mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
990 lines
36 KiB
990 lines
36 KiB
// Copyright 2012 Google Inc. All Rights Reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style license |
|
// that can be found in the COPYING file in the root of the source |
|
// tree. An additional intellectual property rights grant can be found |
|
// in the file PATENTS. All contributing project authors may |
|
// be found in the AUTHORS file in the root of the source tree. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Author: Jyrki Alakuijala (jyrki@google.com) |
|
// |
|
#ifdef HAVE_CONFIG_H |
|
#include "../webp/config.h" |
|
#endif |
|
|
|
#include <math.h> |
|
|
|
#include "./backward_references_enc.h" |
|
#include "./histogram_enc.h" |
|
#include "../dsp/lossless.h" |
|
#include "../dsp/lossless_common.h" |
|
#include "../utils/utils.h" |
|
|
|
#define MAX_COST 1.e38 |
|
|
|
// Number of partitions for the three dominant (literal, red and blue) symbol |
|
// costs. |
|
#define NUM_PARTITIONS 4 |
|
// The size of the bin-hash corresponding to the three dominant costs. |
|
#define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS) |
|
// Maximum number of histograms allowed in greedy combining algorithm. |
|
#define MAX_HISTO_GREEDY 100 |
|
|
|
static void HistogramClear(VP8LHistogram* const p) { |
|
uint32_t* const literal = p->literal_; |
|
const int cache_bits = p->palette_code_bits_; |
|
const int histo_size = VP8LGetHistogramSize(cache_bits); |
|
memset(p, 0, histo_size); |
|
p->palette_code_bits_ = cache_bits; |
|
p->literal_ = literal; |
|
} |
|
|
|
// Swap two histogram pointers. |
|
static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) { |
|
VP8LHistogram* const tmp = *A; |
|
*A = *B; |
|
*B = tmp; |
|
} |
|
|
|
static void HistogramCopy(const VP8LHistogram* const src, |
|
VP8LHistogram* const dst) { |
|
uint32_t* const dst_literal = dst->literal_; |
|
const int dst_cache_bits = dst->palette_code_bits_; |
|
const int histo_size = VP8LGetHistogramSize(dst_cache_bits); |
|
assert(src->palette_code_bits_ == dst_cache_bits); |
|
memcpy(dst, src, histo_size); |
|
dst->literal_ = dst_literal; |
|
} |
|
|
|
int VP8LGetHistogramSize(int cache_bits) { |
|
const int literal_size = VP8LHistogramNumCodes(cache_bits); |
|
const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size; |
|
assert(total_size <= (size_t)0x7fffffff); |
|
return (int)total_size; |
|
} |
|
|
|
void VP8LFreeHistogram(VP8LHistogram* const histo) { |
|
WebPSafeFree(histo); |
|
} |
|
|
|
void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) { |
|
WebPSafeFree(histo); |
|
} |
|
|
|
void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs, |
|
VP8LHistogram* const histo) { |
|
VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
|
while (VP8LRefsCursorOk(&c)) { |
|
VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos); |
|
VP8LRefsCursorNext(&c); |
|
} |
|
} |
|
|
|
void VP8LHistogramCreate(VP8LHistogram* const p, |
|
const VP8LBackwardRefs* const refs, |
|
int palette_code_bits) { |
|
if (palette_code_bits >= 0) { |
|
p->palette_code_bits_ = palette_code_bits; |
|
} |
|
HistogramClear(p); |
|
VP8LHistogramStoreRefs(refs, p); |
|
} |
|
|
|
void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) { |
|
p->palette_code_bits_ = palette_code_bits; |
|
HistogramClear(p); |
|
} |
|
|
|
VP8LHistogram* VP8LAllocateHistogram(int cache_bits) { |
|
VP8LHistogram* histo = NULL; |
|
const int total_size = VP8LGetHistogramSize(cache_bits); |
|
uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
|
if (memory == NULL) return NULL; |
|
histo = (VP8LHistogram*)memory; |
|
// literal_ won't necessary be aligned. |
|
histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); |
|
VP8LHistogramInit(histo, cache_bits); |
|
return histo; |
|
} |
|
|
|
VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) { |
|
int i; |
|
VP8LHistogramSet* set; |
|
const int histo_size = VP8LGetHistogramSize(cache_bits); |
|
const size_t total_size = |
|
sizeof(*set) + size * (sizeof(*set->histograms) + |
|
histo_size + WEBP_ALIGN_CST); |
|
uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
|
if (memory == NULL) return NULL; |
|
|
|
set = (VP8LHistogramSet*)memory; |
|
memory += sizeof(*set); |
|
set->histograms = (VP8LHistogram**)memory; |
|
memory += size * sizeof(*set->histograms); |
|
set->max_size = size; |
|
set->size = size; |
|
for (i = 0; i < size; ++i) { |
|
memory = (uint8_t*)WEBP_ALIGN(memory); |
