mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3061 lines
110 KiB
3061 lines
110 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2019-2021 Intel Corporation |
|
|
|
#include "../test_precomp.hpp" |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
|
|
#include <stdexcept> |
|
#include <mutex> |
|
#include <condition_variable> |
|
|
|
#include <inference_engine.hpp> |
|
|
|
#include <ade/util/iota_range.hpp> |
|
|
|
#include <opencv2/gapi/infer/ie.hpp> |
|
#include <opencv2/gapi/streaming/cap.hpp> |
|
|
|
#include "backends/ie/util.hpp" |
|
#include "backends/ie/giebackend/giewrapper.hpp" |
|
|
|
#ifdef HAVE_NGRAPH |
|
#if defined(__clang__) // clang or MSVC clang |
|
#pragma clang diagnostic push |
|
#pragma clang diagnostic ignored "-Wunused-parameter" |
|
#elif defined(_MSC_VER) |
|
#pragma warning(push) |
|
#pragma warning(disable : 4100) |
|
# if _MSC_VER < 1910 |
|
# pragma warning(disable:4268) // Disable warnings of ngraph. OpenVINO recommends to use MSVS 2019. |
|
# pragma warning(disable:4800) |
|
# endif |
|
#elif defined(__GNUC__) |
|
#pragma GCC diagnostic push |
|
#pragma GCC diagnostic ignored "-Wunused-parameter" |
|
#endif |
|
#include <ngraph/ngraph.hpp> |
|
#endif |
|
|
|
namespace opencv_test |
|
{ |
|
namespace { |
|
|
|
class TestMediaBGR final: public cv::MediaFrame::IAdapter { |
|
cv::Mat m_mat; |
|
using Cb = cv::MediaFrame::View::Callback; |
|
Cb m_cb; |
|
|
|
public: |
|
explicit TestMediaBGR(cv::Mat m, Cb cb = [](){}) |
|
: m_mat(m), m_cb(cb) { |
|
} |
|
cv::GFrameDesc meta() const override { |
|
return cv::GFrameDesc{cv::MediaFormat::BGR, cv::Size(m_mat.cols, m_mat.rows)}; |
|
} |
|
cv::MediaFrame::View access(cv::MediaFrame::Access) override { |
|
cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr }; |
|
cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u }; |
|
return cv::MediaFrame::View(std::move(pp), std::move(ss), Cb{m_cb}); |
|
} |
|
cv::util::any blobParams() const override { |
|
return std::make_pair<InferenceEngine::TensorDesc, |
|
InferenceEngine::ParamMap>({IE::Precision::U8, |
|
{1, 3, 300, 300}, |
|
IE::Layout::NCHW}, |
|
{{"HELLO", 42}, |
|
{"COLOR_FORMAT", |
|
InferenceEngine::ColorFormat::NV12}}); |
|
} |
|
}; |
|
|
|
class TestMediaNV12 final: public cv::MediaFrame::IAdapter { |
|
cv::Mat m_y; |
|
cv::Mat m_uv; |
|
public: |
|
TestMediaNV12(cv::Mat y, cv::Mat uv) : m_y(y), m_uv(uv) { |
|
} |
|
cv::GFrameDesc meta() const override { |
|
return cv::GFrameDesc{cv::MediaFormat::NV12, cv::Size(m_y.cols, m_y.rows)}; |
|
} |
|
cv::MediaFrame::View access(cv::MediaFrame::Access) override { |
|
cv::MediaFrame::View::Ptrs pp = { |
|
m_y.ptr(), m_uv.ptr(), nullptr, nullptr |
|
}; |
|
cv::MediaFrame::View::Strides ss = { |
|
m_y.step, m_uv.step, 0u, 0u |
|
}; |
|
return cv::MediaFrame::View(std::move(pp), std::move(ss)); |
|
} |
|
}; |
|
|
|
// FIXME: taken from DNN module |
|
static void initDLDTDataPath() |
|
{ |
|
#ifndef WINRT |
|
static bool initialized = false; |
|
if (!initialized) |
|
{ |
|
const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH"); |
|
if (omzDataPath) |
|
cvtest::addDataSearchPath(omzDataPath); |
|
const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH"); |
|
if (dnnDataPath) { |
|
// Add the dnnDataPath itself - G-API is using some images there directly |
|
cvtest::addDataSearchPath(dnnDataPath); |
|
cvtest::addDataSearchPath(dnnDataPath + std::string("/omz_intel_models")); |
|
} |
|
initialized = true; |
|
} |
|
#endif // WINRT |
|
} |
|
|
|
#if INF_ENGINE_RELEASE >= 2020010000 |
|
static const std::string SUBDIR = "intel/age-gender-recognition-retail-0013/FP32/"; |
|
#else |
|
static const std::string SUBDIR = "Retail/object_attributes/age_gender/dldt/"; |
|
#endif |
|
|
|
// FIXME: taken from the DNN module |
|
void normAssert(cv::InputArray ref, cv::InputArray test, |
|
const char *comment /*= ""*/, |
|
double l1 = 0.00001, double lInf = 0.0001) |
|
{ |
|
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); |
|
EXPECT_LE(normL1, l1) << comment; |
|
|
|
double normInf = cvtest::norm(ref, test, cv::NORM_INF); |
|
EXPECT_LE(normInf, lInf) << comment; |
|
} |
|
|
|
namespace IE = InferenceEngine; |
|
|
|
void setNetParameters(IE::CNNNetwork& net, bool is_nv12 = false) { |
|
auto ii = net.getInputsInfo().at("data"); |
|
ii->setPrecision(IE::Precision::U8); |
|
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR); |
|
if (is_nv12) { |
|
ii->getPreProcess().setColorFormat(IE::ColorFormat::NV12); |
|
} |
|
} |
|
|
|
bool checkDeviceIsAvailable(const std::string& device) { |
|
const static auto available_devices = [&](){ |
|
auto devices = cv::gimpl::ie::wrap::getCore().GetAvailableDevices(); |
|
return std::unordered_set<std::string>{devices.begin(), devices.end()}; |
|
}(); |
|
return available_devices.find(device) != available_devices.end(); |
|
} |
|
|
|
void skipIfDeviceNotAvailable(const std::string& device) { |
|
if (!checkDeviceIsAvailable(device)) { |
|
throw SkipTestException("Device: " + device + " isn't available!"); |
|
} |
|
} |
|
|
|
void compileBlob(const cv::gapi::ie::detail::ParamDesc& params, |
|
const std::string& output, |
|
const IE::Precision& ip) { |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
for (auto&& ii : net.getInputsInfo()) { |
|
ii.second->setPrecision(ip); |
|
} |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
std::ofstream out_file{output, std::ios::out | std::ios::binary}; |
|
GAPI_Assert(out_file.is_open()); |
|
this_network.Export(out_file); |
|
} |
|
|
|
std::string compileAgeGenderBlob(const std::string& device) { |
|
const static std::string blob_path = [&](){ |
|
cv::gapi::ie::detail::ParamDesc params; |
|
const std::string model_name = "age-gender-recognition-retail-0013"; |
|
const std::string output = model_name + ".blob"; |
|
params.model_path = findDataFile(SUBDIR + model_name + ".xml"); |
|
params.weights_path = findDataFile(SUBDIR + model_name + ".bin"); |
|
params.device_id = device; |
|
compileBlob(params, output, IE::Precision::U8); |
|
return output; |
|
}(); |
|
return blob_path; |
|
} |
|
|
|
} // anonymous namespace |
|
|
|
// TODO: Probably DNN/IE part can be further parametrized with a template |
|
// NOTE: here ".." is used to leave the default "gapi/" search scope |
|
TEST(TestAgeGenderIE, InferBasicTensor) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// Load IE network, initialize input data using that. |
|
cv::Mat in_mat; |
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
|
|
const auto &iedims = net.getInputsInfo().begin()->second->getTensorDesc().getDims(); |
|
auto cvdims = cv::gapi::ie::util::to_ocv(iedims); |
|
in_mat.create(cvdims, CV_32F); |
|
cv::randu(in_mat, -1, 1); |
|
|
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST(TestAgeGenderIE, InferBasicImage) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// FIXME: Ideally it should be an image from disk |
|
// cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png")); |
|
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
|
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
struct InferWithReshape: public ::testing::Test { |
|
cv::gapi::ie::detail::ParamDesc params; |
|
cv::Mat m_in_mat; |
|
std::vector<cv::Rect> m_roi_list; |
|
std::vector<size_t> reshape_dims; |
|
std::vector<cv::Mat> m_out_ie_ages; |
|
std::vector<cv::Mat> m_out_ie_genders; |
|
std::vector<cv::Mat> m_out_gapi_ages; |
|
std::vector<cv::Mat> m_out_gapi_genders; |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
InferenceEngine::CNNNetwork net; |
|
InferenceEngine::Core plugin; |
|
|
|
void SetUp() { |
|
// FIXME: it must be cv::imread(findDataFile("../dnn/grace_hopper_227.png", false)); |
|
m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3); |
|
cv::randu(m_in_mat, 0, 255); |
|
|
|
m_out_gapi_ages.resize(1); |
|
m_out_gapi_genders.resize(1); |
|
|
|
// both ROIs point to the same face, with a slightly changed geometry |
|
m_roi_list = { |
|
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), |
|
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), |
|
}; |
|
|
|
// New dimensions for "data" input |
|
reshape_dims = {1, 3, 70, 70}; |
|
|
|
initDLDTDataPath(); |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
|
|
params.device_id = "CPU"; |
|
|
|
plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
net.reshape({{"data", reshape_dims}}); |
|
} |
|
|
|
void inferROIs(IE::Blob::Ptr blob) { |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
for (auto &&rc : m_roi_list) { |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rc.x) |
|
, static_cast<std::size_t>(rc.y) |
|
, static_cast<std::size_t>(rc.width) |
|
, static_cast<std::size_t>(rc.height) |
|
}; |
|
infer_request.SetBlob("data", IE::make_shared_blob(blob, ie_rc)); |
|
infer_request.Infer(); |
|
using namespace cv::gapi::ie::util; |
|
