mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
109 lines
4.6 KiB
109 lines
4.6 KiB
// |
|
// this sample demonstrates parsing (segmenting) human body parts from an image using opencv's dnn, |
|
// based on https://github.com/Engineering-Course/LIP_JPPNet |
|
// |
|
// get the pretrained model from: https://www.dropbox.com/s/qag9vzambhhkvxr/lip_jppnet_384.pb?dl=0 |
|
// |
|
|
|
#include <opencv2/dnn.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
using namespace cv; |
|
|
|
|
|
static Mat parse_human(const Mat &image, const std::string &model, int backend=dnn::DNN_BACKEND_DEFAULT, int target=dnn::DNN_TARGET_CPU) { |
|
// this network expects an image and a flipped copy as input |
|
Mat flipped; |
|
flip(image, flipped, 1); |
|
std::vector<Mat> batch; |
|
batch.push_back(image); |
|
batch.push_back(flipped); |
|
Mat blob = dnn::blobFromImages(batch, 1.0, Size(), Scalar(104.00698793, 116.66876762, 122.67891434)); |
|
|
|
dnn::Net net = dnn::readNet(model); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
net.setInput(blob); |
|
Mat out = net.forward(); |
|
// expected output: [2, 20, 384, 384], (2 lists(orig, flipped) of 20 body part heatmaps 384x384) |
|
|
|
// LIP classes: |
|
// 0 Background, 1 Hat, 2 Hair, 3 Glove, 4 Sunglasses, 5 UpperClothes, 6 Dress, 7 Coat, 8 Socks, 9 Pants |
|
// 10 Jumpsuits, 11 Scarf, 12 Skirt, 13 Face, 14 LeftArm, 15 RightArm, 16 LeftLeg, 17 RightLeg, 18 LeftShoe. 19 RightShoe |
|
Vec3b colors[] = { |
|
Vec3b(0, 0, 0), Vec3b(128, 0, 0), Vec3b(255, 0, 0), Vec3b(0, 85, 0), Vec3b(170, 0, 51), Vec3b(255, 85, 0), |
|
Vec3b(0, 0, 85), Vec3b(0, 119, 221), Vec3b(85, 85, 0), Vec3b(0, 85, 85), Vec3b(85, 51, 0), Vec3b(52, 86, 128), |
|
Vec3b(0, 128, 0), Vec3b(0, 0, 255), Vec3b(51, 170, 221), Vec3b(0, 255, 255), Vec3b(85, 255, 170), |
|
Vec3b(170, 255, 85), Vec3b(255, 255, 0), Vec3b(255, 170, 0) |
|
}; |
|
|
|
Mat segm(image.size(), CV_8UC3, Scalar(0,0,0)); |
|
Mat maxval(image.size(), CV_32F, Scalar(0)); |
|
|
|
// iterate over body part heatmaps (LIP classes) |
|
for (int i=0; i<out.size[1]; i++) { |
|
// resize heatmaps to original image size |
|
// "head" is the original image result, "tail" the flipped copy |
|
Mat head, h(out.size[2], out.size[3], CV_32F, out.ptr<float>(0,i)); |
|
resize(h, head, image.size()); |
|
|
|
// we have to swap the last 3 pairs in the "tail" list |
|
static int tail_order[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,14,17,16,19,18}; |
|
Mat tail, t(out.size[2], out.size[3], CV_32F, out.ptr<float>(1,tail_order[i])); |
|
resize(t, tail, image.size()); |
|
flip(tail, tail, 1); |
|
|
|
// mix original and flipped result |
|
Mat avg = (head + tail) * 0.5; |
|
|
|
// write color if prob value > maxval |
|
Mat cmask; |
|
compare(avg, maxval, cmask, CMP_GT); |
|
segm.setTo(colors[i], cmask); |
|
|
|
// keep largest values for next iteration |
|
max(avg, maxval, maxval); |
|
} |
|
cvtColor(segm, segm, COLOR_RGB2BGR); |
|
return segm; |
|
} |
|
|
|
int main(int argc, char**argv) |
|
{ |
|
CommandLineParser parser(argc,argv, |
|
"{help h | | show help screen / args}" |
|
"{image i | | person image to process }" |
|
"{model m |lip_jppnet_384.pb| network model}" |
|
"{backend b | 0 | Choose one of computation backends: " |
|
"0: automatically (by default), " |
|
"1: Halide language (http://halide-lang.org/), " |
|
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " |
|
"3: OpenCV implementation, " |
|
"4: VKCOM, " |
|
"5: CUDA }" |
|
"{target t | 0 | Choose one of target computation devices: " |
|
"0: CPU target (by default), " |
|
"1: OpenCL, " |
|
"2: OpenCL fp16 (half-float precision), " |
|
"3: VPU, " |
|
"4: Vulkan, " |
|
"6: CUDA, " |
|
"7: CUDA fp16 (half-float preprocess) }" |
|
); |
|
if (argc == 1 || parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
std::string model = parser.get<std::string>("model"); |
|
std::string image = parser.get<std::string>("image"); |
|
int backend = parser.get<int>("backend"); |
|
int target = parser.get<int>("target"); |
|
|
|
Mat input = imread(image); |
|
Mat segm = parse_human(input, model, backend, target); |
|
|
|
imshow("human parsing", segm); |
|
waitKey(); |
|
return 0; |
|
}
|
|
|