mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
403 lines
9.0 KiB
403 lines
9.0 KiB
/* dlasq4.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Subroutine */ int dlasq4_(integer *i0, integer *n0, doublereal *z__, |
|
integer *pp, integer *n0in, doublereal *dmin__, doublereal *dmin1, |
|
doublereal *dmin2, doublereal *dn, doublereal *dn1, doublereal *dn2, |
|
doublereal *tau, integer *ttype, doublereal *g) |
|
{ |
|
/* System generated locals */ |
|
integer i__1; |
|
doublereal d__1, d__2; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal); |
|
|
|
/* Local variables */ |
|
doublereal s, a2, b1, b2; |
|
integer i4, nn, np; |
|
doublereal gam, gap1, gap2; |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
|
|
/* -- Contributed by Osni Marques of the Lawrence Berkeley National -- */ |
|
/* -- Laboratory and Beresford Parlett of the Univ. of California at -- */ |
|
/* -- Berkeley -- */ |
|
/* -- November 2008 -- */ |
|
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DLASQ4 computes an approximation TAU to the smallest eigenvalue */ |
|
/* using values of d from the previous transform. */ |
|
|
|
/* I0 (input) INTEGER */ |
|
/* First index. */ |
|
|
|
/* N0 (input) INTEGER */ |
|
/* Last index. */ |
|
|
|
/* Z (input) DOUBLE PRECISION array, dimension ( 4*N ) */ |
|
/* Z holds the qd array. */ |
|
|
|
/* PP (input) INTEGER */ |
|
/* PP=0 for ping, PP=1 for pong. */ |
|
|
|
/* NOIN (input) INTEGER */ |
|
/* The value of N0 at start of EIGTEST. */ |
|
|
|
/* DMIN (input) DOUBLE PRECISION */ |
|
/* Minimum value of d. */ |
|
|
|
/* DMIN1 (input) DOUBLE PRECISION */ |
|
/* Minimum value of d, excluding D( N0 ). */ |
|
|
|
/* DMIN2 (input) DOUBLE PRECISION */ |
|
/* Minimum value of d, excluding D( N0 ) and D( N0-1 ). */ |
|
|
|
/* DN (input) DOUBLE PRECISION */ |
|
/* d(N) */ |
|
|
|
/* DN1 (input) DOUBLE PRECISION */ |
|
/* d(N-1) */ |
|
|
|
/* DN2 (input) DOUBLE PRECISION */ |
|
/* d(N-2) */ |
|
|
|
/* TAU (output) DOUBLE PRECISION */ |
|
/* This is the shift. */ |
|
|
|
/* TTYPE (output) INTEGER */ |
|
/* Shift type. */ |
|
|
|
/* G (input/output) REAL */ |
|
/* G is passed as an argument in order to save its value between */ |
|
/* calls to DLASQ4. */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
/* CNST1 = 9/16 */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* A negative DMIN forces the shift to take that absolute value */ |
|
/* TTYPE records the type of shift. */ |
|
|
|
/* Parameter adjustments */ |
|
--z__; |
|
|
|
/* Function Body */ |
|
if (*dmin__ <= 0.) { |
|
*tau = -(*dmin__); |
|
*ttype = -1; |
|
return 0; |
|
} |
|
|
|
nn = (*n0 << 2) + *pp; |
|
if (*n0in == *n0) { |
|
|
|
/* No eigenvalues deflated. */ |
|
|
|
if (*dmin__ == *dn || *dmin__ == *dn1) { |
|
|
|
b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]); |
|
