mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
565 lines
21 KiB
565 lines
21 KiB
#include "opencv2/core.hpp" |
|
|
|
#include "cascadeclassifier.h" |
|
#include <queue> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
static const char* stageTypes[] = { CC_BOOST }; |
|
static const char* featureTypes[] = { CC_HAAR, CC_LBP, CC_HOG }; |
|
|
|
CvCascadeParams::CvCascadeParams() : stageType( defaultStageType ), |
|
featureType( defaultFeatureType ), winSize( cvSize(24, 24) ) |
|
{ |
|
name = CC_CASCADE_PARAMS; |
|
} |
|
CvCascadeParams::CvCascadeParams( int _stageType, int _featureType ) : stageType( _stageType ), |
|
featureType( _featureType ), winSize( cvSize(24, 24) ) |
|
{ |
|
name = CC_CASCADE_PARAMS; |
|
} |
|
|
|
//---------------------------- CascadeParams -------------------------------------- |
|
|
|
void CvCascadeParams::write( FileStorage &fs ) const |
|
{ |
|
string stageTypeStr = stageType == BOOST ? CC_BOOST : string(); |
|
CV_Assert( !stageTypeStr.empty() ); |
|
fs << CC_STAGE_TYPE << stageTypeStr; |
|
string featureTypeStr = featureType == CvFeatureParams::HAAR ? CC_HAAR : |
|
featureType == CvFeatureParams::LBP ? CC_LBP : |
|
featureType == CvFeatureParams::HOG ? CC_HOG : |
|
0; |
|
CV_Assert( !stageTypeStr.empty() ); |
|
fs << CC_FEATURE_TYPE << featureTypeStr; |
|
fs << CC_HEIGHT << winSize.height; |
|
fs << CC_WIDTH << winSize.width; |
|
} |
|
|
|
bool CvCascadeParams::read( const FileNode &node ) |
|
{ |
|
if ( node.empty() ) |
|
return false; |
|
string stageTypeStr, featureTypeStr; |
|
FileNode rnode = node[CC_STAGE_TYPE]; |
|
if ( !rnode.isString() ) |
|
return false; |
|
rnode >> stageTypeStr; |
|
stageType = !stageTypeStr.compare( CC_BOOST ) ? BOOST : -1; |
|
if (stageType == -1) |
|
return false; |
|
rnode = node[CC_FEATURE_TYPE]; |
|
if ( !rnode.isString() ) |
|
return false; |
|
rnode >> featureTypeStr; |
|
featureType = !featureTypeStr.compare( CC_HAAR ) ? CvFeatureParams::HAAR : |
|
!featureTypeStr.compare( CC_LBP ) ? CvFeatureParams::LBP : |
|
!featureTypeStr.compare( CC_HOG ) ? CvFeatureParams::HOG : |
|
-1; |
|
if (featureType == -1) |
|
return false; |
|
node[CC_HEIGHT] >> winSize.height; |
|
node[CC_WIDTH] >> winSize.width; |
|
return winSize.height > 0 && winSize.width > 0; |
|
} |
|
|
|
void CvCascadeParams::printDefaults() const |
|
{ |
|
CvParams::printDefaults(); |
|
cout << " [-stageType <"; |
|
for( int i = 0; i < (int)(sizeof(stageTypes)/sizeof(stageTypes[0])); i++ ) |
|
{ |
|
cout << (i ? " | " : "") << stageTypes[i]; |
|
if ( i == defaultStageType ) |
|
cout << "(default)"; |
|
} |
|
cout << ">]" << endl; |
|
|
|
cout << " [-featureType <{"; |
|
for( int i = 0; i < (int)(sizeof(featureTypes)/sizeof(featureTypes[0])); i++ ) |
|
{ |
|
cout << (i ? ", " : "") << featureTypes[i]; |
|
if ( i == defaultStageType ) |
|
cout << "(default)"; |
|
} |
|
cout << "}>]" << endl; |
|
cout << " [-w <sampleWidth = " << winSize.width << ">]" << endl; |
|
cout << " [-h <sampleHeight = " << winSize.height << ">]" << endl; |
|
} |
|
|
|
void CvCascadeParams::printAttrs() const |
|
{ |
|
cout << "stageType: " << stageTypes[stageType] << endl; |
|
cout << "featureType: " << featureTypes[featureType] << endl; |
|
