mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
342 lines
15 KiB
342 lines
15 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
#include "opencv2/calib3d.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
|
|
#include <vector> |
|
#include <iostream> |
|
#include <fstream> |
|
|
|
using namespace cv; |
|
static double getError2EpipLines (const Mat &F, const Mat &pts1, const Mat &pts2, const Mat &mask) { |
|
Mat points1, points2; |
|
vconcat(pts1, Mat::ones(1, pts1.cols, pts1.type()), points1); |
|
vconcat(pts2, Mat::ones(1, pts2.cols, pts2.type()), points2); |
|
|
|
double mean_error = 0; |
|
for (int pt = 0; pt < (int) mask.total(); pt++) |
|
if (mask.at<uchar>(pt)) { |
|
const Mat l2 = F * points1.col(pt); |
|
const Mat l1 = F.t() * points2.col(pt); |
|
mean_error += (fabs(points1.col(pt).dot(l1)) / sqrt(pow(l1.at<double>(0), 2) + pow(l1.at<double>(1), 2)) + |
|
fabs(points2.col(pt).dot(l2) / sqrt(pow(l2.at<double>(0), 2) + pow(l2.at<double>(1), 2)))) / 2; |
|
} |
|
return mean_error / mask.total(); |
|
} |
|
static int sgn(double val) { return (0 < val) - (val < 0); } |
|
|
|
/* |
|
* @points3d - vector of Point3 or Mat of size Nx3 |
|
* @planes - vector of found planes |
|
* @labels - vector of size point3d. Every point which has non-zero label is classified to this plane. |
|
*/ |
|
static void getPlanes (InputArray points3d_, std::vector<int> &labels, std::vector<Vec4d> &planes, int desired_num_planes, double thr_, double conf_, int max_iters_) { |
|
Mat points3d = points3d_.getMat(); |
|
points3d.convertTo(points3d, CV_64F); // convert points to have double precision |
|
if (points3d_.isVector()) |
|
points3d = Mat((int)points3d.total(), 3, CV_64F, points3d.data); |
|
else { |
|
if (points3d.type() != CV_64F) |
|
points3d = points3d.reshape(1, (int)points3d.total()); // convert point to have 1 channel |
|
if (points3d.rows < points3d.cols) |
|
transpose(points3d, points3d); // transpose so points will be in rows |
|
CV_CheckEQ(points3d.cols, 3, "Invalid dimension of point"); |
|
} |
|
|
|
/* |
|
* 3D plane fitting with RANSAC |
|
* @best_model contains coefficients [a b c d] s.t. ax + by + cz = d |
|
* |
|
*/ |
|
auto plane_ransac = [] (const Mat &pts, double thr, double conf, int max_iters, Vec4d &best_model, std::vector<bool> &inliers) { |
|
const int pts_size = pts.rows, max_lo_inliers = 15, max_lo_iters = 10; |
|
int best_inls = 0; |
|
if (pts_size < 3) return false; |
|
RNG rng; |
|
const auto * const points = (double *) pts.data; |
|
std::vector<int> min_sample(3); |
|
inliers = std::vector<bool>(pts_size); |
|
const double log_conf = log(1-conf); |
|
Vec4d model, lo_model; |
|
std::vector<int> random_pool (pts_size); |
|
for (int p = 0; p < pts_size; p++) |
|
random_pool[p] = p; |
|
|
|
// estimate plane coefficients using covariance matrix |
|
auto estimate = [&] (const std::vector<int> &sample, Vec4d &model_) { |
|
// https://www.ilikebigbits.com/2017_09_25_plane_from_points_2.html |
|
const int n = static_cast<int>(sample.size()); |
|
if (n < 3) return false; |
|
double sum_x = 0, sum_y = 0, sum_z = 0; |
|
for (int s : sample) { |
|
sum_x += points[3*s ]; |
|
sum_y += points[3*s+1]; |
|
sum_z += points[3*s+2]; |
|
} |
|
const double c_x = sum_x / n, c_y = sum_y / n, c_z = sum_z / n; |
|
double xx = 0, yy = 0, zz = 0, xy = 0, xz = 0, yz = 0; |
|
for (int s : sample) { |
|
const double x_ = points[3*s] - c_x, y_ = points[3*s+1] - c_y, z_ = points[3*s+2] - c_z; |
