mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
288 lines
11 KiB
288 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_CUDAOBJDETECT_HPP__ |
|
#define __OPENCV_CUDAOBJDETECT_HPP__ |
|
|
|
#ifndef __cplusplus |
|
# error cudaobjdetect.hpp header must be compiled as C++ |
|
#endif |
|
|
|
#include "opencv2/core/cuda.hpp" |
|
|
|
/** |
|
@addtogroup cuda |
|
@{ |
|
@defgroup cudaobjdetect Object Detection |
|
@} |
|
*/ |
|
|
|
namespace cv { namespace cuda { |
|
|
|
//! @addtogroup cudaobjdetect |
|
//! @{ |
|
|
|
// |
|
// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector |
|
// |
|
|
|
/** @brief The class implements Histogram of Oriented Gradients (@cite Dalal2005) object detector. |
|
|
|
@note |
|
- An example applying the HOG descriptor for people detection can be found at |
|
opencv_source_code/samples/cpp/peopledetect.cpp |
|
- A CUDA example applying the HOG descriptor for people detection can be found at |
|
opencv_source_code/samples/gpu/hog.cpp |
|
- (Python) An example applying the HOG descriptor for people detection can be found at |
|
opencv_source_code/samples/python2/peopledetect.py |
|
*/ |
|
class CV_EXPORTS HOG : public Algorithm |
|
{ |
|
public: |
|
enum |
|
{ |
|
DESCR_FORMAT_ROW_BY_ROW, |
|
DESCR_FORMAT_COL_BY_COL |
|
}; |
|
|
|
/** @brief Creates the HOG descriptor and detector. |
|
|
|
@param win_size Detection window size. Align to block size and block stride. |
|
@param block_size Block size in pixels. Align to cell size. Only (16,16) is supported for now. |
|
@param block_stride Block stride. It must be a multiple of cell size. |
|
@param cell_size Cell size. Only (8, 8) is supported for now. |
|
@param nbins Number of bins. Only 9 bins per cell are supported for now. |
|
*/ |
|
static Ptr<HOG> create(Size win_size = Size(64, 128), |
|
Size block_size = Size(16, 16), |
|
Size block_stride = Size(8, 8), |
|
Size cell_size = Size(8, 8), |
|
int nbins = 9); |
|
|
|
//! Gaussian smoothing window parameter. |
|
virtual void setWinSigma(double win_sigma) = 0; |
|
virtual double getWinSigma() const = 0; |
|
|
|
//! L2-Hys normalization method shrinkage. |
|
virtual void setL2HysThreshold(double threshold_L2hys) = 0; |
|
virtual double getL2HysThreshold() const = 0; |
|
|
|
//! Flag to specify whether the gamma correction preprocessing is required or not. |
|
virtual void setGammaCorrection(bool gamma_correction) = 0; |
|
virtual bool getGammaCorrection() const = 0; |
|
|
|
//! Maximum number of detection window increases. |
|
virtual void setNumLevels(int nlevels) = 0; |
|
virtual int getNumLevels() const = 0; |
|
|
|
//! Threshold for the distance between features and SVM classifying plane. |
|
//! Usually it is 0 and should be specfied in the detector coefficients (as the last free |
|
//! coefficient). But if the free coefficient is omitted (which is allowed), you can specify it |
|
//! manually here. |
|
virtual void setHitThreshold(double hit_threshold) = 0; |
|
virtual double getHitThreshold() const = 0; |
|
|
|
//! Window stride. It must be a multiple of block stride. |
|
virtual void setWinStride(Size win_stride) = 0; |
|
virtual Size getWinStride() const = 0; |
|
|
|
//! Coefficient of the detection window increase. |
|
virtual void setScaleFactor(double scale0) = 0; |
|
virtual double getScaleFactor() const = 0; |
|
|
|
//! Coefficient to regulate the similarity threshold. When detected, some |
|
//! objects can be covered by many rectangles. 0 means not to perform grouping. |
|
//! See groupRectangles. |
|
virtual void setGroupThreshold(int group_threshold) = 0; |
|
virtual int getGroupThreshold() const = 0; |
|
|
|
//! Descriptor storage format: |
|
//! - **DESCR_FORMAT_ROW_BY_ROW** - Row-major order. |
|
//! - **DESCR_FORMAT_COL_BY_COL** - Column-major order. |
|
virtual void setDescriptorFormat(int descr_format) = 0; |
|
virtual int getDescriptorFormat() const = 0; |
|
|
|
/** @brief Returns the number of coefficients required for the classification. |
|
*/ |
|
virtual size_t getDescriptorSize() const = 0; |
|
|
|
/** @brief Returns the block histogram size. |
|
*/ |
|
virtual size_t getBlockHistogramSize() const = 0; |
|
|
|
/** @brief Sets coefficients for the linear SVM classifier. |
|
*/ |
|
virtual void setSVMDetector(InputArray detector) = 0; |
|
|
|
/** @brief Returns coefficients of the classifier trained for people detection. |
|
*/ |
|
virtual Mat getDefaultPeopleDetector() const = 0; |
|
|
|
/** @brief Performs object detection without a multi-scale window. |
|
|
|
@param img Source image. CV_8UC1 and CV_8UC4 types are supported for now. |
|