m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); |
|
m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); |
|
} |
|
} |
|
|
|
void infer(cv::Mat& in, const bool with_roi = false) { |
|
if (!with_roi) { |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in)); |
|
infer_request.Infer(); |
|
using namespace cv::gapi::ie::util; |
|
m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); |
|
m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); |
|
} else { |
|
auto frame_blob = cv::gapi::ie::util::to_ie(in); |
|
inferROIs(frame_blob); |
|
} |
|
} |
|
|
|
void validate() { |
|
// Validate with IE itself (avoid DNN module dependency here) |
|
GAPI_Assert(!m_out_gapi_ages.empty()); |
|
ASSERT_EQ(m_out_gapi_genders.size(), m_out_gapi_ages.size()); |
|
ASSERT_EQ(m_out_gapi_ages.size(), m_out_ie_ages.size()); |
|
ASSERT_EQ(m_out_gapi_genders.size(), m_out_ie_genders.size()); |
|
|
|
const size_t size = m_out_gapi_ages.size(); |
|
for (size_t i = 0; i < size; ++i) { |
|
normAssert(m_out_ie_ages [i], m_out_gapi_ages [i], "Test age output"); |
|
normAssert(m_out_ie_genders[i], m_out_gapi_genders[i], "Test gender output"); |
|
} |
|
} |
|
}; // InferWithReshape |
|
|
|
struct InferWithReshapeNV12: public InferWithReshape { |
|
cv::Mat m_in_uv; |
|
cv::Mat m_in_y; |
|
void SetUp() { |
|
InferWithReshape::SetUp(); |
|
cv::Size sz{320, 240}; |
|
m_in_y = cv::Mat{sz, CV_8UC1}; |
|
cv::randu(m_in_y, 0, 255); |
|
m_in_uv = cv::Mat{sz / 2, CV_8UC2}; |
|
cv::randu(m_in_uv, 0, 255); |
|
setNetParameters(net, true); |
|
net.reshape({{"data", reshape_dims}}); |
|
auto frame_blob = cv::gapi::ie::util::to_ie(m_in_y, m_in_uv); |
|
inferROIs(frame_blob); |
|
} |
|
}; |
|
|
|
struct ROIList: public ::testing::Test { |
|
cv::gapi::ie::detail::ParamDesc params; |
|
|
|
cv::Mat m_in_mat; |
|
std::vector<cv::Rect> m_roi_list; |
|
|
|
std::vector<cv::Mat> m_out_ie_ages; |
|
std::vector<cv::Mat> m_out_ie_genders; |
|
|
|
std::vector<cv::Mat> m_out_gapi_ages; |
|
std::vector<cv::Mat> m_out_gapi_genders; |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
void SetUp() { |
|
initDLDTDataPath(); |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// FIXME: it must be cv::imread(findDataFile("../dnn/grace_hopper_227.png", false)); |
|
m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3); |
|
cv::randu(m_in_mat, 0, 255); |
|
|
|
// both ROIs point to the same face, with a slightly changed geometry |
|
m_roi_list = { |
|
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), |
|
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), |
|
}; |
|
|
|
// Load & run IE network |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
auto frame_blob = cv::gapi::ie::util::to_ie(m_in_mat); |
|
|
|
for (auto &&rc : m_roi_list) { |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rc.x) |
|
, static_cast<std::size_t>(rc.y) |
|
, static_cast<std::size_t>(rc.width) |
|
, static_cast<std::size_t>(rc.height) |
|
}; |
|
infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc)); |
|
infer_request.Infer(); |
|
|
|
using namespace cv::gapi::ie::util; |
|
m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); |
|
m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); |
|
} |
|
} // namespace IE = .. |
|
} // ROIList() |
|
|
|
void validate() { |
|
// Validate with IE itself (avoid DNN module dependency here) |
|
ASSERT_EQ(2u, m_out_ie_ages.size()); |
|
ASSERT_EQ(2u, m_out_ie_genders.size()); |
|
ASSERT_EQ(2u, m_out_gapi_ages.size()); |
|
ASSERT_EQ(2u, m_out_gapi_genders.size()); |
|
|
|
normAssert(m_out_ie_ages [0], m_out_gapi_ages [0], "0: Test age output"); |
|
normAssert(m_out_ie_genders[0], m_out_gapi_genders[0], "0: Test gender output"); |
|
normAssert(m_out_ie_ages [1], m_out_gapi_ages [1], "1: Test age output"); |
|
normAssert(m_out_ie_genders[1], m_out_gapi_genders[1], "1: Test gender output"); |
|
} |
|
}; // ROIList |
|
|
|
struct ROIListNV12: public ::testing::Test { |
|
cv::gapi::ie::detail::ParamDesc params; |
|
|
|
cv::Mat m_in_uv; |
|
cv::Mat m_in_y; |
|
std::vector<cv::Rect> m_roi_list; |
|
|
|
std::vector<cv::Mat> m_out_ie_ages; |
|
std::vector<cv::Mat> m_out_ie_genders; |
|
|
|
std::vector<cv::Mat> m_out_gapi_ages; |
|
std::vector<cv::Mat> m_out_gapi_genders; |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
void SetUp() { |
|
initDLDTDataPath(); |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
cv::Size sz{320, 240}; |
|
m_in_y = cv::Mat{sz, CV_8UC1}; |
|
cv::randu(m_in_y, 0, 255); |
|
m_in_uv = cv::Mat{sz / 2, CV_8UC2}; |
|
cv::randu(m_in_uv, 0, 255); |
|
|
|
// both ROIs point to the same face, with a slightly changed geometry |
|
m_roi_list = { |
|
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), |
|
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), |
|
}; |
|
|
|
// Load & run IE network |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net, true); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
auto frame_blob = cv::gapi::ie::util::to_ie(m_in_y, m_in_uv); |
|
|
|
for (auto &&rc : m_roi_list) { |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rc.x) |
|
, static_cast<std::size_t>(rc.y) |
|
, static_cast<std::size_t>(rc.width) |
|
, static_cast<std::size_t>(rc.height) |
|
}; |
|
infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc)); |
|
infer_request.Infer(); |
|
|
|
using namespace cv::gapi::ie::util; |
|
m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); |
|
m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); |
|
} |
|
} // namespace IE = .. |
|
} // ROIList() |
|
|
|
void validate() { |
|
// Validate with IE itself (avoid DNN module dependency here) |
|
ASSERT_EQ(2u, m_out_ie_ages.size()); |
|
ASSERT_EQ(2u, m_out_ie_genders.size()); |
|
ASSERT_EQ(2u, m_out_gapi_ages.size()); |
|
ASSERT_EQ(2u, m_out_gapi_genders.size()); |
|
|
|
normAssert(m_out_ie_ages [0], m_out_gapi_ages [0], "0: Test age output"); |
|
normAssert(m_out_ie_genders[0], m_out_gapi_genders[0], "0: Test gender output"); |
|
normAssert(m_out_ie_ages [1], m_out_gapi_ages [1], "1: Test age output"); |
|
normAssert(m_out_ie_genders[1], m_out_gapi_genders[1], "1: Test gender output"); |
|
} |
|
}; |
|
|
|
struct SingleROI: public ::testing::Test { |
|
cv::gapi::ie::detail::ParamDesc params; |
|
|
|
cv::Mat m_in_mat; |
|
cv::Rect m_roi; |
|
|
|
cv::Mat m_out_gapi_age; |
|
cv::Mat m_out_gapi_gender; |
|
|
|
cv::Mat m_out_ie_age; |
|
cv::Mat m_out_ie_gender; |
|
|
|
void SetUp() { |
|
initDLDTDataPath(); |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// FIXME: it must be cv::imread(findDataFile("../dnn/grace_hopper_227.png", false)); |
|
m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3); |
|
cv::randu(m_in_mat, 0, 255); |
|
|
|
m_roi = cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}); |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
|
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(m_roi.x) |
|
, static_cast<std::size_t>(m_roi.y) |
|
, static_cast<std::size_t>(m_roi.width) |
|
, static_cast<std::size_t>(m_roi.height) |
|
}; |
|
|
|
IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(m_in_mat), ie_rc); |
|
infer_request.SetBlob("data", roi_blob); |
|
infer_request.Infer(); |
|
|
|
using namespace cv::gapi::ie::util; |
|
m_out_ie_age = to_ocv(infer_request.GetBlob("age_conv3")).clone(); |
|
m_out_ie_gender = to_ocv(infer_request.GetBlob("prob")).clone(); |
|
} |
|
} |
|
|
|
void validate() { |
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(m_out_ie_age , m_out_gapi_age , "Test age output"); |
|
normAssert(m_out_ie_gender, m_out_gapi_gender, "Test gender output"); |
|
} |
|
}; |
|
|
|
struct SingleROINV12: public ::testing::Test { |
|
cv::gapi::ie::detail::ParamDesc params; |
|
|
|
cv::Mat m_in_y; |
|
cv::Mat m_in_uv; |
|
cv::Rect m_roi; |
|
|
|
cv::Mat m_out_gapi_age; |
|
cv::Mat m_out_gapi_gender; |
|
|
|
cv::Mat m_out_ie_age; |
|
cv::Mat m_out_ie_gender; |
|
|
|
void SetUp() { |
|
initDLDTDataPath(); |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
cv::Size sz{320, 240}; |
|
m_in_y = cv::Mat{sz, CV_8UC1}; |
|
cv::randu(m_in_y, 0, 255); |
|
m_in_uv = cv::Mat{sz / 2, CV_8UC2}; |
|
cv::randu(m_in_uv, 0, 255); |
|
|
|
m_roi = cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}); |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net, /* NV12 */ true); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
auto blob = cv::gapi::ie::util::to_ie(m_in_y, m_in_uv); |
|
|
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(m_roi.x) |
|
, static_cast<std::size_t>(m_roi.y) |
|
, static_cast<std::size_t>(m_roi.width) |
|
, static_cast<std::size_t>(m_roi.height) |
|
}; |
|
|
|
IE::Blob::Ptr roi_blob = IE::make_shared_blob(blob, ie_rc); |
|
infer_request.SetBlob("data", roi_blob); |
|
infer_request.Infer(); |
|
|
|
using namespace cv::gapi::ie::util; |
|
m_out_ie_age = to_ocv(infer_request.GetBlob("age_conv3")).clone(); |
|