|
xx += x_*x_; yy += y_*y_; zz += z_*z_; xy = x_*y_; yz += y_*z_; xz += x_*z_; |
|
} |
|
xx /= n; yy /= n; zz /= n; xy /= n; yz /= n; xz /= n; |
|
Vec3d weighted_normal(0,0,0); |
|
const double det_x = yy*zz - yz*yz, det_y = xx*zz - xz*xz, det_z = xx*yy - xy*xy; |
|
Vec3d axis_x (det_x, xz*xz-xy*zz, xy*yz-xz*yy); |
|
Vec3d axis_y (xz*yz-xy*zz, det_y, xy*xz-yz*xx); |
|
Vec3d axis_z (xy*yz-xz*yy, xy*xz-yz*xx, det_z); |
|
weighted_normal += axis_x * det_x * det_x; |
|
weighted_normal += sgn(weighted_normal.dot(axis_y)) * axis_y * det_y * det_y; |
|
weighted_normal += sgn(weighted_normal.dot(axis_z)) * axis_z * det_z * det_z; |
|
weighted_normal /= norm(weighted_normal); |
|
if (std::isinf(weighted_normal(0)) || |
|
std::isinf(weighted_normal(1)) || |
|
std::isinf(weighted_normal(2))) return false; |
|
// find plane model from normal and centroid |
|
model_ = Vec4d(weighted_normal(0), weighted_normal(1), weighted_normal(2), |
|
weighted_normal.dot(Vec3d(c_x, c_y, c_z))); |
|
return true; |
|
}; |
|
|
|
// calculate number of inliers |
|
auto getInliers = [&] (const Vec4d &model_) { |
|
const double a = model_(0), b = model_(1), c = model_(2), d = model_(3); |
|
int num_inliers = 0; |
|
std::fill(inliers.begin(), inliers.end(), false); |
|
for (int p = 0; p < pts_size; p++) { |
|
inliers[p] = fabs(a * points[3*p] + b * points[3*p+1] + c * points[3*p+2] - d) < thr; |
|
if (inliers[p]) num_inliers++; |
|
if (num_inliers + pts_size - p < best_inls) break; |
|
} |
|
return num_inliers; |
|
}; |
|
// main RANSAC loop |
|
for (int iters = 0; iters < max_iters; iters++) { |
|
// find minimal sample: 3 points |
|
min_sample[0] = rng.uniform(0, pts_size); |
|
min_sample[1] = rng.uniform(0, pts_size); |
|
min_sample[2] = rng.uniform(0, pts_size); |
|
if (! estimate(min_sample, model)) |
|
continue; |
|
int num_inliers = getInliers(model); |
|
if (num_inliers > best_inls) { |
|
// store so-far-the-best |
|
std::vector<bool> best_inliers = inliers; |
|
// do Local Optimization |
|
for (int lo_iter = 0; lo_iter < max_lo_iters; lo_iter++) { |
|
std::vector<int> inliers_idx; inliers_idx.reserve(max_lo_inliers); |
|
randShuffle(random_pool); |
|
for (int p : random_pool) { |
|
if (best_inliers[p]) { |
|
inliers_idx.emplace_back(p); |
|
if ((int)inliers_idx.size() >= max_lo_inliers) |
|
break; |
|
} |
|
} |
|
if (! estimate(inliers_idx, lo_model)) |
|
continue; |
|
int lo_inls = getInliers(lo_model); |
|
if (best_inls < lo_inls) { |
|
best_model = lo_model; |
|
best_inls = lo_inls; |
|
best_inliers = inliers; |
|
} |
|
} |
|
if (best_inls < num_inliers) { |
|
best_model = model; |
|
best_inls = num_inliers; |
|
} |
|
// update max iters |
|
// because points are quite noisy we need more iterations |
|
const double max_hyp = 3 * log_conf / log(1 - pow(double(best_inls) / pts_size, 3)); |
|
if (! std::isinf(max_hyp) && max_hyp < max_iters) |
|
max_iters = static_cast<int>(max_hyp); |
|
} |
|
} |
|
getInliers(best_model); |
|
return best_inls != 0; |
|
}; |
|
|
|
labels = std::vector<int>(points3d.rows, 0); |
|
Mat pts3d_plane_fit = points3d.clone(); |
|
// keep array of indices of points corresponding to original points3d |
|
std::vector<int> to_orig_pts_arr(pts3d_plane_fit.rows); |
|
for (int i = 0; i < (int) to_orig_pts_arr.size(); i++) |
|
to_orig_pts_arr[i] = i; |
|
for (int num_planes = 1; num_planes <= desired_num_planes; num_planes++) { |
|
Vec4d model; |
|
