mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
257 lines
8.5 KiB
257 lines
8.5 KiB
#include "opencv2/objdetect.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/videoio.hpp" |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
static void help(const char** argv) |
|
{ |
|
cout << "\nThis program demonstrates the use of cv::CascadeClassifier class to detect objects (Face + eyes). You can use Haar or LBP features.\n" |
|
"This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n" |
|
"It's most known use is for faces.\n" |
|
"Usage:\n" |
|
<< argv[0] |
|
<< " [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n" |
|
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n" |
|
" [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n" |
|
" [--try-flip]\n" |
|
" [filename|camera_index]\n\n" |
|
"example:\n" |
|
<< argv[0] |
|
<< " --cascade=\"data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n" |
|
"During execution:\n\tHit any key to quit.\n" |
|
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl; |
|
} |
|
|
|
void detectAndDraw( Mat& img, CascadeClassifier& cascade, |
|
CascadeClassifier& nestedCascade, |
|
double scale, bool tryflip ); |
|
|
|
string cascadeName; |
|
string nestedCascadeName; |
|
|
|
int main( int argc, const char** argv ) |
|
{ |
|
VideoCapture capture; |
|
Mat frame, image; |
|
string inputName; |
|
bool tryflip; |
|
CascadeClassifier cascade, nestedCascade; |
|
double scale; |
|
|
|
cv::CommandLineParser parser(argc, argv, |
|
"{help h||}" |
|
"{cascade|data/haarcascades/haarcascade_frontalface_alt.xml|}" |
|
"{nested-cascade|data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|}" |
|
"{scale|1|}{try-flip||}{@filename||}" |
|
); |
|
if (parser.has("help")) |
|
{ |
|
help(argv); |
|
return 0; |
|
} |
|
cascadeName = parser.get<string>("cascade"); |
|
nestedCascadeName = parser.get<string>("nested-cascade"); |
|
scale = parser.get<double>("scale"); |
|
if (scale < 1) |
|
scale = 1; |
|
tryflip = parser.has("try-flip"); |
|
inputName = parser.get<string>("@filename"); |
|
if (!parser.check()) |
|
{ |
|
parser.printErrors(); |
|
return 0; |
|
} |
|
if (!nestedCascade.load(samples::findFileOrKeep(nestedCascadeName))) |
|
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl; |
|
if (!cascade.load(samples::findFile(cascadeName))) |
|
{ |
|
cerr << "ERROR: Could not load classifier cascade" << endl; |
|
help(argv); |
|
return -1; |
|
} |
|
if( inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1) ) |
|
{ |
|
int camera = inputName.empty() ? 0 : inputName[0] - '0'; |
|
if(!capture.open(camera)) |
|
{ |
|
cout << "Capture from camera #" << camera << " didn't work" << endl; |
|
return 1; |
|
} |
|
} |
|
else if (!inputName.empty()) |
|
{ |
|
image = imread(samples::findFileOrKeep(inputName), IMREAD_COLOR); |
|
if (image.empty()) |
|
{ |
|
if (!capture.open(samples::findFileOrKeep(inputName))) |
|
{ |
|
cout << "Could not read " << inputName << endl; |
|
return 1; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
image = imread(samples::findFile("lena.jpg"), IMREAD_COLOR); |
|
if (image.empty()) |
|
{ |
|
cout << "Couldn't read lena.jpg" << endl; |
|
return 1; |
|
} |
|
} |
|
|
|
if( capture.isOpened() ) |
|
{ |
|
cout << "Video capturing has been started ..." << endl; |
|
|
|
for(;;) |
|
{ |
|
capture >> frame; |
|
if( frame.empty() ) |
|
break; |
|
|
|
Mat frame1 = frame.clone(); |
|
detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip ); |
|
|
|
char c = (char)waitKey(10); |
|
if( c == 27 || c == 'q' || c == 'Q' ) |
|
break; |
|
} |
|
} |
|
else |
|
{ |
|
cout << "Detecting face(s) in " << inputName << endl; |
