mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
580 lines
23 KiB
580 lines
23 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2018 Intel Corporation |
|
|
|
|
|
#ifndef OPENCV_GAPI_GCOMPUTATION_HPP |
|
#define OPENCV_GAPI_GCOMPUTATION_HPP |
|
|
|
#include <functional> |
|
|
|
#include <opencv2/gapi/util/util.hpp> |
|
#include <opencv2/gapi/gcommon.hpp> |
|
#include <opencv2/gapi/gproto.hpp> |
|
#include <opencv2/gapi/garg.hpp> |
|
#include <opencv2/gapi/gcompiled.hpp> |
|
#include <opencv2/gapi/gstreaming.hpp> |
|
|
|
namespace cv { |
|
|
|
namespace detail |
|
{ |
|
// FIXME: move to algorithm, cover with separate tests |
|
// FIXME: replace with O(1) version (both memory and compilation time) |
|
template<typename...> |
|
struct last_type; |
|
|
|
template<typename T> |
|
struct last_type<T> { using type = T;}; |
|
|
|
template<typename T, typename... Ts> |
|
struct last_type<T, Ts...> { using type = typename last_type<Ts...>::type; }; |
|
|
|
template<typename... Ts> |
|
using last_type_t = typename last_type<Ts...>::type; |
|
} |
|
|
|
// Forward-declare the serialization objects |
|
namespace gapi { |
|
namespace s11n { |
|
struct IIStream; |
|
struct IOStream; |
|
} // namespace s11n |
|
} // namespace gapi |
|
|
|
/** |
|
* \addtogroup gapi_main_classes |
|
* @{ |
|
* |
|
* @brief G-API classes for constructed and compiled graphs. |
|
*/ |
|
/** |
|
* @brief GComputation class represents a captured computation |
|
* graph. GComputation objects form boundaries for expression code |
|
* user writes with G-API, allowing to compile and execute it. |
|
* |
|
* G-API computations are defined with input/output data |
|
* objects. G-API will track automatically which operations connect |
|
* specified outputs to the inputs, forming up a call graph to be |
|
* executed. The below example expresses calculation of Sobel operator |
|
* for edge detection (\f$G = \sqrt{G_x^2 + G_y^2}\f$): |
|
* |
|
* @snippet samples/cpp/tutorial_code/gapi/doc_snippets/api_ref_snippets.cpp graph_def |
|
* |
|
* Full pipeline can be now captured with this object declaration: |
|
* |
|
* @snippet samples/cpp/tutorial_code/gapi/doc_snippets/api_ref_snippets.cpp graph_cap_full |
|
* |
|
* Input/output data objects on which a call graph should be |
|
* reconstructed are passed using special wrappers cv::GIn and |
|
* cv::GOut. G-API will track automatically which operations form a |
|
* path from inputs to outputs and build the execution graph appropriately. |
|
* |
|
* Note that cv::GComputation doesn't take ownership on data objects |
|
* it is defined. Moreover, multiple GComputation objects may be |
|
* defined on the same expressions, e.g. a smaller pipeline which |
|
* expects that image gradients are already pre-calculated may be |
|
* defined like this: |
|
* |
|
* @snippet samples/cpp/tutorial_code/gapi/doc_snippets/api_ref_snippets.cpp graph_cap_sub |
|
* |
|
* The resulting graph would expect two inputs and produce one |
|
* output. In this case, it doesn't matter if gx/gy data objects are |
|
* results of cv::gapi::Sobel operators -- G-API will stop unrolling |
|
* expressions and building the underlying graph one reaching this |
|
* data objects. |
|
* |
|
* The way how GComputation is defined is important as its definition |
|
* specifies graph _protocol_ -- the way how the graph should be |
|
* used. Protocol is defined by number of inputs, number of outputs, |
|
* and shapes of inputs and outputs. |
|
* |
|
* In the above example, sobelEdge expects one Mat on input and |
|
* produces one Mat; while sobelEdgeSub expects two Mats on input and |
|
* produces one Mat. GComputation's protocol defines how other |
|
* computation methods should be used -- cv::GComputation::compile() and |
|
* cv::GComputation::apply(). For example, if a graph is defined on |
|
* two GMat inputs, two cv::Mat objects have to be passed to apply() |