std::vector<bool> inl; |
|
if (!plane_ransac(pts3d_plane_fit, thr_, conf_, max_iters_, model, inl)) |
|
break; |
|
planes.emplace_back(model); |
|
|
|
const int pts3d_size = pts3d_plane_fit.rows; |
|
pts3d_plane_fit = Mat(); |
|
pts3d_plane_fit.reserve(points3d.rows); |
|
|
|
int cnt = 0; |
|
for (int p = 0; p < pts3d_size; p++) { |
|
if (! inl[p]) { |
|
// if point is not inlier to found plane - add it to next run |
|
to_orig_pts_arr[cnt] = to_orig_pts_arr[p]; |
|
pts3d_plane_fit.push_back(points3d.row(to_orig_pts_arr[cnt])); |
|
cnt++; |
|
} else labels[to_orig_pts_arr[p]] = num_planes; // otherwise label this point |
|
} |
|
} |
|
} |
|
|
|
int main(int args, char** argv) { |
|
std::string data_file, image_dir; |
|
if (args < 3) { |
|
CV_Error(Error::StsBadArg, |
|
"Path to data file and directory to image files are missing!\nData file must have" |
|
" format:\n--------------\n image_name_1\nimage_name_2\nk11 k12 k13\n0 k22 k23\n" |
|
"0 0 1\n--------------\nIf image_name_{1,2} are not in the same directory as " |
|
"the data file then add argument with directory to image files.\nFor example: " |
|
"./essential_mat_reconstr essential_mat_data.txt ./"); |
|
} else { |
|
data_file = argv[1]; |
|
image_dir = argv[2]; |
|
} |
|
std::ifstream file(data_file, std::ios_base::in); |
|
CV_CheckEQ(file.is_open(), true, "Data file is not found!"); |
|
std::string filename1, filename2; |
|
std::getline(file, filename1); |
|
std::getline(file, filename2); |
|
Mat image1 = imread(image_dir+filename1); |
|
Mat image2 = imread(image_dir+filename2); |
|
CV_CheckEQ(image1.empty(), false, "Image 1 is not found!"); |
|
CV_CheckEQ(image2.empty(), false, "Image 2 is not found!"); |
|
|
|
// read calibration |
|
Matx33d K; |
|
for (int i = 0; i < 3; i++) |
|
for (int j = 0; j < 3; j++) |
|
file >> K(i,j); |
|
file.close(); |
|
|
|
Mat descriptors1, descriptors2; |
|
std::vector<KeyPoint> keypoints1, keypoints2; |
|
|
|
// detect points with SIFT |
|
Ptr<SIFT> detector = SIFT::create(); |
|
detector->detect(image1, keypoints1); |
|
detector->detect(image2, keypoints2); |
|
detector->compute(image1, keypoints1, descriptors1); |
|
detector->compute(image2, keypoints2, descriptors2); |
|
|
|
FlannBasedMatcher matcher(makePtr<flann::KDTreeIndexParams>(5), makePtr<flann::SearchParams>(32)); |
|
|
|
// get k=2 best match that we can apply ratio test explained by D.Lowe |
|
std::vector<std::vector<DMatch>> matches_vector; |
|
matcher.knnMatch(descriptors1, descriptors2, matches_vector, 2); |
|
|
|
// filter keypoints with Lowe ratio test |
|
std::vector<Point2d> pts1, pts2; |
|
pts1.reserve(matches_vector.size()); pts2.reserve(matches_vector.size()); |
|
for (const auto &m : matches_vector) { |
|
// compare best and second match using Lowe ratio test |
|
if (m[0].distance / m[1].distance < 0.75) { |
|
pts1.emplace_back(keypoints1[m[0].queryIdx].pt); |
|
pts2.emplace_back(keypoints2[m[0].trainIdx].pt); |
|
} |
|
} |
|
|
|
Mat inliers; |
|
const int pts_size = (int) pts1.size(); |
|
const auto begin_time = std::chrono::steady_clock::now(); |
|
// fine essential matrix |
|
const Mat E = findEssentialMat(pts1, pts2, Mat(K), RANSAC, 0.99, 1.0, inliers); |
|
std::cout << "RANSAC essential matrix time " << std::chrono::duration_cast<std::chrono::microseconds> |
|
(std::chrono::steady_clock::now() - begin_time).count() << |
|
"mcs.\nNumber of inliers " << countNonZero(inliers) << "\n"; |
|
|
|