cout << "sampleWidth: " << winSize.width << endl; |
|
cout << "sampleHeight: " << winSize.height << endl; |
|
} |
|
|
|
bool CvCascadeParams::scanAttr( const string prmName, const string val ) |
|
{ |
|
bool res = true; |
|
if( !prmName.compare( "-stageType" ) ) |
|
{ |
|
for( int i = 0; i < (int)(sizeof(stageTypes)/sizeof(stageTypes[0])); i++ ) |
|
if( !val.compare( stageTypes[i] ) ) |
|
stageType = i; |
|
} |
|
else if( !prmName.compare( "-featureType" ) ) |
|
{ |
|
for( int i = 0; i < (int)(sizeof(featureTypes)/sizeof(featureTypes[0])); i++ ) |
|
if( !val.compare( featureTypes[i] ) ) |
|
featureType = i; |
|
} |
|
else if( !prmName.compare( "-w" ) ) |
|
{ |
|
winSize.width = atoi( val.c_str() ); |
|
} |
|
else if( !prmName.compare( "-h" ) ) |
|
{ |
|
winSize.height = atoi( val.c_str() ); |
|
} |
|
else |
|
res = false; |
|
return res; |
|
} |
|
|
|
//---------------------------- CascadeClassifier -------------------------------------- |
|
|
|
bool CvCascadeClassifier::train( const string _cascadeDirName, |
|
const string _posFilename, |
|
const string _negFilename, |
|
int _numPos, int _numNeg, |
|
int _precalcValBufSize, int _precalcIdxBufSize, |
|
int _numStages, |
|
const CvCascadeParams& _cascadeParams, |
|
const CvFeatureParams& _featureParams, |
|
const CvCascadeBoostParams& _stageParams, |
|
bool baseFormatSave, |
|
double acceptanceRatioBreakValue ) |
|
{ |
|
// Start recording clock ticks for training time output |
|
const clock_t begin_time = clock(); |
|
|
|
if( _cascadeDirName.empty() || _posFilename.empty() || _negFilename.empty() ) |
|
CV_Error( CV_StsBadArg, "_cascadeDirName or _bgfileName or _vecFileName is NULL" ); |
|
|
|
string dirName; |
|
if (_cascadeDirName.find_last_of("/\\") == (_cascadeDirName.length() - 1) ) |
|
dirName = _cascadeDirName; |
|
else |
|
dirName = _cascadeDirName + '/'; |
|
|
|
numPos = _numPos; |
|
numNeg = _numNeg; |
|
numStages = _numStages; |
|
if ( !imgReader.create( _posFilename, _negFilename, _cascadeParams.winSize ) ) |
|
{ |
|
cout << "Image reader can not be created from -vec " << _posFilename |
|
<< " and -bg " << _negFilename << "." << endl; |
|
return false; |
|
} |
|
if ( !load( dirName ) ) |
|
{ |
|
cascadeParams = _cascadeParams; |
|
featureParams = CvFeatureParams::create(cascadeParams.featureType); |
|
featureParams->init(_featureParams); |
|
stageParams = makePtr<CvCascadeBoostParams>(); |
|
*stageParams = _stageParams; |
|
featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType); |
|
featureEvaluator->init( featureParams, numPos + numNeg, cascadeParams.winSize ); |
|
stageClassifiers.reserve( numStages ); |
|
}else{ |
|
// Make sure that if model parameters are preloaded, that people are aware of this, |
|
// even when passing other parameters to the training command |
|
cout << "---------------------------------------------------------------------------------" << endl; |
|
cout << "Training parameters are pre-loaded from the parameter file in data folder!" << endl; |
|
cout << "Please empty this folder if you want to use a NEW set of training parameters." << endl; |
|
cout << "---------------------------------------------------------------------------------" << endl; |
|
} |
|
cout << "PARAMETERS:" << endl; |
|
