mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
239 lines
9.1 KiB
239 lines
9.1 KiB
''' |
|
Text detection model: https://github.com/argman/EAST |
|
Download link: https://www.dropbox.com/s/r2ingd0l3zt8hxs/frozen_east_text_detection.tar.gz?dl=1 |
|
|
|
CRNN Text recognition model taken from here: https://github.com/meijieru/crnn.pytorch |
|
How to convert from pb to onnx: |
|
Using classes from here: https://github.com/meijieru/crnn.pytorch/blob/master/models/crnn.py |
|
|
|
More converted onnx text recognition models can be downloaded directly here: |
|
Download link: https://drive.google.com/drive/folders/1cTbQ3nuZG-EKWak6emD_s8_hHXWz7lAr?usp=sharing |
|
And these models taken from here:https://github.com/clovaai/deep-text-recognition-benchmark |
|
|
|
import torch |
|
from models.crnn import CRNN |
|
|
|
model = CRNN(32, 1, 37, 256) |
|
model.load_state_dict(torch.load('crnn.pth')) |
|
dummy_input = torch.randn(1, 1, 32, 100) |
|
torch.onnx.export(model, dummy_input, "crnn.onnx", verbose=True) |
|
''' |
|
|
|
|
|
# Import required modules |
|
import numpy as np |
|
import cv2 as cv |
|
import math |
|
import argparse |
|
|
|
############ Add argument parser for command line arguments ############ |
|
parser = argparse.ArgumentParser( |
|
description="Use this script to run TensorFlow implementation (https://github.com/argman/EAST) of " |
|
"EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2)" |
|
"The OCR model can be obtained from converting the pretrained CRNN model to .onnx format from the github repository https://github.com/meijieru/crnn.pytorch" |
|
"Or you can download trained OCR model directly from https://drive.google.com/drive/folders/1cTbQ3nuZG-EKWak6emD_s8_hHXWz7lAr?usp=sharing") |
|
parser.add_argument('--input', |
|
help='Path to input image or video file. Skip this argument to capture frames from a camera.') |
|
parser.add_argument('--model', '-m', required=True, |
|
help='Path to a binary .pb file contains trained detector network.') |
|
parser.add_argument('--ocr', default="crnn.onnx", |
|
help="Path to a binary .pb or .onnx file contains trained recognition network", ) |
|
parser.add_argument('--width', type=int, default=320, |
|
help='Preprocess input image by resizing to a specific width. It should be multiple by 32.') |
|
parser.add_argument('--height', type=int, default=320, |
|
help='Preprocess input image by resizing to a specific height. It should be multiple by 32.') |
|
parser.add_argument('--thr', type=float, default=0.5, |
|
help='Confidence threshold.') |
|
parser.add_argument('--nms', type=float, default=0.4, |
|
help='Non-maximum suppression threshold.') |
|
args = parser.parse_args() |
|
|
|
|
|
############ Utility functions ############ |
|
|
|
def fourPointsTransform(frame, vertices): |
|
vertices = np.asarray(vertices) |
|
outputSize = (100, 32) |
|
targetVertices = np.array([ |
|
[0, outputSize[1] - 1], |
|
[0, 0], |
|
[outputSize[0] - 1, 0], |
|
[outputSize[0] - 1, outputSize[1] - 1]], dtype="float32") |
|
|
|
rotationMatrix = cv.getPerspectiveTransform(vertices, targetVertices) |
|
result = cv.warpPerspective(frame, rotationMatrix, outputSize) |
|
return result |
|
|
|
|
|
def decodeText(scores): |
|
text = "" |
|
alphabet = "0123456789abcdefghijklmnopqrstuvwxyz" |
|
for i in range(scores.shape[0]): |
|
c = np.argmax(scores[i][0]) |
|
if c != 0: |
|
text += alphabet[c - 1] |
|
else: |
|
text += '-' |
|
|
|
# adjacent same letters as well as background text must be removed to get the final output |
|
char_list = [] |
|
for i in range(len(text)): |
|
if text[i] != '-' and (not (i > 0 and text[i] == text[i - 1])): |
|
char_list.append(text[i]) |
|
return ''.join(char_list) |
|
|
|
|
|
def decodeBoundingBoxes(scores, geometry, scoreThresh): |
|
detections = [] |
|
confidences = [] |
|
|
|
############ CHECK DIMENSIONS AND SHAPES OF geometry AND scores ############ |
|
assert len(scores.shape) == 4, "Incorrect dimensions of scores" |
|
assert len(geometry.shape) == 4, "Incorrect dimensions of geometry" |
|
assert scores.shape[0] == 1, "Invalid dimensions of scores" |
|
assert geometry.shape[0] == 1, "Invalid dimensions of geometry" |
|
assert scores.shape[1] == 1, "Invalid dimensions of scores" |
|
assert geometry.shape[1] == 5, "Invalid dimensions of geometry" |
|
assert scores.shape[2] == geometry.shape[2], "Invalid dimensions of scores and geometry" |
|