|
set->histograms[i] = (VP8LHistogram*)memory; |
|
// literal_ won't necessary be aligned. |
|
set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); |
|
VP8LHistogramInit(set->histograms[i], cache_bits); |
|
memory += histo_size; |
|
} |
|
return set; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
|
|
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo, |
|
const PixOrCopy* const v) { |
|
if (PixOrCopyIsLiteral(v)) { |
|
++histo->alpha_[PixOrCopyLiteral(v, 3)]; |
|
++histo->red_[PixOrCopyLiteral(v, 2)]; |
|
++histo->literal_[PixOrCopyLiteral(v, 1)]; |
|
++histo->blue_[PixOrCopyLiteral(v, 0)]; |
|
} else if (PixOrCopyIsCacheIdx(v)) { |
|
const int literal_ix = |
|
NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v); |
|
++histo->literal_[literal_ix]; |
|
} else { |
|
int code, extra_bits; |
|
VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits); |
|
++histo->literal_[NUM_LITERAL_CODES + code]; |
|
VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits); |
|
++histo->distance_[code]; |
|
} |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Entropy-related functions. |
|
|
|
static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) { |
|
double mix; |
|
if (entropy->nonzeros < 5) { |
|
if (entropy->nonzeros <= 1) { |
|
return 0; |
|
} |
|
// Two symbols, they will be 0 and 1 in a Huffman code. |
|
// Let's mix in a bit of entropy to favor good clustering when |
|
// distributions of these are combined. |
|
if (entropy->nonzeros == 2) { |
|
return 0.99 * entropy->sum + 0.01 * entropy->entropy; |
|
} |
|
// No matter what the entropy says, we cannot be better than min_limit |
|
// with Huffman coding. I am mixing a bit of entropy into the |
|
// min_limit since it produces much better (~0.5 %) compression results |
|
// perhaps because of better entropy clustering. |
|
if (entropy->nonzeros == 3) { |
|
mix = 0.95; |
|
} else { |
|
mix = 0.7; // nonzeros == 4. |
|
} |
|
} else { |
|
mix = 0.627; |
|
} |
|
|
|
{ |
|
double min_limit = 2 * entropy->sum - entropy->max_val; |
|
min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy; |
|
return (entropy->entropy < min_limit) ? min_limit : entropy->entropy; |
|
} |
|
} |
|
|
|
double VP8LBitsEntropy(const uint32_t* const array, int n, |
|
uint32_t* const trivial_symbol) { |
|
VP8LBitEntropy entropy; |
|
VP8LBitsEntropyUnrefined(array, n, &entropy); |
|
if (trivial_symbol != NULL) { |
|
*trivial_symbol = |
|
(entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM; |
|
} |
|
|
|
return BitsEntropyRefine(&entropy); |
|
} |
|
|
|
static double InitialHuffmanCost(void) { |
|
// Small bias because Huffman code length is typically not stored in |
|
// full length. |
|
static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3; |
|
static const double kSmallBias = 9.1; |
|
return kHuffmanCodeOfHuffmanCodeSize - kSmallBias; |
|
} |
|
|
|
// Finalize the Huffman cost based on streak numbers and length type (<3 or >=3) |
|
static double FinalHuffmanCost(const VP8LStreaks* const stats) { |
|
// The constants in this function are experimental and got rounded from |
|
// their original values in 1/8 when switched to 1/1024. |
|
double retval = InitialHuffmanCost(); |
|
// Second coefficient: Many zeros in the histogram are covered efficiently |
|
// by a run-length encode. Originally 2/8. |
|
retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1]; |
|
// Second coefficient: Constant values are encoded less efficiently, but still |
|
// RLE'ed. Originally 6/8. |
|
retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1]; |
|
// 0s are usually encoded more efficiently than non-0s. |
|
// Originally 15/8. |
|
retval += 1.796875 * stats->streaks[0][0]; |
|
// Originally 26/8. |
|
retval += 3.28125 * stats->streaks[1][0]; |
|
return retval; |
|
} |
|
|
|
// Get the symbol entropy for the distribution 'population'. |
|
// Set 'trivial_sym', if there's only one symbol present in the distribution. |
|
static double PopulationCost(const uint32_t* const population, int length, |
|
uint32_t* const trivial_sym) { |
|
VP8LBitEntropy bit_entropy; |
|
VP8LStreaks stats; |
|
VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats); |
|
if (trivial_sym != NULL) { |
|
*trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code |
|
: VP8L_NON_TRIVIAL_SYM; |
|
} |
|
|
|
return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); |
|
} |
|
|
|
// trivial_at_end is 1 if the two histograms only have one element that is |