cout << "cascadeDirName: " << _cascadeDirName << endl; |
|
cout << "vecFileName: " << _posFilename << endl; |
|
cout << "bgFileName: " << _negFilename << endl; |
|
cout << "numPos: " << _numPos << endl; |
|
cout << "numNeg: " << _numNeg << endl; |
|
cout << "numStages: " << numStages << endl; |
|
cout << "precalcValBufSize[Mb] : " << _precalcValBufSize << endl; |
|
cout << "precalcIdxBufSize[Mb] : " << _precalcIdxBufSize << endl; |
|
cout << "acceptanceRatioBreakValue : " << acceptanceRatioBreakValue << endl; |
|
cascadeParams.printAttrs(); |
|
stageParams->printAttrs(); |
|
featureParams->printAttrs(); |
|
|
|
int startNumStages = (int)stageClassifiers.size(); |
|
if ( startNumStages > 1 ) |
|
cout << endl << "Stages 0-" << startNumStages-1 << " are loaded" << endl; |
|
else if ( startNumStages == 1) |
|
cout << endl << "Stage 0 is loaded" << endl; |
|
|
|
double requiredLeafFARate = pow( (double) stageParams->maxFalseAlarm, (double) numStages ) / |
|
(double)stageParams->max_depth; |
|
double tempLeafFARate; |
|
|
|
for( int i = startNumStages; i < numStages; i++ ) |
|
{ |
|
cout << endl << "===== TRAINING " << i << "-stage =====" << endl; |
|
cout << "<BEGIN" << endl; |
|
|
|
if ( !updateTrainingSet( requiredLeafFARate, tempLeafFARate ) ) |
|
{ |
|
cout << "Train dataset for temp stage can not be filled. " |
|
"Branch training terminated." << endl; |
|
break; |
|
} |
|
if( tempLeafFARate <= requiredLeafFARate ) |
|
{ |
|
cout << "Required leaf false alarm rate achieved. " |
|
"Branch training terminated." << endl; |
|
break; |
|
} |
|
if( (tempLeafFARate <= acceptanceRatioBreakValue) && (acceptanceRatioBreakValue >= 0) ){ |
|
cout << "The required acceptanceRatio for the model has been reached to avoid overfitting of trainingdata. " |
|
"Branch training terminated." << endl; |
|
break; |
|
} |
|
|
|
Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>(); |
|
bool isStageTrained = tempStage->train( featureEvaluator, |
|
curNumSamples, _precalcValBufSize, _precalcIdxBufSize, |
|
*stageParams ); |
|
cout << "END>" << endl; |
|
|
|
if(!isStageTrained) |
|
break; |
|
|
|
stageClassifiers.push_back( tempStage ); |
|
|
|
// save params |
|
if( i == 0) |
|
{ |
|
std::string paramsFilename = dirName + CC_PARAMS_FILENAME; |
|
FileStorage fs( paramsFilename, FileStorage::WRITE); |
|
if ( !fs.isOpened() ) |
|
{ |
|
cout << "Parameters can not be written, because file " << paramsFilename |
|
<< " can not be opened." << endl; |
|
return false; |
|
} |
|
fs << FileStorage::getDefaultObjectName(paramsFilename) << "{"; |
|
writeParams( fs ); |
|
fs << "}"; |
|
} |
|
// save current stage |
|
char buf[10]; |
|
sprintf(buf, "%s%d", "stage", i ); |
|
string stageFilename = dirName + buf + ".xml"; |
|
FileStorage fs( stageFilename, FileStorage::WRITE ); |
|
if ( !fs.isOpened() ) |
|
{ |
|
cout << "Current stage can not be written, because file " << stageFilename |
|
<< " can not be opened." << endl; |
|
return false; |
|
} |
|
fs << FileStorage::getDefaultObjectName(stageFilename) << "{"; |
|
tempStage->write( fs, Mat() ); |
|
fs << "}"; |
|
|
|
// Output training time up till now |
|
float seconds = float( clock () - begin_time ) / CLOCKS_PER_SEC; |
|
int days = int(seconds) / 60 / 60 / 24; |
