coef=b(i,entering_index); |
|
for(int j=0;j<b.cols;j++){ |
|
if(j==entering_index){ |
|
b(i,j)=-coef*b(leaving_index,j); |
|
}else{ |
|
b(i,j)-=(coef*b(leaving_index,j)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
//objective function |
|
Coef=c(0,entering_index); |
|
for(int i=0;i<(b.cols-1);i++){ |
|
if(i==entering_index){ |
|
c(0,i)=-Coef*b(leaving_index,i); |
|
}else{ |
|
c(0,i)-=Coef*b(leaving_index,i); |
|
} |
|
} |
|
dprintf(("v was %g\n",v)); |
|
v+=Coef*b(leaving_index,b.cols-1); |
|
|
|
SWAP(int,N[entering_index],B[leaving_index]); |
|
SWAP(int,indexToRow[N[entering_index]],indexToRow[B[leaving_index]]); |
|
} |
|
|
|
static inline void swap_columns(Mat_<double>& A,int col1,int col2){ |
|
for(int i=0;i<A.rows;i++){ |
|
double tmp=A(i,col1); |
|
A(i,col1)=A(i,col2); |
|
A(i,col2)=tmp; |
|
} |
|
} |
|
}
|
|
|