|
// non-zero: both the zero-th one, or both the last one. |
|
static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X, |
|
const uint32_t* const Y, |
|
int length, int trivial_at_end) { |
|
VP8LStreaks stats; |
|
if (trivial_at_end) { |
|
// This configuration is due to palettization that transforms an indexed |
|
// pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap. |
|
// BitsEntropyRefine is 0 for histograms with only one non-zero value. |
|
// Only FinalHuffmanCost needs to be evaluated. |
|
memset(&stats, 0, sizeof(stats)); |
|
// Deal with the non-zero value at index 0 or length-1. |
|
stats.streaks[1][0] += 1; |
|
// Deal with the following/previous zero streak. |
|
stats.counts[0] += 1; |
|
stats.streaks[0][1] += length - 1; |
|
return FinalHuffmanCost(&stats); |
|
} else { |
|
VP8LBitEntropy bit_entropy; |
|
VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats); |
|
|
|
return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); |
|
} |
|
} |
|
|
|
// Estimates the Entropy + Huffman + other block overhead size cost. |
|
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) { |
|
return |
|
PopulationCost( |
|
p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL) |
|
+ PopulationCost(p->red_, NUM_LITERAL_CODES, NULL) |
|
+ PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL) |
|
+ PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL) |
|
+ PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL) |
|
+ VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES) |
|
+ VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Various histogram combine/cost-eval functions |
|
|
|
static int GetCombinedHistogramEntropy(const VP8LHistogram* const a, |
|
const VP8LHistogram* const b, |
|
double cost_threshold, |
|
double* cost) { |
|
const int palette_code_bits = a->palette_code_bits_; |
|
int trivial_at_end = 0; |
|
assert(a->palette_code_bits_ == b->palette_code_bits_); |
|
*cost += GetCombinedEntropy(a->literal_, b->literal_, |
|
VP8LHistogramNumCodes(palette_code_bits), 0); |
|
*cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES, |
|
b->literal_ + NUM_LITERAL_CODES, |
|
NUM_LENGTH_CODES); |
|
if (*cost > cost_threshold) return 0; |
|
|
|
if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM && |
|
a->trivial_symbol_ == b->trivial_symbol_) { |
|
// A, R and B are all 0 or 0xff. |
|
const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff; |
|
const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff; |
|
const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff; |
|
if ((color_a == 0 || color_a == 0xff) && |
|
(color_r == 0 || color_r == 0xff) && |
|
(color_b == 0 || color_b == 0xff)) { |
|
trivial_at_end = 1; |
|
} |
|
} |
|
|
|
*cost += |
|
GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, trivial_at_end); |
|
if (*cost > cost_threshold) return 0; |
|
|
|
*cost += |
|
GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, trivial_at_end); |
|
if (*cost > cost_threshold) return 0; |
|
|
|
*cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES, |
|
trivial_at_end); |
|
if (*cost > cost_threshold) return 0; |
|
|
|
*cost += |
|
GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, 0); |
|
*cost += |
|
VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES); |
|
if (*cost > cost_threshold) return 0; |
|
|
|
return 1; |
|
} |
|
|
|
static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a, |
|
const VP8LHistogram* const b, |
|
VP8LHistogram* const out) { |
|
VP8LHistogramAdd(a, b, out); |
|
out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) |
|
? a->trivial_symbol_ |
|
: VP8L_NON_TRIVIAL_SYM; |
|
} |
|
|
|
// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing |
|
// to the threshold value 'cost_threshold'. The score returned is |
|
// Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed. |
|
// Since the previous score passed is 'cost_threshold', we only need to compare |
|
// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out |
|
// early. |
|
static double HistogramAddEval(const VP8LHistogram* const a, |
|
const VP8LHistogram* const b, |
|
VP8LHistogram* const out, |
|
double cost_threshold) { |
|
double cost = 0; |
|
const double sum_cost = a->bit_cost_ + b->bit_cost_; |
|
cost_threshold += sum_cost; |
|
|
|
if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) { |
|
HistogramAdd(a, b, out); |
|
out->bit_cost_ = cost; |
|