|
* for execution. GComputation checks protocol correctness in runtime |
|
* so passing a different number of objects in apply() or passing |
|
* cv::Scalar instead of cv::Mat there would compile well as a C++ |
|
* source but raise an exception in run-time. G-API also comes with a |
|
* typed wrapper cv::GComputationT<> which introduces this type-checking in |
|
* compile-time. |
|
* |
|
* cv::GComputation itself is a thin object which just captures what |
|
* the graph is. The compiled graph (which actually process data) is |
|
* represented by class GCompiled. Use compile() method to generate a |
|
* compiled graph with given compile options. cv::GComputation can |
|
* also be used to process data with implicit graph compilation |
|
* on-the-fly, see apply() for details. |
|
* |
|
* GComputation is a reference-counted object -- once defined, all its |
|
* copies will refer to the same instance. |
|
* |
|
* @sa GCompiled |
|
*/ |
|
class GAPI_EXPORTS_W GComputation |
|
{ |
|
public: |
|
class Priv; |
|
typedef std::function<GComputation()> Generator; |
|
|
|
// Various constructors enable different ways to define a computation: ///// |
|
// 1. Generic constructors |
|
/** |
|
* @brief Define a computation using a generator function. |
|
* |
|
* Graph can be defined in-place directly at the moment of its |
|
* construction with a lambda: |
|
* |
|
* @snippet samples/cpp/tutorial_code/gapi/doc_snippets/api_ref_snippets.cpp graph_gen |
|
* |
|
* This may be useful since all temporary objects (cv::GMats) and |
|
* namespaces can be localized to scope of lambda, without |
|
* contaminating the parent scope with probably unnecessary objects |
|
* and information. |
|
* |
|
* @param gen generator function which returns a cv::GComputation, |
|
* see Generator. |
|
*/ |
|
GComputation(const Generator& gen); // Generator |
|
// overload |
|
|
|
/** |
|
* @brief Generic GComputation constructor. |
|
* |
|
* Constructs a new graph with a given protocol, specified as a |
|
* flow of operations connecting input/output objects. Throws if |
|
* the passed boundaries are invalid, e.g. if there's no |
|
* functional dependency (path) between given outputs and inputs. |
|
* |
|
* @param ins Input data vector. |
|
* @param outs Output data vector. |
|
* |
|
* @note Don't construct GProtoInputArgs/GProtoOutputArgs objects |
|
* directly, use cv::GIn()/cv::GOut() wrapper functions instead. |
|
* |
|
* @sa @ref gapi_data_objects |
|
*/ |
|
GAPI_WRAP GComputation(GProtoInputArgs &&ins, |
|
GProtoOutputArgs &&outs); // Arg-to-arg overload |
|
|
|
// 2. Syntax sugar and compatibility overloads |
|
/** |
|
* @brief Defines an unary (one input -- one output) computation |
|
* |
|
* @overload |
|
* @param in input GMat of the defined unary computation |
|
* @param out output GMat of the defined unary computation |
|
*/ |
|
GAPI_WRAP GComputation(GMat in, GMat out); // Unary overload |
|
|
|
/** |
|
* @brief Defines an unary (one input -- one output) computation |
|
* |
|
* @overload |
|
* @param in input GMat of the defined unary computation |
|
* @param out output GScalar of the defined unary computation |
|
*/ |
|
GAPI_WRAP GComputation(GMat in, GScalar out); // Unary overload (scalar) |
|
|
|
/** |
|
* @brief Defines a binary (two inputs -- one output) computation |
|
* |
|
* @overload |
|
* @param in1 first input GMat of the defined binary computation |
|
* @param in2 second input GMat of the defined binary computation |
|
* @param out output GMat of the defined binary computation |
|
*/ |
|
GAPI_WRAP GComputation(GMat in1, GMat in2, GMat out); // Binary overload |
|
|
|
/** |
|
* @brief Defines a binary (two inputs -- one output) computation |
|
* |
|
* @overload |
|
* @param in1 first input GMat of the defined binary computation |
|
* @param in2 second input GMat of the defined binary computation |
|