Mat points1 = Mat((int)pts1.size(), 2, CV_64F, pts1.data()); |
|
Mat points2 = Mat((int)pts2.size(), 2, CV_64F, pts2.data()); |
|
points1 = points1.t(); points2 = points2.t(); |
|
|
|
std::cout << "Mean error to epipolar lines " << |
|
getError2EpipLines(K.inv().t() * E * K.inv(), points1, points2, inliers) << "\n"; |
|
|
|
// decompose essential into rotation and translation |
|
Mat R1, R2, t; |
|
decomposeEssentialMat(E, R1, R2, t); |
|
|
|
// Create two relative pose |
|
// P1 = K [ I | 0 ] |
|
// P2 = K [R{1,2} | {+-}t] |
|
Mat P1; |
|
hconcat(K, Vec3d::zeros(), P1); |
|
std::vector<Mat> P2s(4); |
|
hconcat(K * R1, K * t, P2s[0]); |
|
hconcat(K * R1, -K * t, P2s[1]); |
|
hconcat(K * R2, K * t, P2s[2]); |
|
hconcat(K * R2, -K * t, P2s[3]); |
|
|
|
// find objects point by enumerating over 4 different projection matrices of second camera |
|
// vector to keep object points |
|
std::vector<std::vector<Vec3d>> obj_pts_per_cam(4); |
|
// vector to keep indices of image points corresponding to object points |
|
std::vector<std::vector<int>> img_idxs_per_cam(4); |
|
int cam_idx = 0, best_cam_idx = 0, max_obj_pts = 0; |
|
for (const auto &P2 : P2s) { |
|
obj_pts_per_cam[cam_idx].reserve(pts_size); |
|
img_idxs_per_cam[cam_idx].reserve(pts_size); |
|
for (int i = 0; i < pts_size; i++) { |
|
// process only inliers |
|
if (! inliers.at<uchar>(i)) |
|
continue; |
|
|
|
Vec4d obj_pt; |
|
// find object point using triangulation |
|
triangulatePoints(P1, P2, points1.col(i), points2.col(i), obj_pt); |
|
obj_pt /= obj_pt(3); // normalize 4d point |
|
if (obj_pt(2) > 0) { // check if projected point has positive depth |
|
obj_pts_per_cam[cam_idx].emplace_back(Vec3d(obj_pt(0), obj_pt(1), obj_pt(2))); |
|
img_idxs_per_cam[cam_idx].emplace_back(i); |
|
} |
|
} |
|
if (max_obj_pts < (int) obj_pts_per_cam[cam_idx].size()) { |
|
max_obj_pts = (int) obj_pts_per_cam[cam_idx].size(); |
|
best_cam_idx = cam_idx; |
|
} |
|
cam_idx++; |
|
} |
|
|
|
std::cout << "Number of object points " << max_obj_pts << "\n"; |
|
|
|
const int circle_sz = 7; |
|
// draw image points that are inliers on two images |
|
std::vector<int> labels; |
|
std::vector<Vec4d> planes; |
|
getPlanes (obj_pts_per_cam[best_cam_idx], labels, planes, 4, 0.002, 0.99, 10000); |
|
const int num_found_planes = (int) planes.size(); |
|
RNG rng; |
|
std::vector<Scalar> plane_colors (num_found_planes); |
|
for (int pl = 0; pl < num_found_planes; pl++) |
|
plane_colors[pl] = Scalar (rng.uniform(0,256), rng.uniform(0,256), rng.uniform(0,256)); |
|
for (int obj_pt = 0; obj_pt < max_obj_pts; obj_pt++) { |
|
const int pt = img_idxs_per_cam[best_cam_idx][obj_pt]; |
|
if (labels[obj_pt] > 0) { // plot plane points |
|
circle (image1, pts1[pt], circle_sz, plane_colors[labels[obj_pt]-1], -1); |
|
circle (image2, pts2[pt], circle_sz, plane_colors[labels[obj_pt]-1], -1); |
|
} else { // plot inliers |
|
circle (image1, pts1[pt], circle_sz, Scalar(0,0,0), -1); |
|
circle (image2, pts2[pt], circle_sz, Scalar(0,0,0), -1); |
|
} |
|
} |
|
|
|
// concatenate two images |
|
hconcat(image1, image2, image1); |
|
const int new_img_size = 1200 * 800; // for example |
|
// resize with the same aspect ratio |
|
resize(image1, image1, Size((int)sqrt ((double) image1.cols * new_img_size / image1.rows), |
|
(int)sqrt ((double) image1.rows * new_img_size / image1.cols))); |
|
imshow("image 1-2", image1); |
|
imwrite("planes.png", image1); |
|
waitKey(0); |
|
} |