m_out_ie_gender = to_ocv(infer_request.GetBlob("prob")).clone(); |
|
} |
|
} |
|
|
|
void validate() { |
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(m_out_ie_age , m_out_gapi_age , "Test age output"); |
|
normAssert(m_out_ie_gender, m_out_gapi_gender, "Test gender output"); |
|
} |
|
}; |
|
|
|
TEST_F(ROIList, TestInfer) |
|
{ |
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(m_in_mat, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
validate(); |
|
} |
|
|
|
TEST_F(ROIList, TestInfer2) |
|
{ |
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(m_in_mat, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
validate(); |
|
} |
|
|
|
TEST(DISABLED_TestTwoIENNPipeline, InferBasicImage) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc AGparams; |
|
AGparams.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml", false); |
|
AGparams.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin", false); |
|
AGparams.device_id = "MYRIAD"; |
|
|
|
// FIXME: Ideally it should be an image from disk |
|
// cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png")); |
|
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
|
|
cv::Mat gapi_age1, gapi_gender1, gapi_age2, gapi_gender2; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age1, ie_gender1, ie_age2, ie_gender2; |
|
{ |
|
auto AGplugin1 = cv::gimpl::ie::wrap::getPlugin(AGparams); |
|
auto AGnet1 = cv::gimpl::ie::wrap::readNetwork(AGparams); |
|
setNetParameters(AGnet1); |
|
auto AGplugin_network1 = cv::gimpl::ie::wrap::loadNetwork(AGplugin1, AGnet1, AGparams); |
|
auto AGinfer_request1 = AGplugin_network1.CreateInferRequest(); |
|
AGinfer_request1.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
AGinfer_request1.Infer(); |
|
ie_age1 = AGinfer_request1.GetBlob("age_conv3"); |
|
ie_gender1 = AGinfer_request1.GetBlob("prob"); |
|
|
|
auto AGplugin2 = cv::gimpl::ie::wrap::getPlugin(AGparams); |
|
auto AGnet2 = cv::gimpl::ie::wrap::readNetwork(AGparams); |
|
setNetParameters(AGnet2); |
|
auto AGplugin_network2 = cv::gimpl::ie::wrap::loadNetwork(AGplugin2, AGnet2, AGparams); |
|
auto AGinfer_request2 = AGplugin_network2.CreateInferRequest(); |
|
AGinfer_request2.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
AGinfer_request2.Infer(); |
|
ie_age2 = AGinfer_request2.GetBlob("age_conv3"); |
|
ie_gender2 = AGinfer_request2.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender1, <AGInfo(cv::GMat)>, "test-age-gender1"); |
|
G_API_NET(AgeGender2, <AGInfo(cv::GMat)>, "test-age-gender2"); |
|
cv::GMat in; |
|
cv::GMat age1, gender1; |
|
std::tie(age1, gender1) = cv::gapi::infer<AgeGender1>(in); |
|
|
|
cv::GMat age2, gender2; |
|
// FIXME: "Multi-node inference is not supported!", workarounded 'till enabling proper tools |
|
std::tie(age2, gender2) = cv::gapi::infer<AgeGender2>(cv::gapi::copy(in)); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age1, gender1, age2, gender2)); |
|
|
|
auto age_net1 = cv::gapi::ie::Params<AgeGender1> { |
|
AGparams.model_path, AGparams.weights_path, AGparams.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
auto age_net2 = cv::gapi::ie::Params<AgeGender2> { |
|
AGparams.model_path, AGparams.weights_path, AGparams.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age1, gapi_gender1, gapi_age2, gapi_gender2), |
|
cv::compile_args(cv::gapi::networks(age_net1, age_net2))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age1), gapi_age1, "Test age output 1"); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender1), gapi_gender1, "Test gender output 1"); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age2), gapi_age2, "Test age output 2"); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender2), gapi_gender2, "Test gender output 2"); |
|
} |
|
|
|
TEST(TestAgeGenderIE, GenericInfer) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
|
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
cv::GMat in; |
|
GInferInputs inputs; |
|
inputs["data"] = in; |
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", inputs); |
|
|
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
cv::gapi::ie::Params<cv::gapi::Generic> pp{ |
|
"age-gender-generic", params.model_path, params.weights_path, params.device_id}; |
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST(TestAgeGenderIE, InvalidConfigGeneric) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
std::string device_id = "CPU"; |
|
|
|
// Configure & run G-API |
|
cv::GMat in; |
|
GInferInputs inputs; |
|
inputs["data"] = in; |
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", inputs); |
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<cv::gapi::Generic>{ |
|
"age-gender-generic", model_path, weights_path, device_id |
|
}.pluginConfig({{"unsupported_config", "some_value"}}); |
|
|
|
EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}}, |
|
cv::compile_args(cv::gapi::networks(pp)))); |
|
} |
|
|
|
TEST(TestAgeGenderIE, CPUConfigGeneric) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
std::string device_id = "CPU"; |
|
|
|
// Configure & run G-API |
|
cv::GMat in; |
|
GInferInputs inputs; |
|
inputs["data"] = in; |
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", inputs); |
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<cv::gapi::Generic> { |
|
"age-gender-generic", model_path, weights_path, device_id |
|
}.pluginConfig({{IE::PluginConfigParams::KEY_CPU_THROUGHPUT_STREAMS, |
|
IE::PluginConfigParams::CPU_THROUGHPUT_NUMA}}); |
|
|
|
EXPECT_NO_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}}, |
|
cv::compile_args(cv::gapi::networks(pp)))); |
|
} |
|
|
|
TEST(TestAgeGenderIE, InvalidConfig) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
std::string device_id = "CPU"; |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
model_path, weights_path, device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.pluginConfig({{"unsupported_config", "some_value"}}); |
|
|
|
EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}}, |
|
cv::compile_args(cv::gapi::networks(pp)))); |
|
} |
|
|
|
TEST(TestAgeGenderIE, CPUConfig) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
std::string device_id = "CPU"; |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
model_path, weights_path, device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.pluginConfig({{IE::PluginConfigParams::KEY_CPU_THROUGHPUT_STREAMS, |
|
IE::PluginConfigParams::CPU_THROUGHPUT_NUMA}}); |
|
|
|
EXPECT_NO_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}}, |
|
cv::compile_args(cv::gapi::networks(pp)))); |
|
} |
|
|
|
TEST_F(ROIList, MediaInputBGR) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::GFrame in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(frame, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
validate(); |
|
} |
|
|
|
TEST_F(ROIListNV12, MediaInputNV12) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::GFrame in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(frame, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
validate(); |
|
} |
|
|
|
TEST(TestAgeGenderIE, MediaInputNV12) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
cv::Size sz{320, 240}; |
|
cv::Mat in_y_mat(sz, CV_8UC1); |
|
cv::randu(in_y_mat, 0, 255); |
|
cv::Mat in_uv_mat(sz / 2, CV_8UC2); |
|
cv::randu(in_uv_mat, 0, 255); |
|
|
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net, true); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat)); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GFrame in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(frame), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST(TestAgeGenderIE, MediaInputBGR) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
cv::Size sz{320, 240}; |
|
cv::Mat in_mat(sz, CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
|
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GFrame in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(frame), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST(InferROI, MediaInputBGR) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
cv::Size sz{320, 240}; |
|
cv::Mat in_mat(sz, CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
|
|
cv::Mat gapi_age, gapi_gender; |
|
cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96}); |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rect.x) |
|
, static_cast<std::size_t>(rect.y) |
|
, static_cast<std::size_t>(rect.width) |
|
, static_cast<std::size_t>(rect.height) |
|
}; |
|
IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc); |
|
infer_request.SetBlob("data", roi_blob); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GFrame in; |
|
cv::GOpaque<cv::Rect> roi; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in); |
|
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(frame, rect), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST(InferROI, MediaInputNV12) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