b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]); |
|
a2 = z__[nn - 7] + z__[nn - 5]; |
|
|
|
/* Cases 2 and 3. */ |
|
|
|
if (*dmin__ == *dn && *dmin1 == *dn1) { |
|
gap2 = *dmin2 - a2 - *dmin2 * .25; |
|
if (gap2 > 0. && gap2 > b2) { |
|
gap1 = a2 - *dn - b2 / gap2 * b2; |
|
} else { |
|
gap1 = a2 - *dn - (b1 + b2); |
|
} |
|
if (gap1 > 0. && gap1 > b1) { |
|
/* Computing MAX */ |
|
d__1 = *dn - b1 / gap1 * b1, d__2 = *dmin__ * .5; |
|
s = max(d__1,d__2); |
|
*ttype = -2; |
|
} else { |
|
s = 0.; |
|
if (*dn > b1) { |
|
s = *dn - b1; |
|
} |
|
if (a2 > b1 + b2) { |
|
/* Computing MIN */ |
|
d__1 = s, d__2 = a2 - (b1 + b2); |
|
s = min(d__1,d__2); |
|
} |
|
/* Computing MAX */ |
|
d__1 = s, d__2 = *dmin__ * .333; |
|
s = max(d__1,d__2); |
|
*ttype = -3; |
|
} |
|
} else { |
|
|
|
/* Case 4. */ |
|
|
|
*ttype = -4; |
|
s = *dmin__ * .25; |
|
if (*dmin__ == *dn) { |
|
gam = *dn; |
|
a2 = 0.; |
|
if (z__[nn - 5] > z__[nn - 7]) { |
|
return 0; |
|
} |
|
b2 = z__[nn - 5] / z__[nn - 7]; |
|
np = nn - 9; |
|
} else { |
|
np = nn - (*pp << 1); |
|
b2 = z__[np - 2]; |
|
gam = *dn1; |
|
if (z__[np - 4] > z__[np - 2]) { |
|
return 0; |
|
} |
|
a2 = z__[np - 4] / z__[np - 2]; |
|
if (z__[nn - 9] > z__[nn - 11]) { |
|
return 0; |
|
} |
|
b2 = z__[nn - 9] / z__[nn - 11]; |
|
np = nn - 13; |
|
} |
|
|
|
/* Approximate contribution to norm squared from I < NN-1. */ |
|
|
|
a2 += b2; |
|
i__1 = (*i0 << 2) - 1 + *pp; |
|
for (i4 = np; i4 >= i__1; i4 += -4) { |
|
if (b2 == 0.) { |
|
goto L20; |
|
} |
|
b1 = b2; |
|
if (z__[i4] > z__[i4 - 2]) { |
|
return 0; |
|
} |
|
b2 *= z__[i4] / z__[i4 - 2]; |
|
a2 += b2; |
|
if (max(b2,b1) * 100. < a2 || .563 < a2) { |
|
goto L20; |
|
} |
|
/* L10: */ |
|
} |
|
L20: |
|
a2 *= 1.05; |
|
|
|
/* Rayleigh quotient residual bound. */ |
|
|
|
if (a2 < .563) { |
|
s = gam * (1. - sqrt(a2)) / (a2 + 1.); |
|
} |
|
} |
|
} else if (*dmin__ == *dn2) { |
|
|
|
/* Case 5. */ |
|
|
|
*ttype = -5; |
|
s = *dmin__ * .25; |
|
|
|
/* Compute contribution to norm squared from I > NN-2. */ |
|
|
|
np = nn - (*pp << 1); |
|
b1 = z__[np - 2]; |
|
b2 = z__[np - 6]; |
|
gam = *dn2; |
|
if (z__[np - 8] > b2 || z__[np - 4] > b1) { |
|
return 0; |
|
} |
|
a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.); |
|
|
|
/* Approximate contribution to norm squared from I < NN-2. */ |
|
|
|
if (*n0 - *i0 > 2) { |
|
b2 = z__[nn - 13] / z__[nn - 15]; |
|
a2 += b2; |
|
i__1 = (*i0 << 2) - 1 + *pp; |
|
for (i4 = nn - 17; i4 >= i__1; i4 += -4) { |
|
if (b2 == 0.) { |
|
goto L40; |
|
} |
|
b1 = b2; |
|
if (z__[i4] > z__[i4 - 2]) { |
|
return 0; |
|
} |
|
b2 *= z__[i4] / z__[i4 - 2]; |
|
a2 += b2; |
|
if (max(b2,b1) * 100. < a2 || .563 < a2) { |
|
goto L40; |
|
} |
|
/* L30: */ |
|
} |
|
L40: |
|
a2 *= 1.05; |
|
} |
|
|
|
if (a2 < .563) { |
|
s = gam * (1. - sqrt(a2)) / (a2 + 1.); |
|
} |
|
} else { |
|
|
|
/* Case 6, no information to guide us. */ |
