mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
578 lines
18 KiB
578 lines
18 KiB
#include "precomp.hpp" |
|
#include "_latentsvm.h" |
|
#include "_lsvm_resizeimg.h" |
|
|
|
#ifndef max |
|
#define max(a,b) (((a) > (b)) ? (a) : (b)) |
|
#endif |
|
|
|
#ifndef min |
|
#define min(a,b) (((a) < (b)) ? (a) : (b)) |
|
#endif |
|
|
|
static inline int sign(float r) |
|
{ |
|
if(r > 0.0001f) return 1; |
|
if(r < -0.0001f) return -1; |
|
return 0; |
|
} |
|
|
|
/* |
|
// Getting feature map for the selected subimage |
|
// |
|
// API |
|
// int getFeatureMaps(const IplImage * image, const int k, featureMap **map); |
|
// INPUT |
|
// image - selected subimage |
|
// k - size of cells |
|
// OUTPUT |
|
// map - feature map |
|
// RESULT |
|
// Error status |
|
*/ |
|
int getFeatureMaps_dp(const IplImage* image,const int k, CvLSVMFeatureMap **map) |
|
{ |
|
int sizeX, sizeY; |
|
int p, px, strsz; |
|
int height, width, channels; |
|
int i, j, kk, c, ii, jj, d; |
|
float * datadx, * datady; |
|
float tmp, x, y, tx, ty; |
|
IplImage * dx, * dy; |
|
int *nearest_x, *nearest_y; |
|
float *w, a_x, b_x; |
|
|
|
float kernel[3] = {-1.f, 0.f, 1.f}; |
|
CvMat kernel_dx = cvMat(1, 3, CV_32F, kernel); |
|
CvMat kernel_dy = cvMat(3, 1, CV_32F, kernel); |
|
|
|
float * r; |
|
int * alfa; |
|
|
|
float boundary_x[CNTPARTION+1]; |
|
float boundary_y[CNTPARTION+1]; |
|
float max, tmp_scal; |
|
int maxi; |
|
|
|
height = image->height; |
|
width = image->width ; |
|
|
|
channels = image->nChannels; |
|
|
|
dx = cvCreateImage(cvSize(image->width , image->height) , IPL_DEPTH_32F , 3); |
|
dy = cvCreateImage(cvSize(image->width , image->height) , IPL_DEPTH_32F , 3); |
|
|
|
sizeX = width / k; |
|
sizeY = height / k; |
|
px = CNTPARTION + 2 * CNTPARTION; // êîíòðàñòíîå è íå êîíòðàñòíîå èçîáðàæåíèå |
|
p = px; |
|
strsz = sizeX * p; |
|
allocFeatureMapObject(map, sizeX, sizeY, p, px); |
|
|
|
cvFilter2D(image, dx, &kernel_dx, cvPoint(-1, 0)); |
|
cvFilter2D(image, dy, &kernel_dy, cvPoint(0, -1)); |
|
|
|
for(i = 0; i <= CNTPARTION; i++) |
|
{ |
|
boundary_x[i] = cosf((((float)i) * (((float)PI) / (float) (CNTPARTION)))); |
|
boundary_y[i] = sinf((((float)i) * (((float)PI) / (float) (CNTPARTION)))); |
|
}/*for(i = 0; i <= CNTPARTION; i++) */ |
|
|
|
r = (float *)malloc( sizeof(float) * (width * height)); |
|
alfa = (int *)malloc( sizeof(int ) * (width * height * 2)); |
|
|
|
for(j = 1; j < height-1; j++) |
|
{ |
|
datadx = (float*)(dx->imageData + dx->widthStep *j); |
|
datady = (float*)(dy->imageData + dy->widthStep *j); |
|
for(i = 1; i < width-1; i++) |
|
{ |
|
c = 0; |
|
x = (datadx[i*channels+c]); |
|
y = (datady[i*channels+c]); |
|
|
|
r[j * width + i] =sqrtf(x*x + y*y); |
|
