mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
361 lines
16 KiB
361 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_GPUFEATURES2D_HPP__ |
|
#define __OPENCV_GPUFEATURES2D_HPP__ |
|
|
|
#ifndef __cplusplus |
|
# error gpufeatures2d.hpp header must be compiled as C++ |
|
#endif |
|
|
|
#include "opencv2/core/gpu.hpp" |
|
#include "opencv2/gpufilters.hpp" |
|
|
|
namespace cv { namespace gpu { |
|
|
|
class CV_EXPORTS BFMatcher_GPU |
|
{ |
|
public: |
|
explicit BFMatcher_GPU(int norm = cv::NORM_L2); |
|
|
|
// Add descriptors to train descriptor collection |
|
void add(const std::vector<GpuMat>& descCollection); |
|
|
|
// Get train descriptors collection |
|
const std::vector<GpuMat>& getTrainDescriptors() const; |
|
|
|
// Clear train descriptors collection |
|
void clear(); |
|
|
|
// Return true if there are not train descriptors in collection |
|
bool empty() const; |
|
|
|
// Return true if the matcher supports mask in match methods |
|
bool isMaskSupported() const; |
|
|
|
// Find one best match for each query descriptor |
|
void matchSingle(const GpuMat& query, const GpuMat& train, |
|
GpuMat& trainIdx, GpuMat& distance, |
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx and distance and convert it to CPU vector with DMatch |
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches); |
|
// Convert trainIdx and distance to vector with DMatch |
|
static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches); |
|
|
|
// Find one best match for each query descriptor |
|
void match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat()); |
|
|
|
// Make gpu collection of trains and masks in suitable format for matchCollection function |
|
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector<GpuMat>& masks = std::vector<GpuMat>()); |
|
|
|
// Find one best match from train collection for each query descriptor |
|
void matchCollection(const GpuMat& query, const GpuMat& trainCollection, |
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, |
|
const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx, imgIdx and distance and convert it to vector with DMatch |
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches); |
|
// Convert trainIdx, imgIdx and distance to vector with DMatch |
|
static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches); |
|
|
|
// Find one best match from train collection for each query descriptor. |
|
void match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>()); |
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances) |
|
void knnMatchSingle(const GpuMat& query, const GpuMat& train, |
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, |
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx and distance and convert it to vector with DMatch |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
// Convert trainIdx and distance to vector with DMatch |
|
static void knnMatchConvert(const Mat& trainIdx, const Mat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances). |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
void knnMatch(const GpuMat& query, const GpuMat& train, |
|
std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(), |
|
bool compactResult = false); |
|
|
|
// Find k best matches from train collection for each query descriptor (in increasing order of distances) |
|
void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection, |
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, |
|
const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx and distance and convert it to vector with DMatch |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
// Convert trainIdx and distance to vector with DMatch |
|
static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances). |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false); |
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance. |
|
// nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx. |
|
// carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches, |
|
// because it didn't have enough memory. |
|
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10), |
|
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches |
|
// Matches doesn't sorted. |
|
void radiusMatchSingle(const GpuMat& query, const GpuMat& train, |
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, |
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx, nMatches and distance and convert it to vector with DMatch. |
|
// matches will be sorted in increasing order of distances. |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
// Convert trainIdx, nMatches and distance to vector with DMatch. |
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance |
|
// in increasing order of distances). |
|
void radiusMatch(const GpuMat& query, const GpuMat& train, |
|
std::vector< std::vector<DMatch> >& matches, float maxDistance, |
|
const GpuMat& mask = GpuMat(), bool compactResult = false); |
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance. |
|
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10), |