assert scores.shape[3] == geometry.shape[3], "Invalid dimensions of scores and geometry" |
|
height = scores.shape[2] |
|
width = scores.shape[3] |
|
for y in range(0, height): |
|
|
|
# Extract data from scores |
|
scoresData = scores[0][0][y] |
|
x0_data = geometry[0][0][y] |
|
x1_data = geometry[0][1][y] |
|
x2_data = geometry[0][2][y] |
|
x3_data = geometry[0][3][y] |
|
anglesData = geometry[0][4][y] |
|
for x in range(0, width): |
|
score = scoresData[x] |
|
|
|
# If score is lower than threshold score, move to next x |
|
if (score < scoreThresh): |
|
continue |
|
|
|
# Calculate offset |
|
offsetX = x * 4.0 |
|
offsetY = y * 4.0 |
|
angle = anglesData[x] |
|
|
|
# Calculate cos and sin of angle |
|
cosA = math.cos(angle) |
|
sinA = math.sin(angle) |
|
h = x0_data[x] + x2_data[x] |
|
w = x1_data[x] + x3_data[x] |
|
|
|
# Calculate offset |
|
offset = ([offsetX + cosA * x1_data[x] + sinA * x2_data[x], offsetY - sinA * x1_data[x] + cosA * x2_data[x]]) |
|
|
|
# Find points for rectangle |
|
p1 = (-sinA * h + offset[0], -cosA * h + offset[1]) |
|
p3 = (-cosA * w + offset[0], sinA * w + offset[1]) |
|
center = (0.5 * (p1[0] + p3[0]), 0.5 * (p1[1] + p3[1])) |
|
detections.append((center, (w, h), -1 * angle * 180.0 / math.pi)) |
|
confidences.append(float(score)) |
|
|
|
# Return detections and confidences |
|
return [detections, confidences] |
|
|
|
|
|
def main(): |
|
# Read and store arguments |
|
confThreshold = args.thr |
|
nmsThreshold = args.nms |
|
inpWidth = args.width |
|
inpHeight = args.height |
|
modelDetector = args.model |
|
modelRecognition = args.ocr |
|
|
|
# Load network |
|
detector = cv.dnn.readNet(modelDetector) |
|
recognizer = cv.dnn.readNet(modelRecognition) |
|
|
|
# Create a new named window |
|
kWinName = "EAST: An Efficient and Accurate Scene Text Detector" |
|
cv.namedWindow(kWinName, cv.WINDOW_NORMAL) |
|
outNames = [] |
|
outNames.append("feature_fusion/Conv_7/Sigmoid") |
|
outNames.append("feature_fusion/concat_3") |
|
|
|
# Open a video file or an image file or a camera stream |
|
cap = cv.VideoCapture(args.input if args.input else 0) |
|
|
|
tickmeter = cv.TickMeter() |
|
while cv.waitKey(1) < 0: |
|
# Read frame |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
cv.waitKey() |
|
break |
|
|
|
# Get frame height and width |
|
height_ = frame.shape[0] |
|
width_ = frame.shape[1] |
|
rW = width_ / float(inpWidth) |
|
rH = height_ / float(inpHeight) |
|
|
|
# Create a 4D blob from frame. |
|
blob = cv.dnn.blobFromImage(frame, 1.0, (inpWidth, inpHeight), (123.68, 116.78, 103.94), True, False) |
|
|
|
# Run the detection model |
|
detector.setInput(blob) |
|
|
|
tickmeter.start() |
|
outs = detector.forward(outNames) |
|
tickmeter.stop() |
|
|
|
# Get scores and geometry |
|
scores = outs[0] |
|
geometry = outs[1] |
|
[boxes, confidences] = decodeBoundingBoxes(scores, geometry, confThreshold) |
|
|
|
# Apply NMS |
|
indices = cv.dnn.NMSBoxesRotated(boxes, confidences, confThreshold, nmsThreshold) |
|
for i in indices: |
|
# get 4 corners of the rotated rect |
|
vertices = cv.boxPoints(boxes[i]) |
|
# scale the bounding box coordinates based on the respective ratios |
|
for j in range(4): |
|
vertices[j][0] *= rW |
|
vertices[j][1] *= rH |
|
|
|
|
|
# get cropped image using perspective transform |
|
if modelRecognition: |
|
cropped = fourPointsTransform(frame, vertices) |
|
cropped = cv.cvtColor(cropped, cv.COLOR_BGR2GRAY) |
|
|
|
# Create a 4D blob from cropped image |
|
blob = cv.dnn.blobFromImage(cropped, size=(100, 32), mean=127.5, scalefactor=1 / 127.5) |
|
recognizer.setInput(blob) |
|
|
|
# Run the recognition model |
|
tickmeter.start() |
|
result = recognizer.forward() |
|
tickmeter.stop() |
|
|
|
# decode the result into text |
|
wordRecognized = decodeText(result) |
|
cv.putText(frame, wordRecognized, (int(vertices[1][0]), int(vertices[1][1])), cv.FONT_HERSHEY_SIMPLEX, |
|
0.5, (255, 0, 0)) |
|
|
|
for j in range(4): |
|
p1 = (int(vertices[j][0]), int(vertices[j][1])) |
|
p2 = (int(vertices[(j + 1) % 4][0]), int(vertices[(j + 1) % 4][1])) |
|
cv.line(frame, p1, p2, (0, 255, 0), 1) |
|
|
|
# Put efficiency information |
|
label = 'Inference time: %.2f ms' % (tickmeter.getTimeMilli()) |
|
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) |
|
|
|
# Display the frame |
|
cv.imshow(kWinName, frame) |
|
tickmeter.reset() |
|
|
|
|
|
if __name__ == "__main__": |
|
main()
|
|
|