for(kk = 1; kk < channels; kk++) |
|
{ |
|
tx = (datadx[i*channels+kk]); |
|
ty = (datady[i*channels+kk]); |
|
tmp =sqrtf(tx*tx + ty*ty); |
|
if(tmp > r[j * width + i]) |
|
{ |
|
r[j * width + i] = tmp; |
|
c = kk; |
|
x = tx; |
|
y = ty; |
|
} |
|
}/*for(kk = 1; kk < channels; kk++)*/ |
|
|
|
|
|
|
|
max = boundary_x[0]*x + boundary_y[0]*y; |
|
maxi = 0; |
|
for (kk = 0; kk < CNTPARTION; kk++) { |
|
tmp_scal = boundary_x[kk]*x + boundary_y[kk]*y; |
|
if (tmp_scal> max) { |
|
max = tmp_scal; |
|
maxi = kk; |
|
}else if (-tmp_scal> max) { |
|
max = -tmp_scal; |
|
maxi = kk + CNTPARTION; |
|
} |
|
} |
|
alfa[j * width * 2 + i * 2 ] = maxi % CNTPARTION; |
|
alfa[j * width * 2 + i * 2 + 1] = maxi; |
|
}/*for(i = 0; i < width; i++)*/ |
|
}/*for(j = 0; j < height; j++)*/ |
|
|
|
//ïîäñ÷åò âåñîâ è ñìåùåíèé |
|
nearest_x = (int *)malloc(sizeof(int) * k); |
|
nearest_y = (int *)malloc(sizeof(int) * k); |
|
w = (float*)malloc(sizeof(float) * (k * 2)); |
|
|
|
for(i = 0; i < k / 2; i++) |
|
{ |
|
nearest_x[i] = -1; |
|
nearest_y[i] = -1; |
|
}/*for(i = 0; i < k / 2; i++)*/ |
|
for(i = k / 2; i < k; i++) |
|
{ |
|
nearest_x[i] = 1; |
|
nearest_y[i] = 1; |
|
}/*for(i = k / 2; i < k; i++)*/ |
|
|
|
for(j = 0; j < k / 2; j++) |
|
{ |
|
b_x = k / 2 + j + 0.5f; |
|
a_x = k / 2 - j - 0.5f; |
|
w[j * 2 ] = 1.0f/a_x * ((a_x * b_x) / ( a_x + b_x)); |
|
w[j * 2 + 1] = 1.0f/b_x * ((a_x * b_x) / ( a_x + b_x)); |
|
}/*for(j = 0; j < k / 2; j++)*/ |
|
for(j = k / 2; j < k; j++) |
|
{ |
|
a_x = j - k / 2 + 0.5f; |
|
b_x =-j + k / 2 - 0.5f + k; |
|
w[j * 2 ] = 1.0f/a_x * ((a_x * b_x) / ( a_x + b_x)); |
|
w[j * 2 + 1] = 1.0f/b_x * ((a_x * b_x) / ( a_x + b_x)); |
|
}/*for(j = k / 2; j < k; j++)*/ |
|
|
|
|
|
//èíòåðïîëÿöèÿ |
|
for(i = 0; i < sizeY; i++) |
|
{ |
|
for(j = 0; j < sizeX; j++) |
|
{ |
|
for(ii = 0; ii < k; ii++) |
|
{ |
|
for(jj = 0; jj < k; jj++) |
|
{ |
|
if ((i * k + ii > 0) && (i * k + ii < height - 1) && (j * k + jj > 0) && (j * k + jj < width - 1)) |
|
{ |
|
d = (k*i + ii)* width + (j*k + jj); |
|
(*map)->Map[(i ) * strsz + (j ) * (*map)->p + alfa[d * 2 ] ] += |
|
r[d] * w[ii * 2 ] * w[jj * 2 ]; |
|
(*map)->Map[(i ) * strsz + (j ) * (*map)->p + alfa[d * 2 + 1] + CNTPARTION] += |
|
r[d] * w[ii * 2 ] * w[jj * 2 ]; |
|
if ((i + nearest_y[ii] >= 0) && (i + nearest_y[ii] <= sizeY - 1)) |
|
{ |
|
(*map)->Map[(i + nearest_y[ii]) * strsz + (j ) * (*map)->p + alfa[d * 2 ] ] += |
|
r[d] * w[ii * 2 + 1] * w[jj * 2 ]; |
|
(*map)->Map[(i + nearest_y[ii]) * strsz + (j ) * (*map)->p + alfa[d * 2 + 1] + CNTPARTION] += |
|
r[d] * w[ii * 2 + 1] * w[jj * 2 ]; |
|
} |
|
if ((j + nearest_x[jj] >= 0) && (j + nearest_x[jj] <= sizeX - 1)) |
|
{ |
|
(*map)->Map[(i ) * strsz + (j + nearest_x[jj]) * (*map)->p + alfa[d * 2 ] ] += |