* @param out output GScalar of the defined binary computation |
|
*/ |
|
GComputation(GMat in1, GMat in2, GScalar out); // Binary |
|
// overload |
|
// (scalar) |
|
|
|
/** |
|
* @brief Defines a computation with arbitrary input/output number. |
|
* |
|
* @overload |
|
* @param ins vector of inputs GMats for this computation |
|
* @param outs vector of outputs GMats for this computation |
|
* |
|
* Use this overload for cases when number of computation |
|
* inputs/outputs is not known in compile-time -- e.g. when graph |
|
* is programmatically generated to build an image pyramid with |
|
* the given number of levels, etc. |
|
*/ |
|
GComputation(const std::vector<GMat> &ins, // Compatibility overload |
|
const std::vector<GMat> &outs); |
|
|
|
// Various versions of apply(): //////////////////////////////////////////// |
|
// 1. Generic apply() |
|
/** |
|
* @brief Compile graph on-the-fly and immediately execute it on |
|
* the inputs data vectors. |
|
* |
|
* Number of input/output data objects must match GComputation's |
|
* protocol, also types of host data objects (cv::Mat, cv::Scalar) |
|
* must match the shapes of data objects from protocol (cv::GMat, |
|
* cv::GScalar). If there's a mismatch, a run-time exception will |
|
* be generated. |
|
* |
|
* Internally, a cv::GCompiled object is created for the given |
|
* input format configuration, which then is executed on the input |
|
* data immediately. cv::GComputation caches compiled objects |
|
* produced within apply() -- if this method would be called next |
|
* time with the same input parameters (image formats, image |
|
* resolution, etc), the underlying compiled graph will be reused |
|
* without recompilation. If new metadata doesn't match the cached |
|
* one, the underlying compiled graph is regenerated. |
|
* |
|
* @note compile() always triggers a compilation process and |
|
* produces a new GCompiled object regardless if a similar one has |
|
* been cached via apply() or not. |
|
* |
|
* @param ins vector of input data to process. Don't create |
|
* GRunArgs object manually, use cv::gin() wrapper instead. |
|
* @param outs vector of output data to fill results in. cv::Mat |
|
* objects may be empty in this vector, G-API will automatically |
|
* initialize it with the required format & dimensions. Don't |
|
* create GRunArgsP object manually, use cv::gout() wrapper instead. |
|
* @param args a list of compilation arguments to pass to the |
|
* underlying compilation process. Don't create GCompileArgs |
|
* object manually, use cv::compile_args() wrapper instead. |
|
* |
|
* @sa @ref gapi_data_objects, @ref gapi_compile_args |
|
*/ |
|
void apply(GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args = {}); // Arg-to-arg overload |
|
|
|
/// @private -- Exclude this function from OpenCV documentation |
|
GAPI_WRAP GRunArgs apply(const cv::detail::ExtractArgsCallback &callback, |
|
GCompileArgs &&args = {}); |
|
|
|
/// @private -- Exclude this function from OpenCV documentation |
|
void apply(const std::vector<cv::Mat>& ins, // Compatibility overload |
|
const std::vector<cv::Mat>& outs, |
|
GCompileArgs &&args = {}); |
|
|
|
// 2. Syntax sugar and compatibility overloads |
|
#if !defined(GAPI_STANDALONE) |
|
/** |
|
* @brief Execute an unary computation (with compilation on the fly) |
|
* |
|
* @overload |
|
* @param in input cv::Mat for unary computation |
|
* @param out output cv::Mat for unary computation |
|
* @param args compilation arguments for underlying compilation |
|
* process. |
|
*/ |
|
void apply(cv::Mat in, cv::Mat &out, GCompileArgs &&args = {}); // Unary overload |
|
|
|
/** |
|
* @brief Execute an unary computation (with compilation on the fly) |
|
* |
|
* @overload |
|
* @param in input cv::Mat for unary computation |
|
* @param out output cv::Scalar for unary computation |
|
* @param args compilation arguments for underlying compilation |