cv::Size sz{320, 240}; |
|
auto in_y_mat = cv::Mat{sz, CV_8UC1}; |
|
cv::randu(in_y_mat, 0, 255); |
|
auto in_uv_mat = cv::Mat{sz / 2, CV_8UC2}; |
|
cv::randu(in_uv_mat, 0, 255); |
|
|
|
cv::Mat gapi_age, gapi_gender; |
|
cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96}); |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net, true); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rect.x) |
|
, static_cast<std::size_t>(rect.y) |
|
, static_cast<std::size_t>(rect.width) |
|
, static_cast<std::size_t>(rect.height) |
|
}; |
|
IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc); |
|
infer_request.SetBlob("data", roi_blob); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GFrame in; |
|
cv::GOpaque<cv::Rect> roi; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in); |
|
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(frame, rect), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST_F(ROIList, Infer2MediaInputBGR) |
|
{ |
|
cv::GArray<cv::Rect> rr; |
|
cv::GFrame in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(frame, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
validate(); |
|
} |
|
|
|
TEST_F(ROIListNV12, Infer2MediaInputNV12) |
|
{ |
|
cv::GArray<cv::Rect> rr; |
|
cv::GFrame in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(frame, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
validate(); |
|
} |
|
|
|
TEST_F(SingleROI, GenericInfer) |
|
{ |
|
// Configure & run G-API |
|
cv::GMat in; |
|
cv::GOpaque<cv::Rect> roi; |
|
cv::GInferInputs inputs; |
|
inputs["data"] = in; |
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", roi, inputs); |
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
|
|
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); |
|
|
|
cv::gapi::ie::Params<cv::gapi::Generic> pp{ |
|
"age-gender-generic", params.model_path, params.weights_path, params.device_id |
|
}; |
|
pp.cfgNumRequests(2u); |
|
|
|
comp.apply(cv::gin(m_in_mat, m_roi), cv::gout(m_out_gapi_age, m_out_gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
validate(); |
|
} |
|
|
|
TEST_F(SingleROI, GenericInferMediaBGR) |
|
{ |
|
// Configure & run G-API |
|
cv::GFrame in; |
|
cv::GOpaque<cv::Rect> roi; |
|
cv::GInferInputs inputs; |
|
inputs["data"] = in; |
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", roi, inputs); |
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
|
|
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); |
|
|
|
cv::gapi::ie::Params<cv::gapi::Generic> pp{ |
|
"age-gender-generic", params.model_path, params.weights_path, params.device_id |
|
}; |
|
pp.cfgNumRequests(2u); |
|
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat); |
|
comp.apply(cv::gin(frame, m_roi), cv::gout(m_out_gapi_age, m_out_gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
validate(); |
|
} |
|
|
|
TEST_F(SingleROINV12, GenericInferMediaNV12) |
|
{ |
|
// Configure & run G-API |
|
cv::GFrame in; |
|
cv::GOpaque<cv::Rect> roi; |
|
cv::GInferInputs inputs; |
|
inputs["data"] = in; |
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", roi, inputs); |
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
|
|
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); |
|
|
|
cv::gapi::ie::Params<cv::gapi::Generic> pp{ |
|
"age-gender-generic", params.model_path, params.weights_path, params.device_id |
|
}; |
|
pp.cfgNumRequests(2u); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv); |
|
comp.apply(cv::gin(frame, m_roi), cv::gout(m_out_gapi_age, m_out_gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
validate(); |
|
} |
|
|
|
TEST_F(ROIList, GenericInfer) |
|
{ |
|
cv::GMat in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GInferInputs inputs; |
|
inputs["data"] = in; |
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", rr, inputs); |
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
cv::gapi::ie::Params<cv::gapi::Generic> pp{ |
|
"age-gender-generic", params.model_path, params.weights_path, params.device_id |
|
}; |
|
pp.cfgNumRequests(2u); |
|
|
|
comp.apply(cv::gin(m_in_mat, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
validate(); |
|
} |
|
|
|
TEST_F(ROIList, GenericInferMediaBGR) |
|
{ |
|
cv::GFrame in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GInferInputs inputs; |
|
inputs["data"] = in; |
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", rr, inputs); |
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
cv::gapi::ie::Params<cv::gapi::Generic> pp{ |
|
"age-gender-generic", params.model_path, params.weights_path, params.device_id |
|
}; |
|
pp.cfgNumRequests(2u); |
|
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat); |
|
comp.apply(cv::gin(frame, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
validate(); |
|
} |
|
|
|
TEST_F(ROIListNV12, GenericInferMediaNV12) |
|
{ |
|
cv::GFrame in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GInferInputs inputs; |
|
inputs["data"] = in; |
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", rr, inputs); |
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
cv::gapi::ie::Params<cv::gapi::Generic> pp{ |
|
"age-gender-generic", params.model_path, params.weights_path, params.device_id |
|
}; |
|
pp.cfgNumRequests(2u); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv); |
|
comp.apply(cv::gin(frame, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
validate(); |
|
} |
|
|
|
TEST_F(ROIList, GenericInfer2) |
|
{ |
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
GInferListInputs list; |
|
list["data"] = rr; |
|
|
|
auto outputs = cv::gapi::infer2<cv::gapi::Generic>("age-gender-generic", in, list); |
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
cv::gapi::ie::Params<cv::gapi::Generic> pp{ |
|
"age-gender-generic", params.model_path, params.weights_path, params.device_id |
|
}; |
|
pp.cfgNumRequests(2u); |
|
|
|
comp.apply(cv::gin(m_in_mat, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
validate(); |
|
} |
|
|
|
TEST_F(ROIList, GenericInfer2MediaInputBGR) |
|
{ |
|
cv::GArray<cv::Rect> rr; |
|
cv::GFrame in; |
|
GInferListInputs inputs; |
|
inputs["data"] = rr; |
|
|
|
auto outputs = cv::gapi::infer2<cv::gapi::Generic>("age-gender-generic", in, inputs); |
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
cv::gapi::ie::Params<cv::gapi::Generic> pp{ |
|
"age-gender-generic", params.model_path, params.weights_path, params.device_id |
|
}; |
|
pp.cfgNumRequests(2u); |
|
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat); |
|
comp.apply(cv::gin(frame, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
validate(); |
|
} |
|
|
|
TEST_F(ROIListNV12, GenericInfer2MediaInputNV12) |
|
{ |
|
cv::GArray<cv::Rect> rr; |
|
cv::GFrame in; |
|
GInferListInputs inputs; |
|
inputs["data"] = rr; |
|
|
|
auto outputs = cv::gapi::infer2<cv::gapi::Generic>("age-gender-generic", in, inputs); |
|
auto age = outputs.at("age_conv3"); |
|
auto gender = outputs.at("prob"); |
|
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
cv::gapi::ie::Params<cv::gapi::Generic> pp{ |
|
"age-gender-generic", params.model_path, params.weights_path, params.device_id |
|
}; |
|
pp.cfgNumRequests(2u); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv); |
|
comp.apply(cv::gin(frame, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
validate(); |
|
} |
|
|
|
TEST(Infer, SetInvalidNumberOfRequests) |
|
{ |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::gapi::ie::Params<AgeGender> pp{"model", "weights", "device"}; |
|
|
|
EXPECT_ANY_THROW(pp.cfgNumRequests(0u)); |
|
} |
|
|
|
TEST(Infer, TestStreamingInfer) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
std::string filepath = findDataFile("cv/video/768x576.avi"); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// Load IE network, initialize input data using that. |
|
cv::Mat in_mat; |
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
|
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgNumRequests(4u); |
|
|
|
|
|
std::size_t num_frames = 0u; |
|
std::size_t max_frames = 10u; |
|
|
|
cv::VideoCapture cap; |
|
cap.open(filepath); |
|
if (!cap.isOpened()) |
|
throw SkipTestException("Video file can not be opened"); |
|
|
|
cap >> in_mat; |
|
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); |
|
pipeline.setSource<cv::gapi::wip::GCaptureSource>(filepath); |
|
|
|
pipeline.start(); |
|
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_age, gapi_gender))) |
|
{ |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
|
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
++num_frames; |
|
cap >> in_mat; |
|
} |
|
pipeline.stop(); |
|
} |
|
|
|
TEST(InferROI, TestStreamingInfer) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
std::string filepath = findDataFile("cv/video/768x576.avi"); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// Load IE network, initialize input data using that. |