|
r[d] * w[ii * 2 ] * w[jj * 2 + 1]; |
|
(*map)->Map[(i ) * strsz + (j + nearest_x[jj]) * (*map)->p + alfa[d * 2 + 1] + CNTPARTION] += |
|
r[d] * w[ii * 2 ] * w[jj * 2 + 1]; |
|
} |
|
if ((i + nearest_y[ii] >= 0) && (i + nearest_y[ii] <= sizeY - 1) && (j + nearest_x[jj] >= 0) && (j + nearest_x[jj] <= sizeX - 1)) |
|
{ |
|
(*map)->Map[(i + nearest_y[ii]) * strsz + (j + nearest_x[jj]) * (*map)->p + alfa[d * 2 ] ] += |
|
r[d] * w[ii * 2 + 1] * w[jj * 2 + 1]; |
|
(*map)->Map[(i + nearest_y[ii]) * strsz + (j + nearest_x[jj]) * (*map)->p + alfa[d * 2 + 1] + CNTPARTION] += |
|
r[d] * w[ii * 2 + 1] * w[jj * 2 + 1]; |
|
} |
|
} |
|
}/*for(jj = 0; jj < k; jj++)*/ |
|
}/*for(ii = 0; ii < k; ii++)*/ |
|
}/*for(j = 1; j < sizeX - 1; j++)*/ |
|
}/*for(i = 1; i < sizeY - 1; i++)*/ |
|
|
|
cvReleaseImage(&dx); |
|
cvReleaseImage(&dy); |
|
|
|
|
|
free(w); |
|
free(nearest_x); |
|
free(nearest_y); |
|
|
|
free(r); |
|
free(alfa); |
|
|
|
return LATENT_SVM_OK; |
|
} |
|
|
|
/* |
|
// Feature map Normalization and Truncation |
|
// |
|
// API |
|
// int normalizationAndTruncationFeatureMaps(featureMap *map, const float alfa); |
|
// INPUT |
|
// map - feature map |
|
// alfa - truncation threshold |
|
// OUTPUT |
|
// map - truncated and normalized feature map |
|
// RESULT |
|
// Error status |
|
*/ |
|
int normalizationAndTruncationFeatureMaps(CvLSVMFeatureMap *map, const float alfa) |
|
{ |
|
int i,j, ii; |
|
int sizeX, sizeY, p, pos, pp, xp, pos1, pos2; |
|
float * part_noma; // norm of C(i, j) |
|
float * new_data; |
|
float norm_val; |
|
|
|
sizeX = map->sizeX; |
|
sizeY = map->sizeY; |
|
part_noma = (float *)malloc (sizeof(float) * (sizeX * sizeY)); |
|
|
|
p = map->xp / 3; |
|
|
|
for(i = 0; i < sizeX * sizeY; i++) |
|
{ |
|
norm_val = 0.0; |
|
pos = i * map->p; |
|
for(j = 0; j < p; j++) |
|
{ |
|
norm_val += map->Map[pos + j] * map->Map[pos + j]; |
|
}/*for(j = 0; j < p; j++)*/ |
|
part_noma[i] = norm_val; |
|
}/*for(i = 0; i < sizeX * sizeY; i++)*/ |
|
|
|
xp = map->xp; |
|
pp = xp * 4; |
|
sizeX -= 2; |
|
sizeY -= 2; |
|
|
|
new_data = (float *)malloc (sizeof(float) * (sizeX * sizeY * pp)); |
|
//normalization |
|
for(i = 1; i <= sizeY; i++) |
|
{ |
|
for(j = 1; j <= sizeX; j++) |
|
{ |
|
norm_val = sqrtf( |
|
part_noma[(i )*(sizeX + 2) + (j )] + |
|
part_noma[(i )*(sizeX + 2) + (j + 1)] + |
|
part_noma[(i + 1)*(sizeX + 2) + (j )] + |
|
part_noma[(i + 1)*(sizeX + 2) + (j + 1)]); |
|
pos1 = (i ) * (sizeX + 2) * xp + (j ) * xp; |
|
pos2 = (i-1) * (sizeX ) * pp + (j-1) * pp; |
|
for(ii = 0; ii < p; ii++) |
|
{ |
|
new_data[pos2 + ii ] = map->Map[pos1 + ii ] / norm_val; |
|
}/*for(ii = 0; ii < p; ii++)*/ |
|
for(ii = 0; ii < 2 * p; ii++) |
|
{ |
|
