Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
5.3 KiB
182 lines
5.3 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/highgui.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::ml; |
|
using cv::ml::SVMSGD; |
|
using cv::ml::TrainData; |
|
|
|
|
|
|
|
class CV_SVMSGDTrainTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_SVMSGDTrainTest(Mat _weights, float _shift); |
|
private: |
|
virtual void run( int start_from ); |
|
float decisionFunction(Mat sample, Mat weights, float shift); |
|
|
|
cv::Ptr<TrainData> data; |
|
cv::Mat testSamples; |
|
cv::Mat testResponses; |
|
static const int TEST_VALUE_LIMIT = 50; |
|
}; |
|
|
|
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(Mat weights, float shift) |
|
{ |
|
int datasize = 100000; |
|
int varCount = weights.cols; |
|
cv::Mat samples = cv::Mat::zeros( datasize, varCount, CV_32FC1 ); |
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32FC1 ); |
|
cv::RNG rng(0); |
|
|
|
float lowerLimit = -TEST_VALUE_LIMIT; |
|
float upperLimit = TEST_VALUE_LIMIT; |
|
|
|
|
|
rng.fill(samples, RNG::UNIFORM, lowerLimit, upperLimit); |
|
for (int sampleIndex = 0; sampleIndex < datasize; sampleIndex++) |
|
{ |
|
responses.at<float>( sampleIndex ) = decisionFunction(samples.row(sampleIndex), weights, shift) > 0 ? 1 : -1; |
|
} |
|
|
|
data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses ); |
|
|
|
int testSamplesCount = 100000; |
|
|
|
testSamples.create(testSamplesCount, varCount, CV_32FC1); |
|
rng.fill(testSamples, RNG::UNIFORM, lowerLimit, upperLimit); |
|
testResponses.create(testSamplesCount, 1, CV_32FC1); |
|
|
|
for (int i = 0 ; i < testSamplesCount; i++) |
|
{ |
|
testResponses.at<float>(i) = decisionFunction(testSamples.row(i), weights, shift) > 0 ? 1 : -1; |
|
} |
|
} |
|
|
|
void CV_SVMSGDTrainTest::run( int /*start_from*/ ) |
|
{ |
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create(); |
|
|
|
svmsgd->setOptimalParameters(SVMSGD::ASGD); |
|
|
|
svmsgd->train( data ); |
|
|
|
Mat responses; |
|
|
|
svmsgd->predict(testSamples, responses); |
|
|
|
int errCount = 0; |
|
int testSamplesCount = testSamples.rows; |
|
|
|
for (int i = 0; i < testSamplesCount; i++) |
|
{ |
|
if (responses.at<float>(i) * testResponses.at<float>(i) < 0 ) |
|
errCount++; |
|
} |
|
|
|
float err = (float)errCount / testSamplesCount; |
|
std::cout << "err " << err << std::endl; |
|
|
|
if ( err > 0.01 ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
} |
|
} |
|
|
|
float CV_SVMSGDTrainTest::decisionFunction(Mat sample, Mat weights, float shift) |
|
{ |
|
return sample.dot(weights) + shift; |
|
} |
|
|
|
TEST(ML_SVMSGD, train0) |
|
{ |
|
int varCount = 2; |
|
|
|
Mat weights; |
|
weights.create(1, varCount, CV_32FC1); |
|
weights.at<float>(0) = 1; |
|
weights.at<float>(1) = 0; |
|
|
|
float shift = 5; |
|
|
|
CV_SVMSGDTrainTest test(weights, shift); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(ML_SVMSGD, train1) |
|
{ |
|
int varCount = 5; |
|
|
|
Mat weights; |
|
weights.create(1, varCount, CV_32FC1); |
|
|
|
float lowerLimit = -1; |
|
float upperLimit = 1; |
|
cv::RNG rng(0); |
|
rng.fill(weights, RNG::UNIFORM, lowerLimit, upperLimit); |
|
|
|
float shift = rng.uniform(-5.f, 5.f); |
|
|
|
CV_SVMSGDTrainTest test(weights, shift); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(ML_SVMSGD, train2) |
|
{ |
|
int varCount = 100; |
|
|
|
Mat weights; |
|
weights.create(1, varCount, CV_32FC1); |
|
|
|
float lowerLimit = -1; |
|
float upperLimit = 1; |
|
cv::RNG rng(0); |
|
rng.fill(weights, RNG::UNIFORM, lowerLimit, upperLimit); |
|
|
|
float shift = rng.uniform(-1000.f, 1000.f); |
|
|
|
CV_SVMSGDTrainTest test(weights, shift); |
|
test.safe_run(); |
|
}
|
|
|