|
cv::Mat in_mat; |
|
cv::Mat gapi_age, gapi_gender; |
|
cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96}); |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GOpaque<cv::Rect> roi; |
|
cv::GMat age, gender; |
|
|
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in); |
|
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgNumRequests(4u); |
|
|
|
|
|
std::size_t num_frames = 0u; |
|
std::size_t max_frames = 10u; |
|
|
|
cv::VideoCapture cap; |
|
cap.open(filepath); |
|
if (!cap.isOpened()) |
|
throw SkipTestException("Video file can not be opened"); |
|
|
|
cap >> in_mat; |
|
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); |
|
pipeline.setSource( |
|
cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(filepath), rect)); |
|
|
|
pipeline.start(); |
|
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_age, gapi_gender))) |
|
{ |
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rect.x) |
|
, static_cast<std::size_t>(rect.y) |
|
, static_cast<std::size_t>(rect.width) |
|
, static_cast<std::size_t>(rect.height) |
|
}; |
|
IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc); |
|
infer_request.SetBlob("data", roi_blob); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
++num_frames; |
|
cap >> in_mat; |
|
} |
|
pipeline.stop(); |
|
} |
|
|
|
TEST(InferList, TestStreamingInfer) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
std::string filepath = findDataFile("cv/video/768x576.avi"); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// Load IE network, initialize input data using that. |
|
cv::Mat in_mat; |
|
std::vector<cv::Mat> ie_ages, ie_genders, gapi_ages, gapi_genders; |
|
|
|
std::vector<cv::Rect> roi_list = { |
|
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), |
|
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), |
|
}; |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GArray<cv::Rect> roi; |
|
cv::GArray<GMat> age, gender; |
|
|
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in); |
|
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgNumRequests(4u); |
|
|
|
std::size_t num_frames = 0u; |
|
std::size_t max_frames = 10u; |
|
|
|
cv::VideoCapture cap; |
|
cap.open(filepath); |
|
if (!cap.isOpened()) |
|
throw SkipTestException("Video file can not be opened"); |
|
|
|
cap >> in_mat; |
|
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); |
|
pipeline.setSource( |
|
cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(filepath), roi_list)); |
|
|
|
pipeline.start(); |
|
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders))) |
|
{ |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
auto frame_blob = cv::gapi::ie::util::to_ie(in_mat); |
|
|
|
for (auto &&rc : roi_list) { |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rc.x) |
|
, static_cast<std::size_t>(rc.y) |
|
, static_cast<std::size_t>(rc.width) |
|
, static_cast<std::size_t>(rc.height) |
|
}; |
|
infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc)); |
|
infer_request.Infer(); |
|
|
|
using namespace cv::gapi::ie::util; |
|
ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); |
|
ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); |
|
} |
|
} // namespace IE = .. |
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(ie_ages [0], gapi_ages [0], "0: Test age output"); |
|
normAssert(ie_genders[0], gapi_genders[0], "0: Test gender output"); |
|
normAssert(ie_ages [1], gapi_ages [1], "1: Test age output"); |
|
normAssert(ie_genders[1], gapi_genders[1], "1: Test gender output"); |
|
|
|
ie_ages.clear(); |
|
ie_genders.clear(); |
|
|
|
++num_frames; |
|
cap >> in_mat; |
|
} |
|
} |
|
|
|
TEST(Infer2, TestStreamingInfer) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
std::string filepath = findDataFile("cv/video/768x576.avi"); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// Load IE network, initialize input data using that. |
|
cv::Mat in_mat; |
|
std::vector<cv::Mat> ie_ages, ie_genders, gapi_ages, gapi_genders; |
|
|
|
std::vector<cv::Rect> roi_list = { |
|
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), |
|
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), |
|
}; |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr); |
|
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgNumRequests(4u); |
|
|
|
std::size_t num_frames = 0u; |
|
std::size_t max_frames = 10u; |
|
|
|
cv::VideoCapture cap; |
|
cap.open(filepath); |
|
if (!cap.isOpened()) |
|
throw SkipTestException("Video file can not be opened"); |
|
|
|
cap >> in_mat; |
|
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); |
|
pipeline.setSource( |
|
cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(filepath), roi_list)); |
|
|
|
pipeline.start(); |
|
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders))) |
|
{ |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
auto frame_blob = cv::gapi::ie::util::to_ie(in_mat); |
|
|
|
for (auto &&rc : roi_list) { |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rc.x) |
|
, static_cast<std::size_t>(rc.y) |
|
, static_cast<std::size_t>(rc.width) |
|
, static_cast<std::size_t>(rc.height) |
|
}; |
|
infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc)); |
|
infer_request.Infer(); |
|
|
|
using namespace cv::gapi::ie::util; |
|
ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); |
|
ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); |
|
} |
|
} // namespace IE = .. |
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(ie_ages [0], gapi_ages [0], "0: Test age output"); |
|
normAssert(ie_genders[0], gapi_genders[0], "0: Test gender output"); |
|
normAssert(ie_ages [1], gapi_ages [1], "1: Test age output"); |
|
normAssert(ie_genders[1], gapi_genders[1], "1: Test gender output"); |
|
|
|
ie_ages.clear(); |
|
ie_genders.clear(); |
|
|
|
++num_frames; |
|
cap >> in_mat; |
|
} |
|
pipeline.stop(); |
|
} |
|
|
|
TEST(InferEmptyList, TestStreamingInfer) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
std::string filepath = findDataFile("cv/video/768x576.avi"); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// Load IE network, initialize input data using that. |
|
cv::Mat in_mat; |
|
std::vector<cv::Mat> ie_ages, ie_genders, gapi_ages, gapi_genders; |
|
|
|
// NB: Empty list of roi |
|
std::vector<cv::Rect> roi_list; |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GArray<cv::Rect> roi; |
|
cv::GArray<GMat> age, gender; |
|
|
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in); |
|
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgNumRequests(4u); |
|
|
|
std::size_t num_frames = 0u; |
|
std::size_t max_frames = 1u; |
|
|
|
cv::VideoCapture cap; |
|
cap.open(filepath); |
|
if (!cap.isOpened()) |
|
throw SkipTestException("Video file can not be opened"); |
|
|
|
cap >> in_mat; |
|
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); |
|
pipeline.setSource( |
|
cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(filepath), roi_list)); |
|
|
|
pipeline.start(); |
|
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders))) |
|
{ |
|
EXPECT_TRUE(gapi_ages.empty()); |
|
EXPECT_TRUE(gapi_genders.empty()); |
|
} |
|
} |
|
|
|
TEST(Infer2EmptyList, TestStreamingInfer) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
std::string filepath = findDataFile("cv/video/768x576.avi"); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
// Load IE network, initialize input data using that. |
|
cv::Mat in_mat; |
|
std::vector<cv::Mat> ie_ages, ie_genders, gapi_ages, gapi_genders; |
|
|
|
// NB: Empty list of roi |
|
std::vector<cv::Rect> roi_list; |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr); |
|
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgNumRequests(4u); |
|
|
|
std::size_t num_frames = 0u; |
|
std::size_t max_frames = 1u; |
|
|
|
cv::VideoCapture cap; |
|
cap.open(filepath); |
|
if (!cap.isOpened()) |
|
throw SkipTestException("Video file can not be opened"); |
|
|
|
cap >> in_mat; |
|
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); |
|
pipeline.setSource( |
|
cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(filepath), roi_list)); |
|
|
|
pipeline.start(); |
|
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders))) |
|
{ |
|
EXPECT_TRUE(gapi_ages.empty()); |
|
EXPECT_TRUE(gapi_genders.empty()); |
|
} |
|
} |
|
|
|
TEST_F(InferWithReshape, TestInfer) |
|
{ |
|
// IE code |
|
infer(m_in_mat); |
|
// G-API code |
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}}); |
|
comp.apply(cv::gin(m_in_mat), cv::gout(m_out_gapi_ages.front(), m_out_gapi_genders.front()), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(InferWithReshape, TestInferInImage) |
|
{ |
|
// Input image already has 70x70 size |
|
cv::Mat rsz; |
|
cv::resize(m_in_mat, rsz, cv::Size(70, 70)); |
|
// IE code |
|
infer(rsz); |
|
// G-API code |
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({"data"}); |
|