new_data[pos2 + ii + p * 4] = map->Map[pos1 + ii + p] / norm_val; |
|
}/*for(ii = 0; ii < 2 * p; ii++)*/ |
|
norm_val = sqrtf( |
|
part_noma[(i )*(sizeX + 2) + (j )] + |
|
part_noma[(i )*(sizeX + 2) + (j + 1)] + |
|
part_noma[(i - 1)*(sizeX + 2) + (j )] + |
|
part_noma[(i - 1)*(sizeX + 2) + (j + 1)]); |
|
for(ii = 0; ii < p; ii++) |
|
{ |
|
new_data[pos2 + ii + p ] = map->Map[pos1 + ii ] / norm_val; |
|
}/*for(ii = 0; ii < p; ii++)*/ |
|
for(ii = 0; ii < 2 * p; ii++) |
|
{ |
|
new_data[pos2 + ii + p * 6] = map->Map[pos1 + ii + p] / norm_val; |
|
}/*for(ii = 0; ii < 2 * p; ii++)*/ |
|
norm_val = sqrtf( |
|
part_noma[(i )*(sizeX + 2) + (j )] + |
|
part_noma[(i )*(sizeX + 2) + (j - 1)] + |
|
part_noma[(i + 1)*(sizeX + 2) + (j )] + |
|
part_noma[(i + 1)*(sizeX + 2) + (j - 1)]); |
|
for(ii = 0; ii < p; ii++) |
|
{ |
|
new_data[pos2 + ii + p * 2] = map->Map[pos1 + ii ] / norm_val; |
|
}/*for(ii = 0; ii < p; ii++)*/ |
|
for(ii = 0; ii < 2 * p; ii++) |
|
{ |
|
new_data[pos2 + ii + p * 8] = map->Map[pos1 + ii + p] / norm_val; |
|
}/*for(ii = 0; ii < 2 * p; ii++)*/ |
|
norm_val = sqrtf( |
|
part_noma[(i )*(sizeX + 2) + (j )] + |
|
part_noma[(i )*(sizeX + 2) + (j - 1)] + |
|
part_noma[(i - 1)*(sizeX + 2) + (j )] + |
|
part_noma[(i - 1)*(sizeX + 2) + (j - 1)]); |
|
for(ii = 0; ii < p; ii++) |
|
{ |
|
new_data[pos2 + ii + p * 3 ] = map->Map[pos1 + ii ] / norm_val; |
|
}/*for(ii = 0; ii < p; ii++)*/ |
|
for(ii = 0; ii < 2 * p; ii++) |
|
{ |
|
new_data[pos2 + ii + p * 10] = map->Map[pos1 + ii + p] / norm_val; |
|
}/*for(ii = 0; ii < 2 * p; ii++)*/ |
|
}/*for(j = 1; j <= sizeX; j++)*/ |
|
}/*for(i = 1; i <= sizeY; i++)*/ |
|
//truncation |
|
for(i = 0; i < sizeX * sizeY * pp; i++) |
|
{ |
|
if(new_data [i] > alfa) new_data [i] = alfa; |
|
}/*for(i = 0; i < sizeX * sizeY * pp; i++)*/ |
|
//swop data |
|
|
|
map->p = pp; |
|
map->xp = xp; |
|
map->sizeX = sizeX; |
|
map->sizeY = sizeY; |
|
|
|
free (map->Map); |
|
free (part_noma); |
|
|
|
map->Map = new_data; |
|
|
|
return LATENT_SVM_OK; |
|
} |
|
/* |
|
// Feature map reduction |
|
// In each cell we reduce dimension of the feature vector |
|
// according to original paper special procedure |
|
// |
|
// API |
|
// int PCAFeatureMaps(featureMap *map) |
|
// INPUT |
|
// map - feature map |
|
// OUTPUT |
|
// map - feature map |
|
// RESULT |
|
// Error status |
|
*/ |
|
int PCAFeatureMaps(CvLSVMFeatureMap *map) |
|
{ |
|
int i,j, ii, jj, k; |
|
int sizeX, sizeY, p, pp, xp, yp, pos1, pos2; |
|
float * new_data; |
|
float val; |
|
float nx, ny; |
|
|
|
sizeX = map->sizeX; |
|
sizeY = map->sizeY; |
|
p = map->p; |
|
pp = map->xp + 4; |
|
yp = 4; |
|
xp = (map->xp / 3); |
|
|
|
nx = 1.0f / sqrtf((float)(xp * 2)); |
|
ny = 1.0f / sqrtf((float)(yp )); |
|
|
|