|
int hours = (int(seconds) / 60 / 60) % 24; |
|
int minutes = (int(seconds) / 60) % 60; |
|
int seconds_left = int(seconds) % 60; |
|
cout << "Training until now has taken " << days << " days " << hours << " hours " << minutes << " minutes " << seconds_left <<" seconds." << endl; |
|
} |
|
|
|
if(stageClassifiers.size() == 0) |
|
{ |
|
cout << "Cascade classifier can't be trained. Check the used training parameters." << endl; |
|
return false; |
|
} |
|
|
|
save( dirName + CC_CASCADE_FILENAME, baseFormatSave ); |
|
|
|
return true; |
|
} |
|
|
|
int CvCascadeClassifier::predict( int sampleIdx ) |
|
{ |
|
CV_DbgAssert( sampleIdx < numPos + numNeg ); |
|
for (vector< Ptr<CvCascadeBoost> >::iterator it = stageClassifiers.begin(); |
|
it != stageClassifiers.end(); it++ ) |
|
{ |
|
if ( (*it)->predict( sampleIdx ) == 0.f ) |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
bool CvCascadeClassifier::updateTrainingSet( double minimumAcceptanceRatio, double& acceptanceRatio) |
|
{ |
|
int64 posConsumed = 0, negConsumed = 0; |
|
imgReader.restart(); |
|
int posCount = fillPassedSamples( 0, numPos, true, 0, posConsumed ); |
|
if( !posCount ) |
|
return false; |
|
cout << "POS count : consumed " << posCount << " : " << (int)posConsumed << endl; |
|
|
|
int proNumNeg = cvRound( ( ((double)numNeg) * ((double)posCount) ) / numPos ); // apply only a fraction of negative samples. double is required since overflow is possible |
|
int negCount = fillPassedSamples( posCount, proNumNeg, false, minimumAcceptanceRatio, negConsumed ); |
|
if ( !negCount ) |
|
return false; |
|
|
|
curNumSamples = posCount + negCount; |
|
acceptanceRatio = negConsumed == 0 ? 0 : ( (double)negCount/(double)(int64)negConsumed ); |
|
cout << "NEG count : acceptanceRatio " << negCount << " : " << acceptanceRatio << endl; |
|
return true; |
|
} |
|
|
|
int CvCascadeClassifier::fillPassedSamples( int first, int count, bool isPositive, double minimumAcceptanceRatio, int64& consumed ) |
|
{ |
|
int getcount = 0; |
|
Mat img(cascadeParams.winSize, CV_8UC1); |
|
for( int i = first; i < first + count; i++ ) |
|
{ |
|
for( ; ; ) |
|
{ |
|
if( consumed != 0 && ((double)getcount+1)/(double)(int64)consumed <= minimumAcceptanceRatio ) |
|
return getcount; |
|
|
|
bool isGetImg = isPositive ? imgReader.getPos( img ) : |
|
imgReader.getNeg( img ); |
|
if( !isGetImg ) |
|
return getcount; |
|
consumed++; |
|
|
|
featureEvaluator->setImage( img, isPositive ? 1 : 0, i ); |
|
if( predict( i ) == 1 ) |
|
{ |
|
getcount++; |
|
printf("%s current samples: %d\r", isPositive ? "POS":"NEG", getcount); |
|
break; |
|
} |
|
} |
|
} |
|
return getcount; |
|
} |
|
|
|
void CvCascadeClassifier::writeParams( FileStorage &fs ) const |
|
{ |
|
cascadeParams.write( fs ); |
|
fs << CC_STAGE_PARAMS << "{"; stageParams->write( fs ); fs << "}"; |
|
fs << CC_FEATURE_PARAMS << "{"; featureParams->write( fs ); fs << "}"; |
|
} |
|
|
|
void CvCascadeClassifier::writeFeatures( FileStorage &fs, const Mat& featureMap ) const |
|
{ |
|
featureEvaluator->writeFeatures( fs, featureMap ); |
|
} |
|
|
|
void CvCascadeClassifier::writeStages( FileStorage &fs, const Mat& featureMap ) const |
|
{ |
|
char cmnt[30]; |
|
int i = 0; |
|
fs << CC_STAGES << "["; |