// Reshape CNN input by input image size |
|
comp.apply(cv::gin(rsz), cv::gout(m_out_gapi_ages.front(), m_out_gapi_genders.front()), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(InferWithReshape, TestInferForSingleLayer) |
|
{ |
|
// IE code |
|
infer(m_in_mat); |
|
// G-API code |
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgInputReshape("data", reshape_dims); |
|
comp.apply(cv::gin(m_in_mat), cv::gout(m_out_gapi_ages.front(), m_out_gapi_genders.front()), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(InferWithReshape, TestInferList) |
|
{ |
|
// IE code |
|
infer(m_in_mat, true); |
|
// G-API code |
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}}); |
|
comp.apply(cv::gin(m_in_mat, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(InferWithReshape, TestInferList2) |
|
{ |
|
// IE code |
|
infer(m_in_mat, true); |
|
// G-API code |
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}}); |
|
comp.apply(cv::gin(m_in_mat, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(InferWithReshape, TestInferListBGR) |
|
{ |
|
// IE code |
|
infer(m_in_mat, true); |
|
// G-API code |
|
cv::GArray<cv::Rect> rr; |
|
cv::GFrame in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}}); |
|
comp.apply(cv::gin(frame, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(InferWithReshapeNV12, TestInferListYUV) |
|
{ |
|
// G-API code |
|
cv::GFrame in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}}); |
|
comp.apply(cv::gin(frame, m_roi_list), |
|
cv::gout(m_out_gapi_ages, m_out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ROIList, CallInferMultipleTimes) |
|
{ |
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
auto cc = comp.compile(cv::descr_of(cv::gin(m_in_mat, m_roi_list)), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
for (int i = 0; i < 10; ++i) { |
|
cc(cv::gin(m_in_mat, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders)); |
|
} |
|
|
|
validate(); |
|
} |
|
|
|
TEST(IEFrameAdapter, blobParams) |
|
{ |
|
cv::Mat bgr = cv::Mat::eye(240, 320, CV_8UC3); |
|
cv::MediaFrame frame = cv::MediaFrame::Create<TestMediaBGR>(bgr); |
|
|
|
auto expected = std::make_pair(IE::TensorDesc{IE::Precision::U8, {1, 3, 300, 300}, |
|
IE::Layout::NCHW}, |
|
IE::ParamMap{{"HELLO", 42}, {"COLOR_FORMAT", |
|
IE::ColorFormat::NV12}}); |
|
|
|
auto actual = cv::util::any_cast<decltype(expected)>(frame.blobParams()); |
|
|
|
EXPECT_EQ(expected, actual); |
|
} |
|
|
|
namespace |
|
{ |
|
|
|
struct Sync { |
|
std::mutex m; |
|
std::condition_variable cv; |
|
int counter = 0; |
|
}; |
|
|
|
class GMockMediaAdapter final: public cv::MediaFrame::IAdapter { |
|
public: |
|
explicit GMockMediaAdapter(cv::Mat m, std::shared_ptr<Sync> sync) |
|
: m_mat(m), m_sync(sync) { |
|
} |
|
|
|
cv::GFrameDesc meta() const override { |
|
return cv::GFrameDesc{cv::MediaFormat::BGR, m_mat.size()}; |
|
} |
|
|
|
cv::MediaFrame::View access(cv::MediaFrame::Access) override { |
|
cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr }; |
|
cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u }; |
|
return cv::MediaFrame::View(std::move(pp), std::move(ss)); |
|
} |
|
|
|
~GMockMediaAdapter() { |
|
{ |
|
std::lock_guard<std::mutex> lk{m_sync->m}; |
|
m_sync->counter--; |
|
} |
|
m_sync->cv.notify_one(); |
|
} |
|
|
|
private: |
|
cv::Mat m_mat; |
|
std::shared_ptr<Sync> m_sync; |
|
}; |
|
|
|
// NB: This source is needed to simulate real |
|
// cases where the memory resources are limited. |
|
// GMockSource(int limit) - accept the number of MediaFrames that |
|
// the source can produce until resources are over. |
|
class GMockSource : public cv::gapi::wip::IStreamSource { |
|
public: |
|
explicit GMockSource(int limit) |
|
: m_limit(limit), m_mat(cv::Size(1920, 1080), CV_8UC3), |
|
m_sync(new Sync{}) { |
|
cv::randu(m_mat, cv::Scalar::all(0), cv::Scalar::all(255)); |
|
} |
|
|
|
bool pull(cv::gapi::wip::Data& data) { |
|
std::unique_lock<std::mutex> lk(m_sync->m); |
|
m_sync->counter++; |
|
// NB: Can't produce new frames until old ones are released. |
|
m_sync->cv.wait(lk, [this]{return m_sync->counter <= m_limit;}); |
|
|
|
data = cv::MediaFrame::Create<GMockMediaAdapter>(m_mat, m_sync); |
|
return true; |
|
} |
|
|
|
GMetaArg descr_of() const override { |
|
return GMetaArg{cv::GFrameDesc{cv::MediaFormat::BGR, m_mat.size()}}; |
|
} |
|
|
|
private: |
|
int m_limit; |
|
cv::Mat m_mat; |
|
std::shared_ptr<Sync> m_sync; |
|
}; |
|
|
|
struct LimitedSourceInfer: public ::testing::Test { |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
LimitedSourceInfer() |
|
: comp([](){ |
|
cv::GFrame in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
return cv::GComputation(cv::GIn(in), cv::GOut(age, gender)); |
|
}) { |
|
initDLDTDataPath(); |
|
} |
|
|
|
GStreamingCompiled compileStreaming(int nireq) { |
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id } |
|
.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgNumRequests(nireq); |
|
|
|
return comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); |
|
} |
|
|
|
void run(const int max_frames, const int limit, const int nireq) { |
|
auto pipeline = compileStreaming(nireq); |
|
pipeline.setSource<GMockSource>(limit); |
|
pipeline.start(); |
|
|
|
int num_frames = 0; |
|
while (num_frames != max_frames && |
|
pipeline.pull(cv::gout(out_age, out_gender))) { |
|
++num_frames; |
|
} |
|
} |
|
|
|
cv::GComputation comp; |
|
cv::Mat out_age, out_gender; |
|
}; |
|
|
|
} // anonymous namespace |
|
|
|
TEST_F(LimitedSourceInfer, ReleaseFrame) |
|
{ |
|
constexpr int max_frames = 50; |
|
constexpr int resources_limit = 1; |
|
constexpr int nireq = 1; |
|
|
|
run(max_frames, resources_limit, nireq); |
|
} |
|
|
|
TEST_F(LimitedSourceInfer, ReleaseFrameAsync) |
|
{ |
|
constexpr int max_frames = 50; |
|
constexpr int resources_limit = 4; |
|
constexpr int nireq = 8; |
|
|
|
run(max_frames, resources_limit, nireq); |
|
} |
|
|
|
TEST(TestAgeGenderIE, InferWithBatch) |
|
{ |
|
initDLDTDataPath(); |
|
|
|
constexpr int batch_size = 4; |
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
params.device_id = "CPU"; |
|
|
|
cv::Mat in_mat({batch_size, 3, 320, 240}, CV_8U); |
|
cv::randu(in_mat, 0, 255); |
|
|
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto net = cv::gimpl::ie::wrap::readNetwork(params); |
|
setNetParameters(net); |
|
net.setBatchSize(batch_size); |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.weights_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgBatchSize(batch_size); |
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST(ImportNetwork, Infer) |
|
{ |
|
const std::string device = "MYRIAD"; |
|
skipIfDeviceNotAvailable(device); |
|
|
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = compileAgeGenderBlob(device); |
|
params.device_id = device; |
|
|
|
cv::Mat in_mat(320, 240, CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
IE::PreProcessInfo info; |
|
info.setResizeAlgorithm(IE::RESIZE_BILINEAR); |
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat), info); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST(ImportNetwork, InferNV12) |
|
{ |
|
const std::string device = "MYRIAD"; |
|
skipIfDeviceNotAvailable(device); |
|
|
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path= compileAgeGenderBlob(device); |
|
params.device_id = device; |
|
|
|
cv::Size sz{320, 240}; |
|
cv::Mat in_y_mat(sz, CV_8UC1); |
|
cv::randu(in_y_mat, 0, 255); |
|
cv::Mat in_uv_mat(sz / 2, CV_8UC2); |
|
cv::randu(in_uv_mat, 0, 255); |
|
|
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
IE::PreProcessInfo info; |
|
info.setResizeAlgorithm(IE::RESIZE_BILINEAR); |
|
info.setColorFormat(IE::ColorFormat::NV12); |
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), info); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GFrame in; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
comp.apply(cv::gin(frame), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST(ImportNetwork, InferROI) |
|
{ |
|
const std::string device = "MYRIAD"; |
|
skipIfDeviceNotAvailable(device); |
|
|
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = compileAgeGenderBlob(device); |
|
params.device_id = device; |
|
|
|
cv::Mat in_mat(320, 240, CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
cv::Mat gapi_age, gapi_gender; |
|
cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96}); |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rect.x) |
|
, static_cast<std::size_t>(rect.y) |
|
, static_cast<std::size_t>(rect.width) |
|
, static_cast<std::size_t>(rect.height) |
|
}; |
|
IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc); |
|
IE::PreProcessInfo info; |
|
info.setResizeAlgorithm(IE::RESIZE_BILINEAR); |
|
infer_request.SetBlob("data", roi_blob, info); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in; |
|
cv::GOpaque<cv::Rect> roi; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in); |