|
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches |
|
// Matches doesn't sorted. |
|
void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch. |
|
// matches will be sorted in increasing order of distances. |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
// Convert trainIdx, nMatches and distance to vector with DMatch. |
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
// Find best matches from train collection for each query descriptor which have distance less than |
|
// maxDistance (in increasing order of distances). |
|
void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false); |
|
|
|
int norm; |
|
|
|
private: |
|
std::vector<GpuMat> trainDescCollection; |
|
}; |
|
|
|
class CV_EXPORTS FAST_GPU |
|
{ |
|
public: |
|
enum |
|
{ |
|
LOCATION_ROW = 0, |
|
RESPONSE_ROW, |
|
ROWS_COUNT |
|
}; |
|
|
|
// all features have same size |
|
static const int FEATURE_SIZE = 7; |
|
|
|
explicit FAST_GPU(int threshold, bool nonmaxSupression = true, double keypointsRatio = 0.05); |
|
|
|
//! finds the keypoints using FAST detector |
|
//! supports only CV_8UC1 images |
|
void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints); |
|
void operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints); |
|
|
|
//! download keypoints from device to host memory |
|
static void downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints); |
|
|
|
//! convert keypoints to KeyPoint vector |
|
static void convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints); |
|
|
|
//! release temporary buffer's memory |
|
void release(); |
|
|
|
bool nonmaxSupression; |
|
|
|
int threshold; |
|
|
|
//! max keypoints = keypointsRatio * img.size().area() |
|
double keypointsRatio; |
|
|
|
//! find keypoints and compute it's response if nonmaxSupression is true |
|
//! return count of detected keypoints |
|
int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask); |
|
|
|
//! get final array of keypoints |
|
//! performs nonmax supression if needed |
|
//! return final count of keypoints |
|
int getKeyPoints(GpuMat& keypoints); |
|
|
|
private: |
|
GpuMat kpLoc_; |
|
int count_; |
|
|
|
GpuMat score_; |
|
|
|
GpuMat d_keypoints_; |
|
}; |
|
|
|
class CV_EXPORTS ORB_GPU |
|
{ |
|
public: |
|
enum |
|
{ |
|
X_ROW = 0, |
|
Y_ROW, |
|
RESPONSE_ROW, |
|
ANGLE_ROW, |
|
OCTAVE_ROW, |
|
SIZE_ROW, |
|
ROWS_COUNT |
|
}; |
|
|
|
enum |
|
{ |
|
DEFAULT_FAST_THRESHOLD = 20 |
|
}; |
|
|
|
//! Constructor |
|
explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31, |
|
int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31); |
|
|
|
//! Compute the ORB features on an image |
|
//! image - the image to compute the features (supports only CV_8UC1 images) |
|
//! mask - the mask to apply |
|
//! keypoints - the resulting keypoints |
|
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints); |
|
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints); |
|
|
|
//! Compute the ORB features and descriptors on an image |
|
//! image - the image to compute the features (supports only CV_8UC1 images) |
|
//! mask - the mask to apply |
|
//! keypoints - the resulting keypoints |
|
//! descriptors - descriptors array |
|
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors); |
|
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors); |
|
|
|
//! download keypoints from device to host memory |
|
static void downloadKeyPoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints); |
|
//! convert keypoints to KeyPoint vector |
|
static void convertKeyPoints(const Mat& d_keypoints, std::vector<KeyPoint>& keypoints); |
|
|
|
//! returns the descriptor size in bytes |
|
inline int descriptorSize() const { return kBytes; } |
|
|
|
inline void setFastParams(int threshold, bool nonmaxSupression = true) |
|
{ |
|
fastDetector_.threshold = threshold; |
|
fastDetector_.nonmaxSupression = nonmaxSupression; |
|
} |
|
|
|
//! release temporary buffer's memory |
|
void release(); |
|
|
|
//! if true, image will be blurred before descriptors calculation |
|
bool blurForDescriptor; |
|
|
|
private: |
|
enum { kBytes = 32 }; |
|
|
|
void buildScalePyramids(const GpuMat& image, const GpuMat& mask); |
|
|
|
void computeKeyPointsPyramid(); |
|
|
|
void computeDescriptors(GpuMat& descriptors); |
|
|
|
void mergeKeyPoints(GpuMat& keypoints); |
|
|
|
int nFeatures_; |
|
float scaleFactor_; |
|
int nLevels_; |
|
int edgeThreshold_; |
|
int firstLevel_; |
|
int WTA_K_; |
|
int scoreType_; |
|
int patchSize_; |
|
|
|
// The number of desired features per scale |
|
std::vector<size_t> n_features_per_level_; |
|
|
|
// Points to compute BRIEF descriptors from |
|
GpuMat pattern_; |
|
|
|
std::vector<GpuMat> imagePyr_; |
|
std::vector<GpuMat> maskPyr_; |
|
|
|
GpuMat buf_; |
|
|
|
std::vector<GpuMat> keyPointsPyr_; |
|
std::vector<int> keyPointsCount_; |
|
|
|
FAST_GPU fastDetector_; |
|
|
|
Ptr<FilterEngine_GPU> blurFilter; |
|
|
|
GpuMat d_keypoints_; |
|
}; |
|
|
|
}} // namespace cv { namespace gpu { |
|
|
|
#endif /* __OPENCV_GPUFEATURES2D_HPP__ */
|
|
|