mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2689 lines
106 KiB
2689 lines
106 KiB
//***************************************************************************/ |
|
// This software is released under the 2-Clause BSD license, included |
|
// below. |
|
// |
|
// Copyright (c) 2021, Aous Naman |
|
// Copyright (c) 2021, Kakadu Software Pty Ltd, Australia |
|
// Copyright (c) 2021, The University of New South Wales, Australia |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// 1. Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// |
|
// 2. Redistributions in binary form must reproduce the above copyright |
|
// notice, this list of conditions and the following disclaimer in the |
|
// documentation and/or other materials provided with the distribution. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
|
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
|
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
|
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED |
|
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
//***************************************************************************/ |
|
// This file is part of the OpenJpeg software implementation. |
|
// File: ht_dec.c |
|
// Author: Aous Naman |
|
// Date: 01 September 2021 |
|
//***************************************************************************/ |
|
|
|
//***************************************************************************/ |
|
/** @file ht_dec.c |
|
* @brief implements HTJ2K block decoder |
|
*/ |
|
|
|
#include <assert.h> |
|
#include <string.h> |
|
#include "opj_includes.h" |
|
|
|
#include "t1_ht_luts.h" |
|
|
|
///////////////////////////////////////////////////////////////////////////// |
|
// compiler detection |
|
///////////////////////////////////////////////////////////////////////////// |
|
#ifdef _MSC_VER |
|
#define OPJ_COMPILER_MSVC |
|
#elif (defined __GNUC__) |
|
#define OPJ_COMPILER_GNUC |
|
#endif |
|
|
|
#if defined(OPJ_COMPILER_MSVC) && defined(_M_ARM64) \ |
|
&& !defined(_M_ARM64EC) && !defined(_M_CEE_PURE) && !defined(__CUDACC__) \ |
|
&& !defined(__INTEL_COMPILER) && !defined(__clang__) |
|
#define MSVC_NEON_INTRINSICS |
|
#endif |
|
|
|
#ifdef MSVC_NEON_INTRINSICS |
|
#include <arm64_neon.h> |
|
#endif |
|
|
|
//************************************************************************/ |
|
/** @brief Displays the error message for disabling the decoding of SPP and |
|
* MRP passes |
|
*/ |
|
static OPJ_BOOL only_cleanup_pass_is_decoded = OPJ_FALSE; |
|
|
|
//************************************************************************/ |
|
/** @brief Generates population count (i.e., the number of set bits) |
|
* |
|
* @param [in] val is the value for which population count is sought |
|
*/ |
|
static INLINE |
|
OPJ_UINT32 population_count(OPJ_UINT32 val) |
|
{ |
|
#if defined(OPJ_COMPILER_MSVC) && (defined(_M_IX86) || defined(_M_AMD64)) |
|
return (OPJ_UINT32)__popcnt(val); |
|
#elif defined(OPJ_COMPILER_MSVC) && defined(MSVC_NEON_INTRINSICS) |
|
const __n64 temp = neon_cnt(__uint64ToN64_v(val)); |
|
return neon_addv8(temp).n8_i8[0]; |
|
#elif (defined OPJ_COMPILER_GNUC) |
|
return (OPJ_UINT32)__builtin_popcount(val); |
|
#else |
|
val -= ((val >> 1) & 0x55555555); |
|
val = (((val >> 2) & 0x33333333) + (val & 0x33333333)); |
|
val = (((val >> 4) + val) & 0x0f0f0f0f); |
|
val += (val >> 8); |
|
val += (val >> 16); |
|
return (OPJ_UINT32)(val & 0x0000003f); |
|
#endif |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Counts the number of leading zeros |
|
* |
|
* @param [in] val is the value for which leading zero count is sought |
|
*/ |
|
#ifdef OPJ_COMPILER_MSVC |
|