out->palette_code_bits_ = a->palette_code_bits_; |
|
} |
|
|
|
return cost - sum_cost; |
|
} |
|
|
|
// Same as HistogramAddEval(), except that the resulting histogram |
|
// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit |
|
// the term C(b) which is constant over all the evaluations. |
|
static double HistogramAddThresh(const VP8LHistogram* const a, |
|
const VP8LHistogram* const b, |
|
double cost_threshold) { |
|
double cost = -a->bit_cost_; |
|
GetCombinedHistogramEntropy(a, b, cost_threshold, &cost); |
|
return cost; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
|
|
// The structure to keep track of cost range for the three dominant entropy |
|
// symbols. |
|
// TODO(skal): Evaluate if float can be used here instead of double for |
|
// representing the entropy costs. |
|
typedef struct { |
|
double literal_max_; |
|
double literal_min_; |
|
double red_max_; |
|
double red_min_; |
|
double blue_max_; |
|
double blue_min_; |
|
} DominantCostRange; |
|
|
|
static void DominantCostRangeInit(DominantCostRange* const c) { |
|
c->literal_max_ = 0.; |
|
c->literal_min_ = MAX_COST; |
|
c->red_max_ = 0.; |
|
c->red_min_ = MAX_COST; |
|
c->blue_max_ = 0.; |
|
c->blue_min_ = MAX_COST; |
|
} |
|
|
|
static void UpdateDominantCostRange( |
|
const VP8LHistogram* const h, DominantCostRange* const c) { |
|
if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_; |
|
if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_; |
|
if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_; |
|
if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_; |
|
if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_; |
|
if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_; |
|
} |
|
|
|
static void UpdateHistogramCost(VP8LHistogram* const h) { |
|
uint32_t alpha_sym, red_sym, blue_sym; |
|
const double alpha_cost = |
|
PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym); |
|
const double distance_cost = |
|
PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) + |
|
VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES); |
|
const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_); |
|
h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) + |
|
VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES, |
|
NUM_LENGTH_CODES); |
|
h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym); |
|
h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym); |
|
h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ + |
|
alpha_cost + distance_cost; |
|
if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) { |
|
h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM; |
|
} else { |
|
h->trivial_symbol_ = |
|
((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0); |
|
} |
|
} |
|
|
|
static int GetBinIdForEntropy(double min, double max, double val) { |
|
const double range = max - min; |
|
if (range > 0.) { |
|
const double delta = val - min; |
|
return (int)((NUM_PARTITIONS - 1e-6) * delta / range); |
|
} else { |
|
return 0; |
|
} |
|
} |
|
|
|
static int GetHistoBinIndex(const VP8LHistogram* const h, |
|
const DominantCostRange* const c, int low_effort) { |
|
int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_, |
|
h->literal_cost_); |
|
assert(bin_id < NUM_PARTITIONS); |
|
if (!low_effort) { |
|
bin_id = bin_id * NUM_PARTITIONS |
|
+ GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_); |
|
bin_id = bin_id * NUM_PARTITIONS |
|
+ GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_); |
|
assert(bin_id < BIN_SIZE); |
|
} |
|
return bin_id; |
|
} |
|
|
|
// Construct the histograms from backward references. |
|
static void HistogramBuild( |
|
int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs, |
|
VP8LHistogramSet* const image_histo) { |
|
int x = 0, y = 0; |
|
const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits); |
|
VP8LHistogram** const histograms = image_histo->histograms; |
|
VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs); |
|
assert(histo_bits > 0); |
|
while (VP8LRefsCursorOk(&c)) { |
|
const PixOrCopy* const v = c.cur_pos; |
|
const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits); |
|
VP8LHistogramAddSinglePixOrCopy(histograms[ix], v); |
|
x += PixOrCopyLength(v); |
|
while (x >= xsize) { |
|
x -= xsize; |
|
++y; |
|
} |
|
VP8LRefsCursorNext(&c); |
|
} |
|
} |
|
|
|
// Copies the histograms and computes its bit_cost. |
|
static void HistogramCopyAndAnalyze( |
|
VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) { |