@param found_locations Left-top corner points of detected objects boundaries. |
|
@param confidences Optional output array for confidences. |
|
*/ |
|
virtual void detect(InputArray img, |
|
std::vector<Point>& found_locations, |
|
std::vector<double>* confidences = NULL) = 0; |
|
|
|
/** @brief Performs object detection with a multi-scale window. |
|
|
|
@param img Source image. See cuda::HOGDescriptor::detect for type limitations. |
|
@param found_locations Detected objects boundaries. |
|
@param confidences Optional output array for confidences. |
|
*/ |
|
virtual void detectMultiScale(InputArray img, |
|
std::vector<Rect>& found_locations, |
|
std::vector<double>* confidences = NULL) = 0; |
|
|
|
/** @brief Returns block descriptors computed for the whole image. |
|
|
|
@param img Source image. See cuda::HOGDescriptor::detect for type limitations. |
|
@param descriptors 2D array of descriptors. |
|
@param stream CUDA stream. |
|
*/ |
|
virtual void compute(InputArray img, |
|
OutputArray descriptors, |
|
Stream& stream = Stream::Null()) = 0; |
|
}; |
|
|
|
// |
|
// CascadeClassifier |
|
// |
|
|
|
/** @brief Cascade classifier class used for object detection. Supports HAAR and LBP cascades. : |
|
|
|
@note |
|
- A cascade classifier example can be found at |
|
opencv_source_code/samples/gpu/cascadeclassifier.cpp |
|
- A Nvidea API specific cascade classifier example can be found at |
|
opencv_source_code/samples/gpu/cascadeclassifier_nvidia_api.cpp |
|
*/ |
|
class CV_EXPORTS CascadeClassifier : public Algorithm |
|
{ |
|
public: |
|
/** @brief Loads the classifier from a file. Cascade type is detected automatically by constructor parameter. |
|
|
|
@param filename Name of the file from which the classifier is loaded. Only the old haar classifier |
|
(trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new |
|
type of OpenCV XML cascade supported for LBP. |
|
*/ |
|
static Ptr<CascadeClassifier> create(const String& filename); |
|
/** @overload |
|
*/ |
|
static Ptr<CascadeClassifier> create(const FileStorage& file); |
|
|
|
//! Maximum possible object size. Objects larger than that are ignored. Used for |
|
//! second signature and supported only for LBP cascades. |
|
virtual void setMaxObjectSize(Size maxObjectSize) = 0; |
|
virtual Size getMaxObjectSize() const = 0; |
|
|
|
//! Minimum possible object size. Objects smaller than that are ignored. |
|
virtual void setMinObjectSize(Size minSize) = 0; |
|
virtual Size getMinObjectSize() const = 0; |
|
|
|
//! Parameter specifying how much the image size is reduced at each image scale. |
|
virtual void setScaleFactor(double scaleFactor) = 0; |
|
virtual double getScaleFactor() const = 0; |
|
|
|
//! Parameter specifying how many neighbors each candidate rectangle should have |
|
//! to retain it. |
|
virtual void setMinNeighbors(int minNeighbors) = 0; |
|
virtual int getMinNeighbors() const = 0; |
|
|
|
virtual void setFindLargestObject(bool findLargestObject) = 0; |
|
virtual bool getFindLargestObject() = 0; |
|
|
|
virtual void setMaxNumObjects(int maxNumObjects) = 0; |
|
virtual int getMaxNumObjects() const = 0; |
|
|
|
virtual Size getClassifierSize() const = 0; |
|
|
|
/** @brief Detects objects of different sizes in the input image. |
|
|
|
@param image Matrix of type CV_8U containing an image where objects should be detected. |
|
@param objects Buffer to store detected objects (rectangles). |
|
@param stream CUDA stream. |
|
|
|
To get final array of detected objects use CascadeClassifier::convert method. |
|
|
|
@code |
|
Ptr<cuda::CascadeClassifier> cascade_gpu = cuda::CascadeClassifier::create(...); |
|
|
|
Mat image_cpu = imread(...) |
|
GpuMat image_gpu(image_cpu); |
|
|
|
GpuMat objbuf; |
|
cascade_gpu->detectMultiScale(image_gpu, objbuf); |
|
|
|
std::vector<Rect> faces; |
|
cascade_gpu->convert(objbuf, faces); |
|
|
|
for(int i = 0; i < detections_num; ++i) |
|
cv::rectangle(image_cpu, faces[i], Scalar(255)); |
|
|
|
imshow("Faces", image_cpu); |
|
@endcode |
|
|
|
@sa CascadeClassifier::detectMultiScale |
|
*/ |
|
virtual void detectMultiScale(InputArray image, |
|
OutputArray objects, |
|
Stream& stream = Stream::Null()) = 0; |
|
|
|
/** @brief Converts objects array from internal representation to standard vector. |
|
|
|
@param gpu_objects Objects array in internal representation. |
|
@param objects Resulting array. |
|
*/ |
|
virtual void convert(OutputArray gpu_objects, |
|
std::vector<Rect>& objects) = 0; |
|
}; |
|
|
|
//! @} |
|
|
|
}} // namespace cv { namespace cuda { |
|
|
|
#endif /* __OPENCV_CUDAOBJDETECT_HPP__ */
|
|
|