|
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
comp.apply(cv::gin(in_mat, rect), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST(ImportNetwork, InferROINV12) |
|
{ |
|
const std::string device = "MYRIAD"; |
|
skipIfDeviceNotAvailable(device); |
|
|
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = compileAgeGenderBlob(device); |
|
params.device_id = device; |
|
|
|
cv::Size sz{320, 240}; |
|
cv::Mat in_y_mat(sz, CV_8UC1); |
|
cv::randu(in_y_mat, 0, 255); |
|
cv::Mat in_uv_mat(sz / 2, CV_8UC2); |
|
cv::randu(in_uv_mat, 0, 255); |
|
cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96}); |
|
|
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
// Load & run IE network |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rect.x) |
|
, static_cast<std::size_t>(rect.y) |
|
, static_cast<std::size_t>(rect.width) |
|
, static_cast<std::size_t>(rect.height) |
|
}; |
|
IE::Blob::Ptr roi_blob = |
|
IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc); |
|
IE::PreProcessInfo info; |
|
info.setResizeAlgorithm(IE::RESIZE_BILINEAR); |
|
info.setColorFormat(IE::ColorFormat::NV12); |
|
infer_request.SetBlob("data", roi_blob, info); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GFrame in; |
|
cv::GOpaque<cv::Rect> roi; |
|
cv::GMat age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in); |
|
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
comp.apply(cv::gin(frame, rect), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); |
|
} |
|
|
|
TEST(ImportNetwork, InferList) |
|
{ |
|
const std::string device = "MYRIAD"; |
|
skipIfDeviceNotAvailable(device); |
|
|
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = compileAgeGenderBlob(device); |
|
params.device_id = device; |
|
|
|
cv::Mat in_mat(320, 240, CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
std::vector<cv::Rect> roi_list = { |
|
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), |
|
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), |
|
}; |
|
std::vector<cv::Mat> out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders; |
|
|
|
// Load & run IE network |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
for (auto &&rc : roi_list) { |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rc.x) |
|
, static_cast<std::size_t>(rc.y) |
|
, static_cast<std::size_t>(rc.width) |
|
, static_cast<std::size_t>(rc.height) |
|
}; |
|
IE::Blob::Ptr roi_blob = |
|
IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc); |
|
IE::PreProcessInfo info; |
|
info.setResizeAlgorithm(IE::RESIZE_BILINEAR); |
|
infer_request.SetBlob("data", roi_blob, info); |
|
infer_request.Infer(); |
|
using namespace cv::gapi::ie::util; |
|
out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); |
|
out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); |
|
} |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
comp.apply(cv::gin(in_mat, roi_list), cv::gout(out_gapi_ages, out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
GAPI_Assert(!out_gapi_ages.empty()); |
|
ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size()); |
|
ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size()); |
|
ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size()); |
|
|
|
const size_t size = out_gapi_ages.size(); |
|
for (size_t i = 0; i < size; ++i) { |
|
normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output"); |
|
normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output"); |
|
} |
|
} |
|
|
|
TEST(ImportNetwork, InferListNV12) |
|
{ |
|
const std::string device = "MYRIAD"; |
|
skipIfDeviceNotAvailable(device); |
|
|
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = compileAgeGenderBlob(device); |
|
params.device_id = device; |
|
|
|
cv::Size sz{320, 240}; |
|
cv::Mat in_y_mat(sz, CV_8UC1); |
|
cv::randu(in_y_mat, 0, 255); |
|
cv::Mat in_uv_mat(sz / 2, CV_8UC2); |
|
cv::randu(in_uv_mat, 0, 255); |
|
std::vector<cv::Rect> roi_list = { |
|
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), |
|
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), |
|
}; |
|
std::vector<cv::Mat> out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders; |
|
|
|
// Load & run IE network |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
for (auto &&rc : roi_list) { |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rc.x) |
|
, static_cast<std::size_t>(rc.y) |
|
, static_cast<std::size_t>(rc.width) |
|
, static_cast<std::size_t>(rc.height) |
|
}; |
|
IE::Blob::Ptr roi_blob = |
|
IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc); |
|
IE::PreProcessInfo info; |
|
info.setResizeAlgorithm(IE::RESIZE_BILINEAR); |
|
info.setColorFormat(IE::ColorFormat::NV12); |
|
infer_request.SetBlob("data", roi_blob, info); |
|
infer_request.Infer(); |
|
using namespace cv::gapi::ie::util; |
|
out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); |
|
out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); |
|
} |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GArray<cv::Rect> rr; |
|
cv::GFrame in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat); |
|
|
|
comp.apply(cv::gin(frame, roi_list), cv::gout(out_gapi_ages, out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
GAPI_Assert(!out_gapi_ages.empty()); |
|
ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size()); |
|
ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size()); |
|
ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size()); |
|
|
|
const size_t size = out_gapi_ages.size(); |
|
for (size_t i = 0; i < size; ++i) { |
|
normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output"); |
|
normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output"); |
|
} |
|
} |
|
|
|
TEST(ImportNetwork, InferList2) |
|
{ |
|
const std::string device = "MYRIAD"; |
|
skipIfDeviceNotAvailable(device); |
|
|
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = compileAgeGenderBlob(device); |
|
params.device_id = device; |
|
|
|
cv::Mat in_mat(320, 240, CV_8UC3); |
|
cv::randu(in_mat, 0, 255); |
|
std::vector<cv::Rect> roi_list = { |
|
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), |
|
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), |
|
}; |
|
std::vector<cv::Mat> out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders; |
|
|
|
// Load & run IE network |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
for (auto &&rc : roi_list) { |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rc.x) |
|
, static_cast<std::size_t>(rc.y) |
|
, static_cast<std::size_t>(rc.width) |
|
, static_cast<std::size_t>(rc.height) |
|
}; |
|
IE::Blob::Ptr roi_blob = |
|
IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc); |
|
IE::PreProcessInfo info; |
|
info.setResizeAlgorithm(IE::RESIZE_BILINEAR); |
|
infer_request.SetBlob("data", roi_blob, info); |
|
infer_request.Infer(); |
|
using namespace cv::gapi::ie::util; |
|
out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); |
|
out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); |
|
} |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GArray<cv::Rect> rr; |
|
cv::GMat in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
comp.apply(cv::gin(in_mat, roi_list), cv::gout(out_gapi_ages, out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
GAPI_Assert(!out_gapi_ages.empty()); |
|
ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size()); |
|
ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size()); |
|
ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size()); |
|
|
|
const size_t size = out_gapi_ages.size(); |
|
for (size_t i = 0; i < size; ++i) { |
|
normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output"); |
|
normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output"); |
|
} |
|
} |
|
|
|
TEST(ImportNetwork, InferList2NV12) |
|
{ |
|
const std::string device = "MYRIAD"; |
|
skipIfDeviceNotAvailable(device); |
|
|
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
params.model_path = compileAgeGenderBlob(device); |
|
params.device_id = device; |
|
|
|
cv::Size sz{320, 240}; |
|
cv::Mat in_y_mat(sz, CV_8UC1); |
|
cv::randu(in_y_mat, 0, 255); |
|
cv::Mat in_uv_mat(sz / 2, CV_8UC2); |
|
cv::randu(in_uv_mat, 0, 255); |
|
std::vector<cv::Rect> roi_list = { |
|
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), |
|
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), |
|
}; |
|
std::vector<cv::Mat> out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders; |
|
|
|
// Load & run IE network |
|
{ |
|
auto plugin = cv::gimpl::ie::wrap::getPlugin(params); |
|
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
for (auto &&rc : roi_list) { |
|
const auto ie_rc = IE::ROI { |
|
0u |
|
, static_cast<std::size_t>(rc.x) |
|
, static_cast<std::size_t>(rc.y) |
|
, static_cast<std::size_t>(rc.width) |
|
, static_cast<std::size_t>(rc.height) |
|
}; |
|
IE::Blob::Ptr roi_blob = |
|
IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc); |
|
IE::PreProcessInfo info; |
|
info.setResizeAlgorithm(IE::RESIZE_BILINEAR); |
|
info.setColorFormat(IE::ColorFormat::NV12); |
|
infer_request.SetBlob("data", roi_blob, info); |
|
infer_request.Infer(); |
|
using namespace cv::gapi::ie::util; |
|
out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); |
|
out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); |
|
} |
|
} |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GArray<cv::Rect> rr; |
|
cv::GFrame in; |
|
cv::GArray<cv::GMat> age, gender; |
|
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat); |
|
|
|
comp.apply(cv::gin(frame, roi_list), cv::gout(out_gapi_ages, out_gapi_genders), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
// Validate with IE itself (avoid DNN module dependency here) |
|
GAPI_Assert(!out_gapi_ages.empty()); |
|
ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size()); |
|
ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size()); |
|
ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size()); |
|
|
|
const size_t size = out_gapi_ages.size(); |
|
for (size_t i = 0; i < size; ++i) { |
|
normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output"); |
|
normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output"); |
|
} |
|
} |
|
|
|
TEST(TestAgeGender, ThrowBlobAndInputPrecisionMismatch) |
|
{ |
|
const std::string device = "MYRIAD"; |
|
skipIfDeviceNotAvailable(device); |
|
|
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
// NB: Precision for inputs is U8. |
|
params.model_path = compileAgeGenderBlob(device); |
|
params.device_id = device; |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
cv::GMat in, age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
cv::Mat in_mat(320, 240, CV_32FC3); |
|
cv::randu(in_mat, 0, 1); |
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
// NB: Blob precision is U8, but user pass FP32 data, so exception will be thrown. |
|
// Now exception comes directly from IE, but since G-API has information |
|
// about data precision at the compile stage, consider the possibility of |
|
// throwing exception from there. |
|
EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp)))); |
|
} |
|
|
|
#ifdef HAVE_NGRAPH |
|
|
|
TEST(Infer, ModelWith2DInputs) |
|
{ |
|
const std::string model_name = "ModelWith2DInputs"; |
|
const std::string model_path = model_name + ".xml"; |
|
const std::string weights_path = model_name + ".bin"; |
|
const std::string device_id = "CPU"; |
|
const int W = 10; |
|
const int H = 5; |
|
|
|
// NB: Define model with 2D inputs. |
|
auto in1 = std::make_shared<ngraph::op::Parameter>( |
|
ngraph::element::Type_t::u8, |
|
ngraph::Shape(std::vector<size_t>{(size_t)H, (size_t)W}) |
|
); |
|
auto in2 = std::make_shared<ngraph::op::Parameter>( |
|
ngraph::element::Type_t::u8, |
|
ngraph::Shape(std::vector<size_t>{(size_t)H, (size_t)W}) |
|
); |
|
auto result = std::make_shared<ngraph::op::v1::Add>(in1, in2); |
|
auto func = std::make_shared<ngraph::Function>( |
|
ngraph::OutputVector{result}, |
|
ngraph::ParameterVector{in1, in2} |
|
); |
|
|
|
cv::Mat in_mat1(std::vector<int>{H, W}, CV_8U), |
|
in_mat2(std::vector<int>{H, W}, CV_8U), |
|
gapi_mat, ref_mat; |
|
|
|
cv::randu(in_mat1, 0, 100); |
|
cv::randu(in_mat2, 0, 100); |
|
cv::add(in_mat1, in_mat2, ref_mat, cv::noArray(), CV_32F); |
|
|
|
// Compile xml file |
|
IE::CNNNetwork(func).serialize(model_path); |
|
|
|
// Configure & run G-API |
|
cv::GMat g_in1, g_in2; |
|
cv::GInferInputs inputs; |
|
inputs[in1->get_name()] = g_in1; |
|
inputs[in2->get_name()] = g_in2; |
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>(model_name, inputs); |
|
auto out = outputs.at(result->get_name()); |
|
|
|
cv::GComputation comp(cv::GIn(g_in1, g_in2), cv::GOut(out)); |
|
|
|
auto pp = cv::gapi::ie::Params<cv::gapi::Generic>(model_name, |
|
model_path, |
|
weights_path, |
|
device_id); |
|
|
|
comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(gapi_mat), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
normAssert(ref_mat, gapi_mat, "Test model output"); |
|
} |
|
|
|
#endif // HAVE_NGRAPH |
|
|
|
TEST(TestAgeGender, ThrowBlobAndInputPrecisionMismatchStreaming) |
|
{ |
|
const std::string device = "MYRIAD"; |
|
skipIfDeviceNotAvailable(device); |
|
|
|
initDLDTDataPath(); |
|
|
|
cv::gapi::ie::detail::ParamDesc params; |
|
// NB: Precision for inputs is U8. |
|
params.model_path = compileAgeGenderBlob(device); |
|
params.device_id = device; |
|
|
|
// Configure & run G-API |
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
params.model_path, params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }); |
|
|
|
cv::GMat in, age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
auto pipeline = cv::GComputation(cv::GIn(in), cv::GOut(age, gender)) |
|
.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
cv::Mat in_mat(320, 240, CV_32FC3); |
|
cv::randu(in_mat, 0, 1); |
|
cv::Mat gapi_age, gapi_gender; |
|
|
|
pipeline.setSource(cv::gin(in_mat)); |
|
pipeline.start(); |
|
|
|
// NB: Blob precision is U8, but user pass FP32 data, so exception will be thrown. |
|
// Now exception comes directly from IE, but since G-API has information |
|
// about data precision at the compile stage, consider the possibility of |
|
// throwing exception from there. |
|
for (int i = 0; i < 10; ++i) { |
|
EXPECT_ANY_THROW(pipeline.pull(cv::gout(gapi_age, gapi_gender))); |
|
} |
|
} |
|
|
|
struct AgeGenderInferTest: public ::testing::Test { |
|
cv::Mat m_in_mat; |
|
cv::Mat m_gapi_age; |
|
cv::Mat m_gapi_gender; |
|
|
|
cv::gimpl::ie::wrap::Plugin m_plugin; |
|
IE::CNNNetwork m_net; |
|
cv::gapi::ie::detail::ParamDesc m_params; |
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender"); |
|
|
|
void SetUp() { |
|
initDLDTDataPath(); |
|
m_params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); |
|
m_params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); |
|
m_params.device_id = "CPU"; |
|
|
|
m_plugin = cv::gimpl::ie::wrap::getPlugin(m_params); |
|
m_net = cv::gimpl::ie::wrap::readNetwork(m_params); |
|
setNetParameters(m_net); |
|
|
|
m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3); |
|
cv::randu(m_in_mat, 0, 255); |
|
} |
|
|
|
cv::GComputation buildGraph() { |
|
cv::GMat in, age, gender; |
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in); |
|
return cv::GComputation(cv::GIn(in), cv::GOut(age, gender)); |
|
} |
|
|
|
void validate() { |
|
IE::Blob::Ptr ie_age, ie_gender; |
|
{ |
|
auto this_network = cv::gimpl::ie::wrap::loadNetwork(m_plugin, m_net, m_params); |
|
auto infer_request = this_network.CreateInferRequest(); |
|
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(m_in_mat)); |
|
infer_request.Infer(); |
|
ie_age = infer_request.GetBlob("age_conv3"); |
|
ie_gender = infer_request.GetBlob("prob"); |
|
} |
|
// Validate with IE itself (avoid DNN module dependency here) |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_age), m_gapi_age, "Test age output" ); |
|
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), m_gapi_gender, "Test gender output"); |
|
} |
|
}; |
|
|
|
TEST_F(AgeGenderInferTest, SyncExecution) { |
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
m_params.model_path, m_params.weights_path, m_params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgInferMode(cv::gapi::ie::InferMode::Sync); |
|
|
|
buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
|
|
validate(); |
|
} |
|
|
|
TEST_F(AgeGenderInferTest, ThrowSyncWithNireqNotEqualToOne) { |
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
m_params.model_path, m_params.weights_path, m_params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgInferMode(cv::gapi::ie::InferMode::Sync) |
|
.cfgNumRequests(4u); |
|
|
|
EXPECT_ANY_THROW(buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp)))); |
|
} |
|
|
|
TEST_F(AgeGenderInferTest, ChangeOutputPrecision) { |
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
m_params.model_path, m_params.weights_path, m_params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgOutputPrecision(CV_8U); |
|
|
|
for (auto it : m_net.getOutputsInfo()) { |
|
it.second->setPrecision(IE::Precision::U8); |
|
} |
|
|
|
buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
validate(); |
|
} |
|
|
|
TEST_F(AgeGenderInferTest, ChangeSpecificOutputPrecison) { |
|
auto pp = cv::gapi::ie::Params<AgeGender> { |
|
m_params.model_path, m_params.weights_path, m_params.device_id |
|
}.cfgOutputLayers({ "age_conv3", "prob" }) |
|
.cfgOutputPrecision({{"prob", CV_8U}}); |
|
|
|
m_net.getOutputsInfo().at("prob")->setPrecision(IE::Precision::U8); |
|
|
|
buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender), |
|
cv::compile_args(cv::gapi::networks(pp))); |
|
validate(); |
|
} |
|
|
|
} // namespace opencv_test |
|
|
|
#endif // HAVE_INF_ENGINE
|
|
|