|
int i; |
|
const int histo_size = orig_histo->size; |
|
VP8LHistogram** const orig_histograms = orig_histo->histograms; |
|
VP8LHistogram** const histograms = image_histo->histograms; |
|
for (i = 0; i < histo_size; ++i) { |
|
VP8LHistogram* const histo = orig_histograms[i]; |
|
UpdateHistogramCost(histo); |
|
// Copy histograms from orig_histo[] to image_histo[]. |
|
HistogramCopy(histo, histograms[i]); |
|
} |
|
} |
|
|
|
// Partition histograms to different entropy bins for three dominant (literal, |
|
// red and blue) symbol costs and compute the histogram aggregate bit_cost. |
|
static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo, |
|
uint16_t* const bin_map, |
|
int low_effort) { |
|
int i; |
|
VP8LHistogram** const histograms = image_histo->histograms; |
|
const int histo_size = image_histo->size; |
|
DominantCostRange cost_range; |
|
DominantCostRangeInit(&cost_range); |
|
|
|
// Analyze the dominant (literal, red and blue) entropy costs. |
|
for (i = 0; i < histo_size; ++i) { |
|
UpdateDominantCostRange(histograms[i], &cost_range); |
|
} |
|
|
|
// bin-hash histograms on three of the dominant (literal, red and blue) |
|
// symbol costs and store the resulting bin_id for each histogram. |
|
for (i = 0; i < histo_size; ++i) { |
|
bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort); |
|
} |
|
} |
|
|
|
// Compact image_histo[] by merging some histograms with same bin_id together if |
|
// it's advantageous. |
|
static VP8LHistogram* HistogramCombineEntropyBin( |
|
VP8LHistogramSet* const image_histo, |
|
VP8LHistogram* cur_combo, |
|
const uint16_t* const bin_map, int bin_map_size, int num_bins, |
|
double combine_cost_factor, int low_effort) { |
|
VP8LHistogram** const histograms = image_histo->histograms; |
|
int idx; |
|
// Work in-place: processed histograms are put at the beginning of |
|
// image_histo[]. At the end, we just have to truncate the array. |
|
int size = 0; |
|
struct { |
|
int16_t first; // position of the histogram that accumulates all |
|
// histograms with the same bin_id |
|
uint16_t num_combine_failures; // number of combine failures per bin_id |
|
} bin_info[BIN_SIZE]; |
|
|
|
assert(num_bins <= BIN_SIZE); |
|
for (idx = 0; idx < num_bins; ++idx) { |
|
bin_info[idx].first = -1; |
|
bin_info[idx].num_combine_failures = 0; |
|
} |
|
|
|
for (idx = 0; idx < bin_map_size; ++idx) { |
|
const int bin_id = bin_map[idx]; |
|
const int first = bin_info[bin_id].first; |
|
assert(size <= idx); |
|
if (first == -1) { |
|
// just move histogram #idx to its final position |
|
histograms[size] = histograms[idx]; |
|
bin_info[bin_id].first = size++; |
|
} else if (low_effort) { |
|
HistogramAdd(histograms[idx], histograms[first], histograms[first]); |
|
} else { |
|
// try to merge #idx into #first (both share the same bin_id) |
|
const double bit_cost = histograms[idx]->bit_cost_; |
|
const double bit_cost_thresh = -bit_cost * combine_cost_factor; |
|
const double curr_cost_diff = |
|
HistogramAddEval(histograms[first], histograms[idx], |
|
cur_combo, bit_cost_thresh); |
|
if (curr_cost_diff < bit_cost_thresh) { |
|
// Try to merge two histograms only if the combo is a trivial one or |
|
// the two candidate histograms are already non-trivial. |
|
// For some images, 'try_combine' turns out to be false for a lot of |
|
// histogram pairs. In that case, we fallback to combining |
|
// histograms as usual to avoid increasing the header size. |
|
const int try_combine = |
|
(cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) || |
|
((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) && |
|
(histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM)); |
|
const int max_combine_failures = 32; |
|
if (try_combine || |
|
bin_info[bin_id].num_combine_failures >= max_combine_failures) { |
|
// move the (better) merged histogram to its final slot |
|
HistogramSwap(&cur_combo, &histograms[first]); |
|
} else { |
|
histograms[size++] = histograms[idx]; |
|
++bin_info[bin_id].num_combine_failures; |
|
} |
|
} else { |
|
histograms[size++] = histograms[idx]; |
|
} |
|
} |
|
} |
|
image_histo->size = size; |
|
if (low_effort) { |
|
// for low_effort case, update the final cost when everything is merged |
|
for (idx = 0; idx < size; ++idx) { |
|
UpdateHistogramCost(histograms[idx]); |
|
} |
|
} |
|
return cur_combo; |
|
} |
|
|
|
static uint32_t MyRand(uint32_t* const seed) { |
|
*seed = (*seed * 16807ull) & 0xffffffffu; |
|