#pragma intrinsic(_BitScanReverse) |
|
#endif |
|
static INLINE |
|
OPJ_UINT32 count_leading_zeros(OPJ_UINT32 val) |
|
{ |
|
#ifdef OPJ_COMPILER_MSVC |
|
unsigned long result = 0; |
|
_BitScanReverse(&result, val); |
|
return 31U ^ (OPJ_UINT32)result; |
|
#elif (defined OPJ_COMPILER_GNUC) |
|
return (OPJ_UINT32)__builtin_clz(val); |
|
#else |
|
val |= (val >> 1); |
|
val |= (val >> 2); |
|
val |= (val >> 4); |
|
val |= (val >> 8); |
|
val |= (val >> 16); |
|
return 32U - population_count(val); |
|
#endif |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Read a little-endian serialized UINT32. |
|
* |
|
* @param [in] dataIn pointer to byte stream to read from |
|
*/ |
|
static INLINE OPJ_UINT32 read_le_uint32(const void* dataIn) |
|
{ |
|
#if defined(OPJ_BIG_ENDIAN) |
|
const OPJ_UINT8* data = (const OPJ_UINT8*)dataIn; |
|
return ((OPJ_UINT32)data[0]) | (OPJ_UINT32)(data[1] << 8) | (OPJ_UINT32)( |
|
data[2] << 16) | ((( |
|
OPJ_UINT32)data[3]) << |
|
24U); |
|
#else |
|
return *(OPJ_UINT32*)dataIn; |
|
#endif |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief MEL state structure for reading and decoding the MEL bitstream |
|
* |
|
* A number of events is decoded from the MEL bitstream ahead of time |
|
* and stored in run/num_runs. |
|
* Each run represents the number of zero events before a one event. |
|
*/ |
|
typedef struct dec_mel { |
|
// data decoding machinery |
|
OPJ_UINT8* data; //!<the address of data (or bitstream) |
|
OPJ_UINT64 tmp; //!<temporary buffer for read data |
|
int bits; //!<number of bits stored in tmp |
|
int size; //!<number of bytes in MEL code |
|
OPJ_BOOL unstuff; //!<true if the next bit needs to be unstuffed |
|
int k; //!<state of MEL decoder |
|
|
|
// queue of decoded runs |
|
int num_runs; //!<number of decoded runs left in runs (maximum 8) |
|
OPJ_UINT64 runs; //!<runs of decoded MEL codewords (7 bits/run) |
|
} dec_mel_t; |
|
|
|
//************************************************************************/ |
|
/** @brief Reads and unstuffs the MEL bitstream |
|
* |
|
* This design needs more bytes in the codeblock buffer than the length |
|
* of the cleanup pass by up to 2 bytes. |
|
* |
|
* Unstuffing removes the MSB of the byte following a byte whose |
|
* value is 0xFF; this prevents sequences larger than 0xFF7F in value |
|
* from appearing the bitstream. |
|
* |
|
* @param [in] melp is a pointer to dec_mel_t structure |
|
*/ |
|
static INLINE |
|
void mel_read(dec_mel_t *melp) |
|
{ |
|
OPJ_UINT32 val; |
|
int bits; |
|
OPJ_UINT32 t; |
|
OPJ_BOOL unstuff; |
|
|
|
if (melp->bits > 32) { //there are enough bits in the tmp variable |
|
return; // return without reading new data |
|
} |
|
|
|
val = 0xFFFFFFFF; // feed in 0xFF if buffer is exhausted |
|
if (melp->size > 4) { // if there is more than 4 bytes the MEL segment |
|
val = read_le_uint32(melp->data); // read 32 bits from MEL data |
|
melp->data += 4; // advance pointer |
|
melp->size -= 4; // reduce counter |
|
} else if (melp->size > 0) { // 4 or less |
|
OPJ_UINT32 m, v; |
|
int i = 0; |
|
while (melp->size > 1) { |
|
OPJ_UINT32 v = *melp->data++; // read one byte at a time |
|
OPJ_UINT32 m = ~(0xFFu << i); // mask of location |
|
val = (val & m) | (v << i); // put byte in its correct location |
|
--melp->size; |
|
i += 8; |
|
} |
|
// size equal to 1 |
|
v = *melp->data++; // the one before the last is different |
|
v |= 0xF; // MEL and VLC segments can overlap |
|
m = ~(0xFFu << i); |
|
val = (val & m) | (v << i); |
|
--melp->size; |
|
} |
|
|
|
// next we unstuff them before adding them to the buffer |
|
bits = 32 - melp->unstuff; // number of bits in val, subtract 1 if |
|
// the previously read byte requires |
|
