Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

241 lines
5.8 KiB

#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
#define GPU_DENOISING_IMAGE_SIZES testing::Values(perf::szVGA, perf::szXGA, perf::sz720p, perf::sz1080p)
//////////////////////////////////////////////////////////////////////
// BilateralFilter
DEF_PARAM_TEST(Sz_Depth_Cn_KernelSz, cv::Size, MatDepth, MatCn, int);
PERF_TEST_P(Sz_Depth_Cn_KernelSz, Denoising_BilateralFilter,
Combine(GPU_DENOISING_IMAGE_SIZES, Values(CV_8U, CV_32F), GPU_CHANNELS_1_3, Values(3, 5, 9)))
{
declare.time(60.0);
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
int kernel_size = GET_PARAM(3);
float sigma_color = 7;
float sigma_spatial = 5;
int borderMode = cv::BORDER_REFLECT101;
int type = CV_MAKE_TYPE(depth, channels);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
try
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::bilateralFilter(d_src, d_dst, kernel_size, sigma_color, sigma_spatial, borderMode);
TEST_CYCLE()
{
cv::gpu::bilateralFilter(d_src, d_dst, kernel_size, sigma_color, sigma_spatial, borderMode);
}
GPU_SANITY_CHECK(d_dst);
}
catch (...)
{
cv::gpu::resetDevice();
throw;
}
}
else
{
cv::Mat dst;
cv::bilateralFilter(src, dst, kernel_size, sigma_color, sigma_spatial, borderMode);
TEST_CYCLE()
{
cv::bilateralFilter(src, dst, kernel_size, sigma_color, sigma_spatial, borderMode);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// nonLocalMeans
DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth, MatCn, int, int);
PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, Denoising_NonLocalMeans,
Combine(GPU_DENOISING_IMAGE_SIZES, Values<MatDepth>(CV_8U), GPU_CHANNELS_1_3, Values(21), Values(5, 7)))
{
declare.time(60.0);
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
int search_widow_size = GET_PARAM(3);
int block_size = GET_PARAM(4);
float h = 10;
int borderMode = cv::BORDER_REFLECT101;
int type = CV_MAKE_TYPE(depth, channels);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
try
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::nonLocalMeans(d_src, d_dst, h, search_widow_size, block_size, borderMode);
TEST_CYCLE()
{
cv::gpu::nonLocalMeans(d_src, d_dst, h, search_widow_size, block_size, borderMode);
}
GPU_SANITY_CHECK(d_dst);
}
catch (...)
{
cv::gpu::resetDevice();
throw;
}
}
else
{
FAIL() << "No such CPU implementation analogy";
}
}
//////////////////////////////////////////////////////////////////////
// fastNonLocalMeans
DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth, MatCn, int, int);
PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, Denoising_FastNonLocalMeans,
Combine(GPU_DENOISING_IMAGE_SIZES, Values<MatDepth>(CV_8U), GPU_CHANNELS_1_3, Values(21), Values(7)))
{
declare.time(150.0);
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int search_widow_size = GET_PARAM(2);
int block_size = GET_PARAM(3);
float h = 10;
int type = CV_MAKE_TYPE(depth, 1);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
try
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::FastNonLocalMeansDenoising fnlmd;
fnlmd.simpleMethod(d_src, d_dst, h, search_widow_size, block_size);
TEST_CYCLE()
{
fnlmd.simpleMethod(d_src, d_dst, h, search_widow_size, block_size);
}
GPU_SANITY_CHECK(d_dst);
}
catch (...)
{
cv::gpu::resetDevice();
throw;
}
}
else
{
cv::Mat dst;
cv::fastNlMeansDenoising(src, dst, h, block_size, search_widow_size);
TEST_CYCLE()
{
cv::fastNlMeansDenoising(src, dst, h, block_size, search_widow_size);
}
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// fastNonLocalMeans (colored)
DEF_PARAM_TEST(Sz_Depth_WinSz_BlockSz, cv::Size, MatDepth, int, int);
PERF_TEST_P(Sz_Depth_WinSz_BlockSz, Denoising_FastNonLocalMeansColored,
Combine(GPU_DENOISING_IMAGE_SIZES, Values<MatDepth>(CV_8U), Values(21), Values(7)))
{
declare.time(350.0);
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int search_widow_size = GET_PARAM(2);
int block_size = GET_PARAM(3);
float h = 10;
int type = CV_MAKE_TYPE(depth, 3);
cv::Mat src(size, type);
fillRandom(src);
if (PERF_RUN_GPU())
{
try
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::FastNonLocalMeansDenoising fnlmd;
fnlmd.labMethod(d_src, d_dst, h, h, search_widow_size, block_size);
TEST_CYCLE()
{
fnlmd.labMethod(d_src, d_dst, h, h, search_widow_size, block_size);
}
GPU_SANITY_CHECK(d_dst);
}
catch (...)
{
cv::gpu::resetDevice();
throw;
}
}
else
{
cv::Mat dst;
cv::fastNlMeansDenoisingColored(src, dst, h, h, block_size, search_widow_size);
TEST_CYCLE()
{
cv::fastNlMeansDenoisingColored(src, dst, h, h, block_size, search_widow_size);
}
CPU_SANITY_CHECK(dst);
}
}