new_data = (float *)malloc (sizeof(float) * (sizeX * sizeY * pp)); |
|
|
|
for(i = 0; i < sizeY; i++) |
|
{ |
|
for(j = 0; j < sizeX; j++) |
|
{ |
|
pos1 = ((i)*sizeX + j)*p; |
|
pos2 = ((i)*sizeX + j)*pp; |
|
k = 0; |
|
for(jj = 0; jj < xp * 2; jj++) |
|
{ |
|
val = 0; |
|
for(ii = 0; ii < yp; ii++) |
|
{ |
|
val += map->Map[pos1 + yp * xp + ii * xp * 2 + jj]; |
|
}/*for(ii = 0; ii < yp; ii++)*/ |
|
new_data[pos2 + k] = val * ny; |
|
k++; |
|
}/*for(jj = 0; jj < xp * 2; jj++)*/ |
|
for(jj = 0; jj < xp; jj++) |
|
{ |
|
val = 0; |
|
for(ii = 0; ii < yp; ii++) |
|
{ |
|
val += map->Map[pos1 + ii * xp + jj]; |
|
}/*for(ii = 0; ii < yp; ii++)*/ |
|
new_data[pos2 + k] = val * ny; |
|
k++; |
|
}/*for(jj = 0; jj < xp; jj++)*/ |
|
for(ii = 0; ii < yp; ii++) |
|
{ |
|
val = 0; |
|
for(jj = 0; jj < 2 * xp; jj++) |
|
{ |
|
val += map->Map[pos1 + yp * xp + ii * xp * 2 + jj]; |
|
}/*for(jj = 0; jj < xp; jj++)*/ |
|
new_data[pos2 + k] = val * nx; |
|
k++; |
|
} /*for(ii = 0; ii < yp; ii++)*/ |
|
}/*for(j = 0; j < sizeX; j++)*/ |
|
}/*for(i = 0; i < sizeY; i++)*/ |
|
//swop data |
|
|
|
map->p = pp; |
|
map->xp = pp; |
|
|
|
free (map->Map); |
|
|
|
map->Map = new_data; |
|
|
|
return LATENT_SVM_OK; |
|
} |
|
|
|
/* |
|
// Getting feature pyramid |
|
// |
|
// API |
|
// int getFeaturePyramid(IplImage * image, const filterObject **all_F, |
|
const int n_f, |
|
const int lambda, const int k, |
|
const int startX, const int startY, |
|
const int W, const int H, featurePyramid **maps); |
|
// INPUT |
|
// image - image |
|
// lambda - resize scale |
|
// k - size of cells |
|
// startX - X coordinate of the image rectangle to search |
|
// startY - Y coordinate of the image rectangle to search |
|
// W - width of the image rectangle to search |
|
// H - height of the image rectangle to search |
|
// OUTPUT |
|
// maps - feature maps for all levels |
|
// RESULT |
|
// Error status |
|
*/ |
|
int getFeaturePyramid(IplImage * image, |
|
const int lambda, const int k, |
|
const int startX, const int startY, |
|
const int W, const int H, CvLSVMFeaturePyramid **maps) |
|
{ |
|
IplImage *img2, *imgTmp, *imgResize; |
|
float step, tmp; |
|
int cntStep; |
|
int maxcall; |
|
int i; |
|
int err; |
|
CvLSVMFeatureMap *map; |
|
|
|
//geting subimage |
|
cvSetImageROI(image, cvRect(startX, startY, W, H)); |
|
img2 = cvCreateImage(cvGetSize(image), image->depth, image->nChannels); |
|
cvCopy(image, img2, NULL); |
|
cvResetImageROI(image); |
|
|
|
if(img2->depth != IPL_DEPTH_32F) |
|
{ |
|
imgResize = cvCreateImage(cvSize(img2->width , img2->height) , IPL_DEPTH_32F , 3); |
|
cvConvert(img2, imgResize); |
|
} |
|
else |
|
{ |
|
imgResize = img2; |
|
} |
|
|
|
step = powf(2.0f, 1.0f/ ((float)lambda)); |
|
maxcall = W/k; |