|
for( vector< Ptr<CvCascadeBoost> >::const_iterator it = stageClassifiers.begin(); |
|
it != stageClassifiers.end(); it++, i++ ) |
|
{ |
|
sprintf( cmnt, "stage %d", i ); |
|
cvWriteComment( fs.fs, cmnt, 0 ); |
|
fs << "{"; |
|
(*it)->write( fs, featureMap ); |
|
fs << "}"; |
|
} |
|
fs << "]"; |
|
} |
|
|
|
bool CvCascadeClassifier::readParams( const FileNode &node ) |
|
{ |
|
if ( !node.isMap() || !cascadeParams.read( node ) ) |
|
return false; |
|
|
|
stageParams = makePtr<CvCascadeBoostParams>(); |
|
FileNode rnode = node[CC_STAGE_PARAMS]; |
|
if ( !stageParams->read( rnode ) ) |
|
return false; |
|
|
|
featureParams = CvFeatureParams::create(cascadeParams.featureType); |
|
rnode = node[CC_FEATURE_PARAMS]; |
|
if ( !featureParams->read( rnode ) ) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool CvCascadeClassifier::readStages( const FileNode &node) |
|
{ |
|
FileNode rnode = node[CC_STAGES]; |
|
if (!rnode.empty() || !rnode.isSeq()) |
|
return false; |
|
stageClassifiers.reserve(numStages); |
|
FileNodeIterator it = rnode.begin(); |
|
for( int i = 0; i < min( (int)rnode.size(), numStages ); i++, it++ ) |
|
{ |
|
Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>(); |
|
if ( !tempStage->read( *it, featureEvaluator, *stageParams) ) |
|
return false; |
|
stageClassifiers.push_back(tempStage); |
|
} |
|
return true; |
|
} |
|
|
|
// For old Haar Classifier file saving |
|
#define ICV_HAAR_SIZE_NAME "size" |
|
#define ICV_HAAR_STAGES_NAME "stages" |
|
#define ICV_HAAR_TREES_NAME "trees" |
|
#define ICV_HAAR_FEATURE_NAME "feature" |
|
#define ICV_HAAR_RECTS_NAME "rects" |
|
#define ICV_HAAR_TILTED_NAME "tilted" |
|
#define ICV_HAAR_THRESHOLD_NAME "threshold" |
|
#define ICV_HAAR_LEFT_NODE_NAME "left_node" |
|
#define ICV_HAAR_LEFT_VAL_NAME "left_val" |
|
#define ICV_HAAR_RIGHT_NODE_NAME "right_node" |
|
#define ICV_HAAR_RIGHT_VAL_NAME "right_val" |
|
#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold" |
|
#define ICV_HAAR_PARENT_NAME "parent" |
|
#define ICV_HAAR_NEXT_NAME "next" |
|
|
|
void CvCascadeClassifier::save( const string filename, bool baseFormat ) |
|
{ |
|
FileStorage fs( filename, FileStorage::WRITE ); |
|
|
|
if ( !fs.isOpened() ) |
|
return; |
|
|
|
fs << FileStorage::getDefaultObjectName(filename) << "{"; |
|
if ( !baseFormat ) |
|
{ |
|
Mat featureMap; |
|
getUsedFeaturesIdxMap( featureMap ); |
|
writeParams( fs ); |
|
fs << CC_STAGE_NUM << (int)stageClassifiers.size(); |
|
writeStages( fs, featureMap ); |
|
writeFeatures( fs, featureMap ); |
|
} |
|
else |
|
{ |
|
//char buf[256]; |
|
CvSeq* weak; |
|
if ( cascadeParams.featureType != CvFeatureParams::HAAR ) |
|
CV_Error( CV_StsBadFunc, "old file format is used for Haar-like features only"); |
|
fs << ICV_HAAR_SIZE_NAME << "[:" << cascadeParams.winSize.width << |
|
cascadeParams.winSize.height << "]"; |
|
fs << ICV_HAAR_STAGES_NAME << "["; |
|
for( size_t si = 0; si < stageClassifiers.size(); si++ ) |
|
{ |
|
fs << "{"; //stage |
|
/*sprintf( buf, "stage %d", si ); |
|
CV_CALL( cvWriteComment( fs, buf, 1 ) );*/ |
|
weak = stageClassifiers[si]->get_weak_predictors(); |
|
fs << ICV_HAAR_TREES_NAME << "["; |
|
for( int wi = 0; wi < weak->total; wi++ ) |
|
{ |
|