|
* process. |
|
*/ |
|
void apply(cv::Mat in, cv::Scalar &out, GCompileArgs &&args = {}); // Unary overload (scalar) |
|
|
|
/** |
|
* @brief Execute a binary computation (with compilation on the fly) |
|
* |
|
* @overload |
|
* @param in1 first input cv::Mat for binary computation |
|
* @param in2 second input cv::Mat for binary computation |
|
* @param out output cv::Mat for binary computation |
|
* @param args compilation arguments for underlying compilation |
|
* process. |
|
*/ |
|
void apply(cv::Mat in1, cv::Mat in2, cv::Mat &out, GCompileArgs &&args = {}); // Binary overload |
|
|
|
/** |
|
* @brief Execute an binary computation (with compilation on the fly) |
|
* |
|
* @overload |
|
* @param in1 first input cv::Mat for binary computation |
|
* @param in2 second input cv::Mat for binary computation |
|
* @param out output cv::Scalar for binary computation |
|
* @param args compilation arguments for underlying compilation |
|
* process. |
|
*/ |
|
void apply(cv::Mat in1, cv::Mat in2, cv::Scalar &out, GCompileArgs &&args = {}); // Binary overload (scalar) |
|
|
|
/** |
|
* @brief Execute a computation with arbitrary number of |
|
* inputs/outputs (with compilation on-the-fly). |
|
* |
|
* @overload |
|
* @param ins vector of input cv::Mat objects to process by the |
|
* computation. |
|
* @param outs vector of output cv::Mat objects to produce by the |
|
* computation. |
|
* @param args compilation arguments for underlying compilation |
|
* process. |
|
* |
|
* Numbers of elements in ins/outs vectors must match numbers of |
|
* inputs/outputs which were used to define this GComputation. |
|
*/ |
|
void apply(const std::vector<cv::Mat>& ins, // Compatibility overload |
|
std::vector<cv::Mat>& outs, |
|
GCompileArgs &&args = {}); |
|
#endif // !defined(GAPI_STANDALONE) |
|
// Various versions of compile(): ////////////////////////////////////////// |
|
// 1. Generic compile() - requires metas to be passed as vector |
|
/** |
|
* @brief Compile the computation for specific input format(s). |
|
* |
|
* This method triggers compilation process and produces a new |
|
* GCompiled object which then can process data of the given |
|
* format. Passing data with different format to the compiled |
|
* computation will generate a run-time exception. |
|
* |
|
* @param in_metas vector of input metadata configuration. Grab |
|
* metadata from real data objects (like cv::Mat or cv::Scalar) |
|
* using cv::descr_of(), or create it on your own. |
|
* @param args compilation arguments for this compilation |
|
* process. Compilation arguments directly affect what kind of |
|
* executable object would be produced, e.g. which kernels (and |
|
* thus, devices) would be used to execute computation. |
|
* |
|
* @return GCompiled, an executable computation compiled |
|
* specifically for the given input parameters. |
|
* |
|
* @sa @ref gapi_compile_args |
|
*/ |
|
GCompiled compile(GMetaArgs &&in_metas, GCompileArgs &&args = {}); |
|
|
|
// 2. Syntax sugar - variadic list of metas, no extra compile args |
|
// FIXME: SFINAE looks ugly in the generated documentation |
|
/** |
|
* @overload |
|
* |
|
* Takes a variadic parameter pack with metadata |
|
* descriptors for which a compiled object needs to be produced. |
|
* |
|
* @return GCompiled, an executable computation compiled |
|
* specifically for the given input parameters. |
|
*/ |
|
template<typename... Ts> |
|
auto compile(const Ts&... metas) -> |
|
typename std::enable_if<detail::are_meta_descrs<Ts...>::value, GCompiled>::type |
|
{ |
|
return compile(GMetaArgs{GMetaArg(metas)...}, GCompileArgs()); |
|
} |
|
|
|
// 3. Syntax sugar - variadic list of metas, extra compile args |
|
// (seems optional parameters don't work well when there's an variadic template |
|
// comes first) |
|
// |
|
// Ideally it should look like: |
|
// |
|
