mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
3.9 KiB
94 lines
3.9 KiB
#!/usr/bin/env python |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
class Hackathon244Tests(NewOpenCVTests): |
|
|
|
def test_int_array(self): |
|
a = np.array([-1, 2, -3, 4, -5]) |
|
absa0 = np.abs(a) |
|
self.assertTrue(cv.norm(a, cv.NORM_L1) == 15) |
|
absa1 = cv.absdiff(a, 0) |
|
self.assertEqual(cv.norm(absa1, absa0, cv.NORM_INF), 0) |
|
|
|
def test_imencode(self): |
|
a = np.zeros((480, 640), dtype=np.uint8) |
|
flag, ajpg = cv.imencode("img_q90.jpg", a, [cv.IMWRITE_JPEG_QUALITY, 90]) |
|
self.assertEqual(flag, True) |
|
self.assertEqual(ajpg.dtype, np.uint8) |
|
self.assertTrue(isinstance(ajpg, np.ndarray), "imencode returned buffer of wrong type: {}".format(type(ajpg))) |
|
self.assertEqual(len(ajpg.shape), 1, "imencode returned buffer with wrong shape: {}".format(ajpg.shape)) |
|
self.assertGreaterEqual(len(ajpg), 1, "imencode length of the returned buffer should be at least 1") |
|
self.assertLessEqual( |
|
len(ajpg), a.size, |
|
"imencode length of the returned buffer shouldn't exceed number of elements in original image" |
|
) |
|
|
|
def test_projectPoints(self): |
|
objpt = np.float64([[1,2,3]]) |
|
imgpt0, jac0 = cv.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), np.float64([])) |
|
imgpt1, jac1 = cv.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), None) |
|
self.assertEqual(imgpt0.shape, (objpt.shape[0], 1, 2)) |
|
self.assertEqual(imgpt1.shape, imgpt0.shape) |
|
self.assertEqual(jac0.shape, jac1.shape) |
|
self.assertEqual(jac0.shape[0], 2*objpt.shape[0]) |
|
|
|
def test_estimateAffine3D(self): |
|
pattern_size = (11, 8) |
|
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32) |
|
pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2) |
|
pattern_points *= 10 |
|
(retval, out, inliers) = cv.estimateAffine3D(pattern_points, pattern_points) |
|
self.assertEqual(retval, 1) |
|
if cv.norm(out[2,:]) < 1e-3: |
|
out[2,2]=1 |
|
self.assertLess(cv.norm(out, np.float64([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])), 1e-3) |
|
self.assertEqual(cv.countNonZero(inliers), pattern_size[0]*pattern_size[1]) |
|
|
|
def test_fast(self): |
|
fd = cv.FastFeatureDetector_create(30, True) |
|
img = self.get_sample("samples/data/right02.jpg", 0) |
|
img = cv.medianBlur(img, 3) |
|
keypoints = fd.detect(img) |
|
self.assertTrue(600 <= len(keypoints) <= 700) |
|
for kpt in keypoints: |
|
self.assertNotEqual(kpt.response, 0) |
|
|
|
def check_close_angles(self, a, b, angle_delta): |
|
self.assertTrue(abs(a - b) <= angle_delta or |
|
abs(360 - abs(a - b)) <= angle_delta) |
|
|
|
def check_close_pairs(self, a, b, delta): |
|
self.assertLessEqual(abs(a[0] - b[0]), delta) |
|
self.assertLessEqual(abs(a[1] - b[1]), delta) |
|
|
|
def check_close_boxes(self, a, b, delta, angle_delta): |
|
self.check_close_pairs(a[0], b[0], delta) |
|
self.check_close_pairs(a[1], b[1], delta) |
|
self.check_close_angles(a[2], b[2], angle_delta) |
|
|
|
def test_geometry(self): |
|
npt = 100 |
|
np.random.seed(244) |
|
a = np.random.randn(npt,2).astype('float32')*50 + 150 |
|
|
|
be = cv.fitEllipse(a) |
|
br = cv.minAreaRect(a) |
|
mc, mr = cv.minEnclosingCircle(a) |
|
|
|
be0 = ((150.2511749267578, 150.77322387695312), (158.024658203125, 197.57696533203125), 37.57804489135742) |
|
br0 = ((161.2974090576172, 154.41793823242188), (207.7177734375, 199.2301483154297), 80.83544921875) |
|
mc0, mr0 = (160.41790771484375, 144.55152893066406), 136.713500977 |
|
|
|
self.check_close_boxes(be, be0, 5, 15) |
|
self.check_close_boxes(br, br0, 5, 15) |
|
self.check_close_pairs(mc, mc0, 5) |
|
self.assertLessEqual(abs(mr - mr0), 5) |
|
|
|
|
|
if __name__ == '__main__': |
|
NewOpenCVTests.bootstrap()
|
|
|