if (*seed == 0) { |
|
*seed = 1; |
|
} |
|
return *seed; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Histogram pairs priority queue |
|
|
|
// Pair of histograms. Negative idx1 value means that pair is out-of-date. |
|
typedef struct { |
|
int idx1; |
|
int idx2; |
|
double cost_diff; |
|
double cost_combo; |
|
} HistogramPair; |
|
|
|
typedef struct { |
|
HistogramPair* queue; |
|
int size; |
|
int max_size; |
|
} HistoQueue; |
|
|
|
static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) { |
|
histo_queue->size = 0; |
|
// max_index^2 for the queue size is safe. If you look at |
|
// HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes |
|
// data to the queue, you insert at most: |
|
// - max_index*(max_index-1)/2 (the first two for loops) |
|
// - max_index - 1 in the last for loop at the first iteration of the while |
|
// loop, max_index - 2 at the second iteration ... therefore |
|
// max_index*(max_index-1)/2 overall too |
|
histo_queue->max_size = max_index * max_index; |
|
// We allocate max_size + 1 because the last element at index "size" is |
|
// used as temporary data (and it could be up to max_size). |
|
histo_queue->queue = (HistogramPair*)WebPSafeMalloc( |
|
histo_queue->max_size + 1, sizeof(*histo_queue->queue)); |
|
return histo_queue->queue != NULL; |
|
} |
|
|
|
static void HistoQueueClear(HistoQueue* const histo_queue) { |
|
assert(histo_queue != NULL); |
|
WebPSafeFree(histo_queue->queue); |
|
} |
|
|
|
static void SwapHistogramPairs(HistogramPair *p1, |
|
HistogramPair *p2) { |
|
const HistogramPair tmp = *p1; |
|
*p1 = *p2; |
|
*p2 = tmp; |
|
} |
|
|
|
// Given a valid priority queue in range [0, queue_size) this function checks |
|
// whether histo_queue[queue_size] should be accepted and swaps it with the |
|
// front if it is smaller. Otherwise, it leaves it as is. |
|
static void UpdateQueueFront(HistoQueue* const histo_queue) { |
|
if (histo_queue->queue[histo_queue->size].cost_diff >= 0) return; |
|
|
|
if (histo_queue->queue[histo_queue->size].cost_diff < |
|
histo_queue->queue[0].cost_diff) { |
|
SwapHistogramPairs(histo_queue->queue, |
|
histo_queue->queue + histo_queue->size); |
|
} |
|
++histo_queue->size; |
|
|
|
// We cannot add more elements than the capacity. |
|
// The allocation adds an extra element to the official capacity so that |
|
// histo_queue->queue[histo_queue->max_size] is read/written within bound. |
|
assert(histo_queue->size <= histo_queue->max_size); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
|
|
static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2, |
|
HistogramPair* const pair) { |
|
VP8LHistogram* h1; |
|
VP8LHistogram* h2; |
|
double sum_cost; |
|
|
|
if (idx1 > idx2) { |
|
const int tmp = idx2; |
|
idx2 = idx1; |
|
idx1 = tmp; |
|
} |
|
pair->idx1 = idx1; |
|
pair->idx2 = idx2; |
|
h1 = histograms[idx1]; |
|
h2 = histograms[idx2]; |
|
sum_cost = h1->bit_cost_ + h2->bit_cost_; |
|
pair->cost_combo = 0.; |
|
GetCombinedHistogramEntropy(h1, h2, sum_cost, &pair->cost_combo); |
|
pair->cost_diff = pair->cost_combo - sum_cost; |
|
} |
|
|
|
// Combines histograms by continuously choosing the one with the highest cost |
|
// reduction. |
|
static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) { |
|
int ok = 0; |
|
int image_histo_size = image_histo->size; |
|
int i, j; |
|
VP8LHistogram** const histograms = image_histo->histograms; |
|
// Indexes of remaining histograms. |
|
int* const clusters = |
|
(int*)WebPSafeMalloc(image_histo_size, sizeof(*clusters)); |
|
// Priority queue of histogram pairs. |
|
HistoQueue histo_queue; |
|
|
|
if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) { |
|
goto End; |
|
} |
|
|
|
for (i = 0; i < image_histo_size; ++i) { |
|
// Initialize clusters indexes. |
|
clusters[i] = i; |
|
for (j = i + 1; j < image_histo_size; ++j) { |
|
// Initialize positions array. |
|
PreparePair(histograms, i, j, &histo_queue.queue[histo_queue.size]); |
|
UpdateQueueFront(&histo_queue); |
|
} |
|
} |
|
|
|
while (image_histo_size > 1 && histo_queue.size > 0) { |
|
HistogramPair* copy_to; |
|
const int idx1 = histo_queue.queue[0].idx1; |
|
const int idx2 = histo_queue.queue[0].idx2; |
|
HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]); |
|
histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo; |
|
// Remove merged histogram. |
|
for (i = 0; i + 1 < image_histo_size; ++i) { |
|
if (clusters[i] >= idx2) { |
|
clusters[i] = clusters[i + 1]; |