// template<typename... Ts> |
|
// GCompiled compile(const Ts&... metas, GCompileArgs &&args) |
|
// |
|
// But not all compilers can handle this (and seems they shouldn't be able to). |
|
// FIXME: SFINAE looks ugly in the generated documentation |
|
/** |
|
* @overload |
|
* |
|
* Takes a variadic parameter pack with metadata |
|
* descriptors for which a compiled object needs to be produced, |
|
* followed by GCompileArgs object representing compilation |
|
* arguments for this process. |
|
* |
|
* @return GCompiled, an executable computation compiled |
|
* specifically for the given input parameters. |
|
*/ |
|
template<typename... Ts> |
|
auto compile(const Ts&... meta_and_compile_args) -> |
|
typename std::enable_if<detail::are_meta_descrs_but_last<Ts...>::value |
|
&& std::is_same<GCompileArgs, detail::last_type_t<Ts...> >::value, |
|
GCompiled>::type |
|
{ |
|
//FIXME: wrapping meta_and_compile_args into a tuple to unwrap them inside a helper function is the overkill |
|
return compile(std::make_tuple(meta_and_compile_args...), |
|
typename detail::MkSeq<sizeof...(Ts)-1>::type()); |
|
} |
|
|
|
|
|
// FIXME: Document properly in the Doxygen format |
|
// Video-oriented pipeline compilation: |
|
// 1. A generic version |
|
/** |
|
* @brief Compile the computation for streaming mode. |
|
* |
|
* This method triggers compilation process and produces a new |
|
* GStreamingCompiled object which then can process video stream |
|
* data of the given format. Passing a stream in a different |
|
* format to the compiled computation will generate a run-time |
|
* exception. |
|
* |
|
* @param in_metas vector of input metadata configuration. Grab |
|
* metadata from real data objects (like cv::Mat or cv::Scalar) |
|
* using cv::descr_of(), or create it on your own. |
|
* |
|
* @param args compilation arguments for this compilation |
|
* process. Compilation arguments directly affect what kind of |
|
* executable object would be produced, e.g. which kernels (and |
|
* thus, devices) would be used to execute computation. |
|
* |
|
* @return GStreamingCompiled, a streaming-oriented executable |
|
* computation compiled specifically for the given input |
|
* parameters. |
|
* |
|
* @sa @ref gapi_compile_args |
|
*/ |
|
GAPI_WRAP GStreamingCompiled compileStreaming(GMetaArgs &&in_metas, GCompileArgs &&args = {}); |
|
|
|
/** |
|
* @brief Compile the computation for streaming mode. |
|
* |
|
* This method triggers compilation process and produces a new |
|
* GStreamingCompiled object which then can process video stream |
|
* data in any format. Underlying mechanisms will be adjusted to |
|
* every new input video stream automatically, but please note that |
|
* _not all_ existing backends support this (see reshape()). |
|
* |
|
* @param args compilation arguments for this compilation |
|
* process. Compilation arguments directly affect what kind of |
|
* executable object would be produced, e.g. which kernels (and |
|
* thus, devices) would be used to execute computation. |
|
* |
|
* @return GStreamingCompiled, a streaming-oriented executable |
|
* computation compiled for any input image format. |
|
* |
|
* @sa @ref gapi_compile_args |
|
*/ |
|
GAPI_WRAP GStreamingCompiled compileStreaming(GCompileArgs &&args = {}); |
|
|
|
/// @private -- Exclude this function from OpenCV documentation |
|
GAPI_WRAP GStreamingCompiled compileStreaming(const cv::detail::ExtractMetaCallback &callback, |
|
GCompileArgs &&args = {}); |
|
|
|
// 2. Direct metadata version |
|
/** |
|
* @overload |
|
* |
|
* Takes a variadic parameter pack with metadata |
|
* descriptors for which a compiled object needs to be produced. |
|
* |
|
* @return GStreamingCompiled, a streaming-oriented executable |
|
* computation compiled specifically for the given input |
|
* parameters. |
|
*/ |
|
template<typename... Ts> |
|
auto compileStreaming(const Ts&... metas) -> |