int inner_node_idx = -1, total_inner_node_idx = -1; |
|
queue<const CvDTreeNode*> inner_nodes_queue; |
|
CvCascadeBoostTree* tree = *((CvCascadeBoostTree**) cvGetSeqElem( weak, wi )); |
|
|
|
fs << "["; |
|
/*sprintf( buf, "tree %d", wi ); |
|
CV_CALL( cvWriteComment( fs, buf, 1 ) );*/ |
|
|
|
const CvDTreeNode* tempNode; |
|
|
|
inner_nodes_queue.push( tree->get_root() ); |
|
total_inner_node_idx++; |
|
|
|
while (!inner_nodes_queue.empty()) |
|
{ |
|
tempNode = inner_nodes_queue.front(); |
|
inner_node_idx++; |
|
|
|
fs << "{"; |
|
fs << ICV_HAAR_FEATURE_NAME << "{"; |
|
((CvHaarEvaluator*)featureEvaluator.get())->writeFeature( fs, tempNode->split->var_idx ); |
|
fs << "}"; |
|
|
|
fs << ICV_HAAR_THRESHOLD_NAME << tempNode->split->ord.c; |
|
|
|
if( tempNode->left->left || tempNode->left->right ) |
|
{ |
|
inner_nodes_queue.push( tempNode->left ); |
|
total_inner_node_idx++; |
|
fs << ICV_HAAR_LEFT_NODE_NAME << total_inner_node_idx; |
|
} |
|
else |
|
fs << ICV_HAAR_LEFT_VAL_NAME << tempNode->left->value; |
|
|
|
if( tempNode->right->left || tempNode->right->right ) |
|
{ |
|
inner_nodes_queue.push( tempNode->right ); |
|
total_inner_node_idx++; |
|
fs << ICV_HAAR_RIGHT_NODE_NAME << total_inner_node_idx; |
|
} |
|
else |
|
fs << ICV_HAAR_RIGHT_VAL_NAME << tempNode->right->value; |
|
fs << "}"; // ICV_HAAR_FEATURE_NAME |
|
inner_nodes_queue.pop(); |
|
} |
|
fs << "]"; |
|
} |
|
fs << "]"; //ICV_HAAR_TREES_NAME |
|
fs << ICV_HAAR_STAGE_THRESHOLD_NAME << stageClassifiers[si]->getThreshold(); |
|
fs << ICV_HAAR_PARENT_NAME << (int)si-1 << ICV_HAAR_NEXT_NAME << -1; |
|
fs << "}"; //stage |
|
} /* for each stage */ |
|
fs << "]"; //ICV_HAAR_STAGES_NAME |
|
} |
|
fs << "}"; |
|
} |
|
|
|
bool CvCascadeClassifier::load( const string cascadeDirName ) |
|
{ |
|
FileStorage fs( cascadeDirName + CC_PARAMS_FILENAME, FileStorage::READ ); |
|
if ( !fs.isOpened() ) |
|
return false; |
|
FileNode node = fs.getFirstTopLevelNode(); |
|
if ( !readParams( node ) ) |
|
return false; |
|
featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType); |
|
featureEvaluator->init( featureParams, numPos + numNeg, cascadeParams.winSize ); |
|
fs.release(); |
|
|
|
char buf[10]; |
|
for ( int si = 0; si < numStages; si++ ) |
|
{ |
|
sprintf( buf, "%s%d", "stage", si); |
|
fs.open( cascadeDirName + buf + ".xml", FileStorage::READ ); |
|
node = fs.getFirstTopLevelNode(); |
|
if ( !fs.isOpened() ) |
|
break; |
|
Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>(); |
|
|
|
if ( !tempStage->read( node, featureEvaluator, *stageParams )) |
|
{ |
|
fs.release(); |
|
break; |
|
} |
|
stageClassifiers.push_back(tempStage); |
|
} |
|
return true; |
|
} |
|
|
|
void CvCascadeClassifier::getUsedFeaturesIdxMap( Mat& featureMap ) |
|
{ |
|
int varCount = featureEvaluator->getNumFeatures() * featureEvaluator->getFeatureSize(); |
|
featureMap.create( 1, varCount, CV_32SC1 ); |
|
featureMap.setTo(Scalar(-1)); |
|
|
|
for( vector< Ptr<CvCascadeBoost> >::const_iterator it = stageClassifiers.begin(); |
|
it != stageClassifiers.end(); it++ ) |
|
(*it)->markUsedFeaturesInMap( featureMap ); |
|
|
|
for( int fi = 0, idx = 0; fi < varCount; fi++ ) |
|
if ( featureMap.at<int>(0, fi) >= 0 ) |
|
featureMap.ptr<int>(0)[fi] = idx++; |
|
}
|
|
|