|
if( maxcall > H/k ) |
|
{ |
|
maxcall = H/k; |
|
} |
|
cntStep = (int)(logf((float)maxcall/(5.0f))/logf(step)) + 1; |
|
//printf("Count step: %f %d\n", step, cntStep); |
|
|
|
allocFeaturePyramidObject(maps, lambda, cntStep + lambda); |
|
|
|
for(i = 0; i < lambda; i++) |
|
{ |
|
tmp = 1.0f / powf(step, (float)i); |
|
imgTmp = resize_opencv (imgResize, tmp); |
|
//imgTmp = resize_article_dp(img2, tmp, 4); |
|
err = getFeatureMaps_dp(imgTmp, 4, &map); |
|
err = normalizationAndTruncationFeatureMaps(map, 0.2f); |
|
err = PCAFeatureMaps(map); |
|
(*maps)->pyramid[i] = map; |
|
//printf("%d, %d\n", map->sizeY, map->sizeX); |
|
cvReleaseImage(&imgTmp); |
|
} |
|
|
|
/**********************************one**************/ |
|
for(i = 0; i < cntStep; i++) |
|
{ |
|
tmp = 1.0f / powf(step, (float)i); |
|
imgTmp = resize_opencv (imgResize, tmp); |
|
//imgTmp = resize_article_dp(imgResize, tmp, 8); |
|
err = getFeatureMaps_dp(imgTmp, 8, &map); |
|
err = normalizationAndTruncationFeatureMaps(map, 0.2f); |
|
err = PCAFeatureMaps(map); |
|
(*maps)->pyramid[i + lambda] = map; |
|
//printf("%d, %d\n", map->sizeY, map->sizeX); |
|
cvReleaseImage(&imgTmp); |
|
}/*for(i = 0; i < cntStep; i++)*/ |
|
|
|
if(img2->depth != IPL_DEPTH_32F) |
|
{ |
|
cvReleaseImage(&imgResize); |
|
} |
|
|
|
cvReleaseImage(&img2); |
|
return LATENT_SVM_OK; |
|
} |
|
|
|
/* |
|
// add zero border to feature map |
|
// |
|
// API |
|
// int addBordersToFeatureMaps(featureMap *map, const int bX, const int bY); |
|
// INPUT |
|
// map - feature map |
|
// bX - border size in x |
|
// bY - border size in y |
|
// OUTPUT |
|
// map - feature map |
|
// RESULT |
|
// Error status |
|
*/ |
|
int addBordersToFeatureMaps(CvLSVMFeatureMap *map, const int bX, const int bY){ |
|
int i,j, jj; |
|
int sizeX, sizeY, p, pos1, pos2; |
|
float * new_data; |
|
|
|
sizeX = map->sizeX; |
|
sizeY = map->sizeY; |
|
p = map->p; |
|
|
|
new_data = (float *)malloc (sizeof(float) * ((sizeX + 2 * bX) * (sizeY + 2 * bY) * p)); |
|
|
|
for(i = 0; i < ((sizeX + 2 * bX) * (sizeY + 2 * bY) * p); i++) |
|
{ |
|
new_data[i] = (float)0; |
|
}/*for(i = 0; i < ((sizeX + 2 * bX) * (sizeY + 2 * bY) * p); i++)*/ |
|
|
|
for(i = 0; i < sizeY; i++) |
|
{ |
|
for(j = 0; j < sizeX; j++) |
|
{ |
|
|
|
pos1 = ((i )*sizeX + (j )) * p; |
|
pos2 = ((i + bY)*(sizeX + 2 * bX) + (j + bX)) * p; |
|
|
|
for(jj = 0; jj < p; jj++) |
|
{ |
|
new_data[pos2 + jj] = map->Map[pos1 + jj]; |
|
}/*for(jj = 0; jj < p; jj++)*/ |
|
}/*for(j = 0; j < sizeX; j++)*/ |
|
}/*for(i = 0; i < sizeY; i++)*/ |
|
//swop data |
|
|
|
map->sizeX = sizeX + 2 * bX; |
|
map->sizeY = sizeY + 2 * bY; |
|
|
|
free (map->Map); |
|
|
|
map->Map = new_data; |
|
|
|
return LATENT_SVM_OK; |
|
}
|
|
|