|
if( !image.empty() ) |
|
{ |
|
detectAndDraw( image, cascade, nestedCascade, scale, tryflip ); |
|
waitKey(0); |
|
} |
|
else if( !inputName.empty() ) |
|
{ |
|
/* assume it is a text file containing the |
|
list of the image filenames to be processed - one per line */ |
|
FILE* f = fopen( inputName.c_str(), "rt" ); |
|
if( f ) |
|
{ |
|
char buf[1000+1]; |
|
while( fgets( buf, 1000, f ) ) |
|
{ |
|
int len = (int)strlen(buf); |
|
while( len > 0 && isspace(buf[len-1]) ) |
|
len--; |
|
buf[len] = '\0'; |
|
cout << "file " << buf << endl; |
|
image = imread( buf, IMREAD_COLOR ); |
|
if( !image.empty() ) |
|
{ |
|
detectAndDraw( image, cascade, nestedCascade, scale, tryflip ); |
|
char c = (char)waitKey(0); |
|
if( c == 27 || c == 'q' || c == 'Q' ) |
|
break; |
|
} |
|
else |
|
{ |
|
cerr << "Aw snap, couldn't read image " << buf << endl; |
|
} |
|
} |
|
fclose(f); |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
void detectAndDraw( Mat& img, CascadeClassifier& cascade, |
|
CascadeClassifier& nestedCascade, |
|
double scale, bool tryflip ) |
|
{ |
|
double t = 0; |
|
vector<Rect> faces, faces2; |
|
const static Scalar colors[] = |
|
{ |
|
Scalar(255,0,0), |
|
Scalar(255,128,0), |
|
Scalar(255,255,0), |
|
Scalar(0,255,0), |
|
Scalar(0,128,255), |
|
Scalar(0,255,255), |
|
Scalar(0,0,255), |
|
Scalar(255,0,255) |
|
}; |
|
Mat gray, smallImg; |
|
|
|
cvtColor( img, gray, COLOR_BGR2GRAY ); |
|
double fx = 1 / scale; |
|
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR_EXACT ); |
|
equalizeHist( smallImg, smallImg ); |
|
|
|
t = (double)getTickCount(); |
|
cascade.detectMultiScale( smallImg, faces, |
|
1.1, 2, 0 |
|
//|CASCADE_FIND_BIGGEST_OBJECT |
|
//|CASCADE_DO_ROUGH_SEARCH |
|
|CASCADE_SCALE_IMAGE, |
|
Size(30, 30) ); |
|
if( tryflip ) |
|
{ |
|
flip(smallImg, smallImg, 1); |
|
cascade.detectMultiScale( smallImg, faces2, |
|
1.1, 2, 0 |
|
//|CASCADE_FIND_BIGGEST_OBJECT |
|
//|CASCADE_DO_ROUGH_SEARCH |
|
|CASCADE_SCALE_IMAGE, |
|
Size(30, 30) ); |
|
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); ++r ) |
|
{ |
|
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height)); |
|
} |
|
} |
|
t = (double)getTickCount() - t; |
|
printf( "detection time = %g ms\n", t*1000/getTickFrequency()); |
|
for ( size_t i = 0; i < faces.size(); i++ ) |
|
{ |
|
Rect r = faces[i]; |
|
Mat smallImgROI; |
|
vector<Rect> nestedObjects; |
|
Point center; |
|
Scalar color = colors[i%8]; |
|
int radius; |
|
|
|
double aspect_ratio = (double)r.width/r.height; |
|
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 ) |
|
{ |
|
center.x = cvRound((r.x + r.width*0.5)*scale); |
|
center.y = cvRound((r.y + r.height*0.5)*scale); |
|
radius = cvRound((r.width + r.height)*0.25*scale); |
|
circle( img, center, radius, color, 3, 8, 0 ); |
|
} |
|
else |
|
rectangle( img, Point(cvRound(r.x*scale), cvRound(r.y*scale)), |
|
Point(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)), |
|
color, 3, 8, 0); |
|
if( nestedCascade.empty() ) |
|
continue; |
|
smallImgROI = smallImg( r ); |
|
nestedCascade.detectMultiScale( smallImgROI, nestedObjects, |
|
1.1, 2, 0 |
|
//|CASCADE_FIND_BIGGEST_OBJECT |
|
//|CASCADE_DO_ROUGH_SEARCH |
|
//|CASCADE_DO_CANNY_PRUNING |
|
|CASCADE_SCALE_IMAGE, |
|
Size(30, 30) ); |
|
for ( size_t j = 0; j < nestedObjects.size(); j++ ) |
|
{ |
|
Rect nr = nestedObjects[j]; |
|
center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale); |
|
center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale); |
|
radius = cvRound((nr.width + nr.height)*0.25*scale); |
|
circle( img, center, radius, color, 3, 8, 0 ); |
|
} |
|
} |
|
imshow( "result", img ); |
|
}
|
|
|