mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
5.1 KiB
143 lines
5.1 KiB
import cv2 as cv |
|
import argparse |
|
import numpy as np |
|
|
|
parser = argparse.ArgumentParser(description= |
|
'Use this script to run Mask-RCNN object detection and semantic ' |
|
'segmentation network from TensorFlow Object Detection API.') |
|
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') |
|
parser.add_argument('--model', required=True, help='Path to a .pb file with weights.') |
|
parser.add_argument('--config', required=True, help='Path to a .pxtxt file contains network configuration.') |
|
parser.add_argument('--classes', help='Optional path to a text file with names of classes.') |
|
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. ' |
|
'An every color is represented with three values from 0 to 255 in BGR channels order.') |
|
parser.add_argument('--width', type=int, default=800, |
|
help='Preprocess input image by resizing to a specific width.') |
|
parser.add_argument('--height', type=int, default=800, |
|
help='Preprocess input image by resizing to a specific height.') |
|
parser.add_argument('--thr', type=float, default=0.5, help='Confidence threshold') |
|
args = parser.parse_args() |
|
|
|
np.random.seed(324) |
|
|
|
# Load names of classes |
|
classes = None |
|
if args.classes: |
|
with open(args.classes, 'rt') as f: |
|
classes = f.read().rstrip('\n').split('\n') |
|
|
|
# Load colors |
|
colors = None |
|
if args.colors: |
|
with open(args.colors, 'rt') as f: |
|
colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')] |
|
|
|
legend = None |
|
def showLegend(classes): |
|
global legend |
|
if not classes is None and legend is None: |
|
blockHeight = 30 |
|
assert(len(classes) == len(colors)) |
|
|
|
legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8) |
|
for i in range(len(classes)): |
|
block = legend[i * blockHeight:(i + 1) * blockHeight] |
|
block[:,:] = colors[i] |
|
cv.putText(block, classes[i], (0, blockHeight/2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) |
|
|
|
cv.namedWindow('Legend', cv.WINDOW_NORMAL) |
|
cv.imshow('Legend', legend) |
|
classes = None |
|
|
|
|
|
def drawBox(frame, classId, conf, left, top, right, bottom): |
|
# Draw a bounding box. |
|
cv.rectangle(frame, (left, top), (right, bottom), (0, 255, 0)) |
|
|
|
label = '%.2f' % conf |
|
|
|
# Print a label of class. |
|
if classes: |
|
assert(classId < len(classes)) |
|
label = '%s: %s' % (classes[classId], label) |
|
|
|
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
|
top = max(top, labelSize[1]) |
|
cv.rectangle(frame, (left, top - labelSize[1]), (left + labelSize[0], top + baseLine), (255, 255, 255), cv.FILLED) |
|
cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) |
|
|
|
|
|
# Load a network |
|
net = cv.dnn.readNet(args.model, args.config) |
|
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV) |
|
|
|
winName = 'Mask-RCNN in OpenCV' |
|
cv.namedWindow(winName, cv.WINDOW_NORMAL) |
|
|
|
cap = cv.VideoCapture(args.input if args.input else 0) |
|
legend = None |
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
cv.waitKey() |
|
break |
|
|
|
frameH = frame.shape[0] |
|
frameW = frame.shape[1] |
|
|
|
# Create a 4D blob from a frame. |
|
blob = cv.dnn.blobFromImage(frame, size=(args.width, args.height), swapRB=True, crop=False) |
|
|
|
# Run a model |
|
net.setInput(blob) |
|
|
|
boxes, masks = net.forward(['detection_out_final', 'detection_masks']) |
|
|
|
numClasses = masks.shape[1] |
|
numDetections = boxes.shape[2] |
|
|
|
# Draw segmentation |
|
if not colors: |
|
# Generate colors |
|
colors = [np.array([0, 0, 0], np.uint8)] |
|
for i in range(1, numClasses + 1): |
|
colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2) |
|
del colors[0] |
|
|
|
boxesToDraw = [] |
|
for i in range(numDetections): |
|
box = boxes[0, 0, i] |
|
mask = masks[i] |
|
score = box[2] |
|
if score > args.thr: |
|
classId = int(box[1]) |
|
left = int(frameW * box[3]) |
|
top = int(frameH * box[4]) |
|
right = int(frameW * box[5]) |
|
bottom = int(frameH * box[6]) |
|
|
|
left = max(0, min(left, frameW - 1)) |
|
top = max(0, min(top, frameH - 1)) |
|
right = max(0, min(right, frameW - 1)) |
|
bottom = max(0, min(bottom, frameH - 1)) |
|
|
|
boxesToDraw.append([frame, classId, score, left, top, right, bottom]) |
|
|
|
classMask = mask[classId] |
|
classMask = cv.resize(classMask, (right - left + 1, bottom - top + 1)) |
|
mask = (classMask > 0.5) |
|
|
|
roi = frame[top:bottom+1, left:right+1][mask] |
|
frame[top:bottom+1, left:right+1][mask] = (0.7 * colors[classId] + 0.3 * roi).astype(np.uint8) |
|
|
|
for box in boxesToDraw: |
|
drawBox(*box) |
|
|
|
# Put efficiency information. |
|
t, _ = net.getPerfProfile() |
|
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency()) |
|
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) |
|
|
|
showLegend(classes) |
|
|
|
cv.imshow(winName, frame)
|
|
|