|
} |
|
} |
|
--image_histo_size; |
|
|
|
// Remove pairs intersecting the just combined best pair. This will |
|
// therefore pop the head of the queue. |
|
copy_to = histo_queue.queue; |
|
for (i = 0; i < histo_queue.size; ++i) { |
|
HistogramPair* const p = histo_queue.queue + i; |
|
if (p->idx1 == idx1 || p->idx2 == idx1 || |
|
p->idx1 == idx2 || p->idx2 == idx2) { |
|
// Do not copy the invalid pair. |
|
continue; |
|
} |
|
if (p->cost_diff < histo_queue.queue[0].cost_diff) { |
|
// Replace the top of the queue if we found better. |
|
SwapHistogramPairs(histo_queue.queue, p); |
|
} |
|
SwapHistogramPairs(copy_to, p); |
|
++copy_to; |
|
} |
|
histo_queue.size = (int)(copy_to - histo_queue.queue); |
|
|
|
// Push new pairs formed with combined histogram to the queue. |
|
for (i = 0; i < image_histo_size; ++i) { |
|
if (clusters[i] != idx1) { |
|
PreparePair(histograms, idx1, clusters[i], |
|
&histo_queue.queue[histo_queue.size]); |
|
UpdateQueueFront(&histo_queue); |
|
} |
|
} |
|
} |
|
// Move remaining histograms to the beginning of the array. |
|
for (i = 0; i < image_histo_size; ++i) { |
|
if (i != clusters[i]) { // swap the two histograms |
|
HistogramSwap(&histograms[i], &histograms[clusters[i]]); |
|
} |
|
} |
|
|
|
image_histo->size = image_histo_size; |
|
ok = 1; |
|
|
|
End: |
|
WebPSafeFree(clusters); |
|
HistoQueueClear(&histo_queue); |
|
return ok; |
|
} |
|
|
|
static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo, |
|
VP8LHistogram* tmp_histo, |
|
VP8LHistogram* best_combo, |
|
int quality, int min_cluster_size) { |
|
int iter; |
|
uint32_t seed = 0; |
|
int tries_with_no_success = 0; |
|
int image_histo_size = image_histo->size; |
|
const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8; |
|
const int outer_iters = image_histo_size * iter_mult; |
|
const int num_pairs = image_histo_size / 2; |
|
const int num_tries_no_success = outer_iters / 2; |
|
int idx2_max = image_histo_size - 1; |
|
int do_brute_dorce = 0; |
|
VP8LHistogram** const histograms = image_histo->histograms; |
|
|
|
// Collapse similar histograms in 'image_histo'. |
|
++min_cluster_size; |
|
for (iter = 0; |
|
iter < outer_iters && image_histo_size >= min_cluster_size; |
|
++iter) { |
|
double best_cost_diff = 0.; |
|
int best_idx1 = -1, best_idx2 = 1; |
|
int j; |
|
int num_tries = |
|
(num_pairs < image_histo_size) ? num_pairs : image_histo_size; |
|
// Use a brute force approach if: |
|
// - stochastic has not worked for a while and |
|
// - if the number of iterations for brute force is less than the number of |
|
// iterations if we never find a match ever again stochastically (hence |
|
// num_tries times the number of remaining outer iterations). |
|
do_brute_dorce = |
|
(tries_with_no_success > 10) && |
|
(idx2_max * (idx2_max + 1) < 2 * num_tries * (outer_iters - iter)); |
|
if (do_brute_dorce) num_tries = idx2_max; |
|
|
|
seed += iter; |
|
for (j = 0; j < num_tries; ++j) { |
|
double curr_cost_diff; |
|
// Choose two histograms at random and try to combine them. |
|
uint32_t idx1, idx2; |
|
if (do_brute_dorce) { |
|
// Use a brute force approach. |
|
idx1 = (uint32_t)j; |
|
idx2 = (uint32_t)idx2_max; |
|
} else { |
|
const uint32_t tmp = (j & 7) + 1; |
|
const uint32_t diff = |
|
(tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1); |
|
idx1 = MyRand(&seed) % image_histo_size; |
|
idx2 = (idx1 + diff + 1) % image_histo_size; |
|
if (idx1 == idx2) { |
|
continue; |
|
} |
|
} |
|
|
|
// Calculate cost reduction on combining. |
|
curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2], |
|
tmp_histo, best_cost_diff); |
|
if (curr_cost_diff < best_cost_diff) { // found a better pair? |
|
HistogramSwap(&best_combo, &tmp_histo); |
|
best_cost_diff = curr_cost_diff; |
|
best_idx1 = idx1; |
|
best_idx2 = idx2; |
|
} |
|
} |
|
if (do_brute_dorce) --idx2_max; |
|
|
|
if (best_idx1 >= 0) { |
|
HistogramSwap(&best_combo, &histograms[best_idx1]); |
|
// swap best_idx2 slot with last one (which is now unused) |
|
--image_histo_size; |
|
if (idx2_max >= image_histo_size) idx2_max = image_histo_size - 1; |
|
if (best_idx2 != image_histo_size) { |
|
HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]); |
|
histograms[image_histo_size] = NULL; |
|
} |
|
tries_with_no_success = 0; |
|
} |
|
if (++tries_with_no_success >= num_tries_no_success || idx2_max == 0) { |
|
break; |
|
} |
|
} |
|
image_histo->size = image_histo_size; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Histogram refinement |
