Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
243 lines
8.8 KiB
243 lines
8.8 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "op_halide.hpp" |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
class ConcatLayerImpl : public ConcatLayer |
|
{ |
|
public: |
|
ConcatLayerImpl(const LayerParams& params) |
|
{ |
|
setParamsFrom(params); |
|
axis = params.get<int>("axis", 1); |
|
padding = params.get<bool>("padding", false); |
|
} |
|
|
|
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const |
|
{ |
|
CV_Assert(inputs.size() > 0); |
|
outputs.resize(1, inputs[0]); |
|
int cAxis = clamp(axis, inputs[0]); |
|
|
|
int axisSum = 0; |
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
MatShape curShape = inputs[i]; |
|
|
|
if (padding) |
|
{ |
|
for (int curAxis = 0; curAxis < outputs[0].size(); curAxis++) |
|
{ |
|
outputs[0][curAxis] = std::max(outputs[0][curAxis], curShape[curAxis]); |
|
} |
|
} |
|
else |
|
{ |
|
CV_Assert(curShape.size() == outputs[0].size()); |
|
for (int curAxis = 0; curAxis < outputs[0].size(); curAxis++) |
|
{ |
|
if (curAxis != cAxis && outputs[0][curAxis] != curShape[curAxis]) |
|
CV_Error(Error::StsBadSize, "Inconsitent shape for ConcatLayer"); |
|
} |
|
} |
|
|
|
axisSum += curShape[cAxis]; |
|
} |
|
outputs[0][cAxis] = axisSum; |
|
return false; |
|
} |
|
|
|
virtual bool supportBackend(int backendId) |
|
{ |
|
return backendId == DNN_BACKEND_DEFAULT || |
|
backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1 && !padding; // By channels |
|
} |
|
|
|
class ChannelConcatInvoker : public ParallelLoopBody |
|
{ |
|
public: |
|
std::vector<Mat*>* inputs; |
|
Mat* output; |
|
int nstripes; |
|
std::vector<const float*> chptrs; |
|
|
|
static void run(std::vector<Mat*>& inputs, Mat& output, int nstripes) |
|
{ |
|
ChannelConcatInvoker cc; |
|
cc.inputs = &inputs; |
|
cc.output = &output; |
|
cc.nstripes = nstripes; |
|
|
|
size_t i, ninputs = inputs.size(); |
|
int nchannels = 0, batchsz = output.size[0]; |
|
for( i = 0; i < ninputs; i++ ) |
|
{ |
|
Mat& inp = *inputs[i]; |
|
CV_Assert( inp.isContinuous() && inp.type() == CV_32F && |
|
inp.dims == 4 && inp.size[0] == output.size[0] && |
|
inp.size[2] == output.size[2] && |
|
inp.size[3] == output.size[3] ); |
|
nchannels += inp.size[1]; |
|
} |
|
CV_Assert( nchannels == output.size[1] ); |
|
CV_Assert( output.isContinuous() && output.type() == CV_32F ); |
|
|
|
cc.chptrs.resize(nchannels*batchsz); |
|
|
|
int ofs = 0; |
|
for( i = 0; i < ninputs; i++) |
|
{ |
|
Mat& inp = *inputs[i]; |
|
for( int j = 0; j < batchsz; j++ ) |
|
for( int k = 0; k < inp.size[1]; k++ ) |
|
{ |
|
const float* ptr = inp.ptr<float>(j, k); |
|
cc.chptrs[ofs + j*nchannels + k] = ptr; |
|
} |
|
ofs += inp.size[1]; |
|
} |
|
|
|
parallel_for_(Range(0, nstripes), cc, nstripes); |
|
} |
|
|
|
ChannelConcatInvoker() : inputs(0), output(0), nstripes(0) {} |
|
|
|
void operator()(const Range& r) const |
|
{ |
|
size_t planeSize = (size_t)output->size[2]*output->size[3]; |
|
size_t nch = chptrs.size(); |
|
size_t total = nch*planeSize; |
|
size_t stripeSize = (total + nstripes - 1)/nstripes; |
|
size_t stripeStart = r.start*stripeSize; |
|
size_t stripeEnd = std::min(total, r.end*stripeSize); |
|
const float** ptrs = (const float**)&chptrs[0]; |
|
float* outptr = output->ptr<float>(); |
|
size_t blockSize0 = 1 << 16; |
|
|
|
for( size_t ofs0 = stripeStart; ofs0 < stripeEnd; ) |
|
{ |
|
size_t ch = ofs0/planeSize; |
|
size_t ofs = ofs0 - ch*planeSize; |
|
size_t blockSize = std::min(blockSize0, planeSize - ofs); |
|
memcpy(outptr + ofs0, ptrs[ch] + ofs, blockSize*sizeof(outptr[0])); |
|
ofs0 += blockSize; |
|
} |
|
} |
|
}; |
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
int cAxis = clamp(axis, inputs[0]->dims); |
|
Mat& outMat = outputs[0]; |
|
|
|
if (padding) |
|
outMat.setTo(0); |
|
|
|
if( cAxis == 1 && outMat.dims == 4 && !padding) |
|
{ |
|
int nstripes = getNumThreads(); |
|
ChannelConcatInvoker::run(inputs, outMat, nstripes); |
|
} |
|
else |
|
{ |
|
std::vector<Range> ranges(outputs[0].dims, Range::all()); |
|
|
|
ranges[cAxis].start = 0; |
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
ranges[cAxis].end = ranges[cAxis].start + inputs[i]->size[cAxis]; |
|
for (int j = 0; j < outMat.dims; ++j) |
|
{ |
|
if (j == cAxis) continue; |
|
ranges[j].start = (outMat.size[j] - inputs[i]->size[j]) / 2; |
|
ranges[j].end = ranges[j].start + inputs[i]->size[j]; |
|
} |
|
inputs[i]->copyTo(outMat(&ranges[0])); |
|
ranges[cAxis].start = ranges[cAxis].end; |
|
} |
|
} |
|
} |
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &input) |
|
{ |
|
#ifdef HAVE_HALIDE |
|
std::vector<Halide::Buffer<> > inputBuffers = halideBuffers(input); |
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"); |
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); |
|
int offset = inputBuffers[0].channels(); |
|
Halide::Expr topExpr = select(c < offset, |
|
inputBuffers[0](x, y, c, n), |
|
inputBuffers[1](x, y, c - offset, n)); |
|
for (int i = 2; i < input.size(); ++i) |
|
{ |
|
offset += inputBuffers[i - 1].channels(); |
|
topExpr = select(c < offset, topExpr, |
|
inputBuffers[i](x, y, c - offset, n)); |
|
} |
|
top(x, y, c, n) = topExpr; |
|
return Ptr<BackendNode>(new HalideBackendNode(top)); |
|
#endif // HAVE_HALIDE |
|
return Ptr<BackendNode>(); |
|
} |
|
}; |
|
|
|
Ptr<ConcatLayer> ConcatLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<ConcatLayer>(new ConcatLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|