mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
2.2 KiB
95 lines
2.2 KiB
/* This sample demonstrates the way you can perform independent tasks |
|
on the different GPUs */ |
|
|
|
// Disable some warnings which are caused with CUDA headers |
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4201 4408 4100) |
|
#endif |
|
|
|
#include <iostream> |
|
#include "opencv2/core.hpp" |
|
#include "opencv2/cudaarithm.hpp" |
|
|
|
#if !defined(HAVE_CUDA) |
|
|
|
int main() |
|
{ |
|
std::cout << "CUDA support is required (OpenCV CMake parameter 'WITH_CUDA' must be true)." << std::endl; |
|
return 0; |
|
} |
|
|
|
#else |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
struct Worker : public cv::ParallelLoopBody |
|
{ |
|
void operator()(const Range& r) const CV_OVERRIDE |
|
{ |
|
for (int i = r.start; i < r.end; ++i) { this->operator()(i); } |
|
} |
|
void operator()(int device_id) const; |
|
}; |
|
|
|
int main() |
|
{ |
|
int num_devices = getCudaEnabledDeviceCount(); |
|
if (num_devices < 2) |
|
{ |
|
std::cout << "Two or more GPUs are required\n"; |
|
return -1; |
|
} |
|
for (int i = 0; i < num_devices; ++i) |
|
{ |
|
cv::cuda::printShortCudaDeviceInfo(i); |
|
|
|
DeviceInfo dev_info(i); |
|
if (!dev_info.isCompatible()) |
|
{ |
|
std::cout << "CUDA module isn't built for GPU #" << i << " (" |
|
<< dev_info.name() << ", CC " << dev_info.majorVersion() |
|
<< dev_info.minorVersion() << "\n"; |
|
return -1; |
|
} |
|
} |
|
|
|
// Execute calculation in two threads using two GPUs |
|
cv::Range devices(0, 2); |
|
cv::parallel_for_(devices, Worker(), devices.size()); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
void Worker::operator()(int device_id) const |
|
{ |
|
setDevice(device_id); |
|
|
|
Mat src(1000, 1000, CV_32F); |
|
Mat dst; |
|
|
|
RNG rng(0); |
|
rng.fill(src, RNG::UNIFORM, 0, 1); |
|
|
|
// CPU works |
|
cv::transpose(src, dst); |
|
|
|
// GPU works |
|
GpuMat d_src(src); |
|
GpuMat d_dst; |
|
cuda::transpose(d_src, d_dst); |
|
|
|
// Check results |
|
bool passed = cv::norm(dst - Mat(d_dst), NORM_INF) < 1e-3; |
|
std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): " |
|
<< (passed ? "passed" : "FAILED") << endl; |
|
|
|
// Deallocate data here, otherwise deallocation will be performed |
|
// after context is extracted from the stack |
|
d_src.release(); |
|
d_dst.release(); |
|
} |
|
|
|
#endif
|
|
|