|
|
|
// Find the best 'out' histogram for each of the 'in' histograms. |
|
// Note: we assume that out[]->bit_cost_ is already up-to-date. |
|
static void HistogramRemap(const VP8LHistogramSet* const in, |
|
const VP8LHistogramSet* const out, |
|
uint16_t* const symbols) { |
|
int i; |
|
VP8LHistogram** const in_histo = in->histograms; |
|
VP8LHistogram** const out_histo = out->histograms; |
|
const int in_size = in->size; |
|
const int out_size = out->size; |
|
if (out_size > 1) { |
|
for (i = 0; i < in_size; ++i) { |
|
int best_out = 0; |
|
double best_bits = MAX_COST; |
|
int k; |
|
for (k = 0; k < out_size; ++k) { |
|
const double cur_bits = |
|
HistogramAddThresh(out_histo[k], in_histo[i], best_bits); |
|
if (k == 0 || cur_bits < best_bits) { |
|
best_bits = cur_bits; |
|
best_out = k; |
|
} |
|
} |
|
symbols[i] = best_out; |
|
} |
|
} else { |
|
assert(out_size == 1); |
|
for (i = 0; i < in_size; ++i) { |
|
symbols[i] = 0; |
|
} |
|
} |
|
|
|
// Recompute each out based on raw and symbols. |
|
for (i = 0; i < out_size; ++i) { |
|
HistogramClear(out_histo[i]); |
|
} |
|
|
|
for (i = 0; i < in_size; ++i) { |
|
const int idx = symbols[i]; |
|
HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]); |
|
} |
|
} |
|
|
|
static double GetCombineCostFactor(int histo_size, int quality) { |
|
double combine_cost_factor = 0.16; |
|
if (quality < 90) { |
|
if (histo_size > 256) combine_cost_factor /= 2.; |
|
if (histo_size > 512) combine_cost_factor /= 2.; |
|
if (histo_size > 1024) combine_cost_factor /= 2.; |
|
if (quality <= 50) combine_cost_factor /= 2.; |
|
} |
|
return combine_cost_factor; |
|
} |
|
|
|
int VP8LGetHistoImageSymbols(int xsize, int ysize, |
|
const VP8LBackwardRefs* const refs, |
|
int quality, int low_effort, |
|
int histo_bits, int cache_bits, |
|
VP8LHistogramSet* const image_histo, |
|
VP8LHistogramSet* const tmp_histos, |
|
uint16_t* const histogram_symbols) { |
|
int ok = 0; |
|
const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1; |
|
const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1; |
|
const int image_histo_raw_size = histo_xsize * histo_ysize; |
|
VP8LHistogramSet* const orig_histo = |
|
VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits); |
|
VP8LHistogram* cur_combo; |
|
// Don't attempt linear bin-partition heuristic for |
|
// histograms of small sizes (as bin_map will be very sparse) and |
|
// maximum quality q==100 (to preserve the compression gains at that level). |
|
const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE; |
|
const int entropy_combine = |
|
(orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100); |
|
|
|
if (orig_histo == NULL) goto Error; |
|
|
|
// Construct the histograms from backward references. |
|
HistogramBuild(xsize, histo_bits, refs, orig_histo); |
|
// Copies the histograms and computes its bit_cost. |
|
HistogramCopyAndAnalyze(orig_histo, image_histo); |
|
|
|
cur_combo = tmp_histos->histograms[1]; // pick up working slot |
|
if (entropy_combine) { |
|
const int bin_map_size = orig_histo->size; |
|
// Reuse histogram_symbols storage. By definition, it's guaranteed to be ok. |
|
uint16_t* const bin_map = histogram_symbols; |
|
const double combine_cost_factor = |
|
GetCombineCostFactor(image_histo_raw_size, quality); |
|
|
|
HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort); |
|
// Collapse histograms with similar entropy. |
|
cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo, |
|
bin_map, bin_map_size, |
|
entropy_combine_num_bins, |
|
combine_cost_factor, low_effort); |
|
} |
|
|
|
// Don't combine the histograms using stochastic and greedy heuristics for |
|
// low-effort compression mode. |
|
if (!low_effort || !entropy_combine) { |
|
const float x = quality / 100.f; |
|
// cubic ramp between 1 and MAX_HISTO_GREEDY: |
|
const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1)); |
|
HistogramCombineStochastic(image_histo, tmp_histos->histograms[0], |
|
cur_combo, quality, threshold_size); |
|
if ((image_histo->size <= threshold_size) && |
|
!HistogramCombineGreedy(image_histo)) { |
|
goto Error; |
|
} |
|
} |
|
|
|
// TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also. |
|
// Find the optimal map from original histograms to the final ones. |
|
HistogramRemap(orig_histo, image_histo, histogram_symbols); |
|
|
|
ok = 1; |
|
|
|
Error: |
|
VP8LFreeHistogramSet(orig_histo); |
|
return ok; |
|
}
|
|
|