|
|
|
if (*ttype == -6) { |
|
*g += (1. - *g) * .333; |
|
} else if (*ttype == -18) { |
|
*g = .083250000000000005; |
|
} else { |
|
*g = .25; |
|
} |
|
s = *g * *dmin__; |
|
*ttype = -6; |
|
} |
|
|
|
} else if (*n0in == *n0 + 1) { |
|
|
|
/* One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */ |
|
|
|
if (*dmin1 == *dn1 && *dmin2 == *dn2) { |
|
|
|
/* Cases 7 and 8. */ |
|
|
|
*ttype = -7; |
|
s = *dmin1 * .333; |
|
if (z__[nn - 5] > z__[nn - 7]) { |
|
return 0; |
|
} |
|
b1 = z__[nn - 5] / z__[nn - 7]; |
|
b2 = b1; |
|
if (b2 == 0.) { |
|
goto L60; |
|
} |
|
i__1 = (*i0 << 2) - 1 + *pp; |
|
for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) { |
|
a2 = b1; |
|
if (z__[i4] > z__[i4 - 2]) { |
|
return 0; |
|
} |
|
b1 *= z__[i4] / z__[i4 - 2]; |
|
b2 += b1; |
|
if (max(b1,a2) * 100. < b2) { |
|
goto L60; |
|
} |
|
/* L50: */ |
|
} |
|
L60: |
|
b2 = sqrt(b2 * 1.05); |
|
/* Computing 2nd power */ |
|
d__1 = b2; |
|
a2 = *dmin1 / (d__1 * d__1 + 1.); |
|
gap2 = *dmin2 * .5 - a2; |
|
if (gap2 > 0. && gap2 > b2 * a2) { |
|
/* Computing MAX */ |
|
d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2); |
|
s = max(d__1,d__2); |
|
} else { |
|
/* Computing MAX */ |
|
d__1 = s, d__2 = a2 * (1. - b2 * 1.01); |
|
s = max(d__1,d__2); |
|
*ttype = -8; |
|
} |
|
} else { |
|
|
|
/* Case 9. */ |
|
|
|
s = *dmin1 * .25; |
|
if (*dmin1 == *dn1) { |
|
s = *dmin1 * .5; |
|
} |
|
*ttype = -9; |
|
} |
|
|
|
} else if (*n0in == *n0 + 2) { |
|
|
|
/* Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN. */ |
|
|
|
/* Cases 10 and 11. */ |
|
|
|
if (*dmin2 == *dn2 && z__[nn - 5] * 2. < z__[nn - 7]) { |
|
*ttype = -10; |
|
s = *dmin2 * .333; |
|
if (z__[nn - 5] > z__[nn - 7]) { |
|
return 0; |
|
} |
|
b1 = z__[nn - 5] / z__[nn - 7]; |
|
b2 = b1; |
|
if (b2 == 0.) { |
|
goto L80; |
|
} |
|
i__1 = (*i0 << 2) - 1 + *pp; |
|
for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) { |
|
if (z__[i4] > z__[i4 - 2]) { |
|
return 0; |
|
} |
|
b1 *= z__[i4] / z__[i4 - 2]; |
|
b2 += b1; |
|
if (b1 * 100. < b2) { |
|
goto L80; |
|
} |
|
/* L70: */ |
|
} |
|
L80: |
|
b2 = sqrt(b2 * 1.05); |
|
/* Computing 2nd power */ |
|
d__1 = b2; |
|
a2 = *dmin2 / (d__1 * d__1 + 1.); |
|
gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[ |
|
nn - 9]) - a2; |
|
if (gap2 > 0. && gap2 > b2 * a2) { |
|
/* Computing MAX */ |
|
d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2); |
|
s = max(d__1,d__2); |
|
} else { |
|
/* Computing MAX */ |
|
d__1 = s, d__2 = a2 * (1. - b2 * 1.01); |
|
s = max(d__1,d__2); |
|
} |
|
} else { |
|
s = *dmin2 * .25; |
|
*ttype = -11; |
|
} |
|
} else if (*n0in > *n0 + 2) { |
|
|
|
/* Case 12, more than two eigenvalues deflated. No information. */ |
|
|
|
s = 0.; |
|
*ttype = -12; |
|
} |
|
|
|
*tau = s; |
|
return 0; |
|
|
|
/* End of DLASQ4 */ |
|
|
|
} /* dlasq4_ */
|
|
|