|
typename std::enable_if<detail::are_meta_descrs<Ts...>::value, GStreamingCompiled>::type |
|
{ |
|
return compileStreaming(GMetaArgs{GMetaArg(metas)...}, GCompileArgs()); |
|
} |
|
|
|
// 2. Direct metadata + compile arguments version |
|
/** |
|
* @overload |
|
* |
|
* Takes a variadic parameter pack with metadata |
|
* descriptors for which a compiled object needs to be produced, |
|
* followed by GCompileArgs object representing compilation |
|
* arguments for this process. |
|
* |
|
* @return GStreamingCompiled, a streaming-oriented executable |
|
* computation compiled specifically for the given input |
|
* parameters. |
|
*/ |
|
template<typename... Ts> |
|
auto compileStreaming(const Ts&... meta_and_compile_args) -> |
|
typename std::enable_if<detail::are_meta_descrs_but_last<Ts...>::value |
|
&& std::is_same<GCompileArgs, detail::last_type_t<Ts...> >::value, |
|
GStreamingCompiled>::type |
|
{ |
|
//FIXME: wrapping meta_and_compile_args into a tuple to unwrap them inside a helper function is the overkill |
|
return compileStreaming(std::make_tuple(meta_and_compile_args...), |
|
typename detail::MkSeq<sizeof...(Ts)-1>::type()); |
|
} |
|
|
|
// Internal use only |
|
/// @private |
|
Priv& priv(); |
|
/// @private |
|
const Priv& priv() const; |
|
/// @private |
|
explicit GComputation(cv::gapi::s11n::IIStream &); |
|
/// @private |
|
void serialize(cv::gapi::s11n::IOStream &) const; |
|
|
|
protected: |
|
|
|
// 4. Helper methods for (3) |
|
/// @private |
|
template<typename... Ts, int... IIs> |
|
GCompiled compile(const std::tuple<Ts...> &meta_and_compile_args, detail::Seq<IIs...>) |
|
{ |
|
GMetaArgs meta_args = {GMetaArg(std::get<IIs>(meta_and_compile_args))...}; |
|
GCompileArgs comp_args = std::get<sizeof...(Ts)-1>(meta_and_compile_args); |
|
return compile(std::move(meta_args), std::move(comp_args)); |
|
} |
|
template<typename... Ts, int... IIs> |
|
GStreamingCompiled compileStreaming(const std::tuple<Ts...> &meta_and_compile_args, detail::Seq<IIs...>) |
|
{ |
|
GMetaArgs meta_args = {GMetaArg(std::get<IIs>(meta_and_compile_args))...}; |
|
GCompileArgs comp_args = std::get<sizeof...(Ts)-1>(meta_and_compile_args); |
|
return compileStreaming(std::move(meta_args), std::move(comp_args)); |
|
} |
|
void recompile(GMetaArgs&& in_metas, GCompileArgs &&args); |
|
/// @private |
|
std::shared_ptr<Priv> m_priv; |
|
}; |
|
/** @} */ |
|
|
|
namespace gapi |
|
{ |
|
// FIXME: all these standalone functions need to be added to some |
|
// common documentation section |
|
/** |
|
* @brief Define an tagged island (subgraph) within a computation. |
|
* |
|
* Declare an Island tagged with `name` and defined from `ins` to `outs` |
|
* (exclusively, as ins/outs are data objects, and regioning is done on |
|
* operations level). |
|
* Throws if any operation between `ins` and `outs` are already assigned |
|
* to another island. |
|
* |
|
* Islands allow to partition graph into subgraphs, fine-tuning |
|
* the way it is scheduled by the underlying executor. |
|
* |
|
* @param name name of the Island to create |
|
* @param ins vector of input data objects where the subgraph |
|
* begins |
|
* @param outs vector of output data objects where the subgraph |
|
* ends. |
|
* |
|
* The way how an island is defined is similar to how |
|
* cv::GComputation is defined on input/output data objects. |
|
* Same rules apply here as well -- if there's no functional |
|
* dependency between inputs and outputs or there's not enough |
|
* input data objects were specified to properly calculate all |
|
* outputs, an exception is thrown. |
|
* |
|
* Use cv::GIn() / cv::GOut() to specify input/output vectors. |
|
*/ |
|
void GAPI_EXPORTS island(const std::string &name, |
|
GProtoInputArgs &&ins, |
|
GProtoOutputArgs &&outs); |
|
} // namespace gapi |
|
|
|
} // namespace cv |
|
#endif // OPENCV_GAPI_GCOMPUTATION_HPP
|
|
|