// unstuffing |
|
|
|
// data is unstuffed and accumulated in t |
|
// bits has the number of bits in t |
|
t = val & 0xFF; |
|
unstuff = ((val & 0xFF) == 0xFF); // true if the byte needs unstuffing |
|
bits -= unstuff; // there is one less bit in t if unstuffing is needed |
|
t = t << (8 - unstuff); // move up to make room for the next byte |
|
|
|
//this is a repeat of the above |
|
t |= (val >> 8) & 0xFF; |
|
unstuff = (((val >> 8) & 0xFF) == 0xFF); |
|
bits -= unstuff; |
|
t = t << (8 - unstuff); |
|
|
|
t |= (val >> 16) & 0xFF; |
|
unstuff = (((val >> 16) & 0xFF) == 0xFF); |
|
bits -= unstuff; |
|
t = t << (8 - unstuff); |
|
|
|
t |= (val >> 24) & 0xFF; |
|
melp->unstuff = (((val >> 24) & 0xFF) == 0xFF); |
|
|
|
// move t to tmp, and push the result all the way up, so we read from |
|
// the MSB |
|
melp->tmp |= ((OPJ_UINT64)t) << (64 - bits - melp->bits); |
|
melp->bits += bits; //increment the number of bits in tmp |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Decodes unstuffed MEL segment bits stored in tmp to runs |
|
* |
|
* Runs are stored in "runs" and the number of runs in "num_runs". |
|
* Each run represents a number of zero events that may or may not |
|
* terminate in a 1 event. |
|
* Each run is stored in 7 bits. The LSB is 1 if the run terminates in |
|
* a 1 event, 0 otherwise. The next 6 bits, for the case terminating |
|
* with 1, contain the number of consecutive 0 zero events * 2; for the |
|
* case terminating with 0, they store (number of consecutive 0 zero |
|
* events - 1) * 2. |
|
* A total of 6 bits (made up of 1 + 5) should have been enough. |
|
* |
|
* @param [in] melp is a pointer to dec_mel_t structure |
|
*/ |
|
static INLINE |
|
void mel_decode(dec_mel_t *melp) |
|
{ |
|
static const int mel_exp[13] = { //MEL exponents |
|
0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5 |
|
}; |
|
|
|
if (melp->bits < 6) { // if there are less than 6 bits in tmp |
|
mel_read(melp); // then read from the MEL bitstream |
|
} |
|
// 6 bits is the largest decodable MEL cwd |
|
|
|
//repeat so long that there is enough decodable bits in tmp, |
|
// and the runs store is not full (num_runs < 8) |
|
while (melp->bits >= 6 && melp->num_runs < 8) { |
|
int eval = mel_exp[melp->k]; // number of bits associated with state |
|
int run = 0; |
|
if (melp->tmp & (1ull << 63)) { //The next bit to decode (stored in MSB) |
|
//one is found |
|
run = 1 << eval; |
|
run--; // consecutive runs of 0 events - 1 |
|
melp->k = melp->k + 1 < 12 ? melp->k + 1 : 12;//increment, max is 12 |
|
melp->tmp <<= 1; // consume one bit from tmp |
|
melp->bits -= 1; |
|
run = run << 1; // a stretch of zeros not terminating in one |
|
} else { |
|
//0 is found |
|
run = (int)(melp->tmp >> (63 - eval)) & ((1 << eval) - 1); |
|
melp->k = melp->k - 1 > 0 ? melp->k - 1 : 0; //decrement, min is 0 |
|
melp->tmp <<= eval + 1; //consume eval + 1 bits (max is 6) |
|
melp->bits -= eval + 1; |
|
run = (run << 1) + 1; // a stretch of zeros terminating with one |
|
} |
|
eval = melp->num_runs * 7; // 7 bits per run |
|
melp->runs &= ~((OPJ_UINT64)0x3F << eval); // 6 bits are sufficient |
|
melp->runs |= ((OPJ_UINT64)run) << eval; // store the value in runs |
|
melp->num_runs++; // increment count |
|
} |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Initiates a dec_mel_t structure for MEL decoding and reads |
|
* some bytes in order to get the read address to a multiple |
|
* of 4 |
|
* |
|
* @param [in] melp is a pointer to dec_mel_t structure |
|
* @param [in] bbuf is a pointer to byte buffer |
|
* @param [in] lcup is the length of MagSgn+MEL+VLC segments |
|
* @param [in] scup is the length of MEL+VLC segments |
|
*/ |
|
static INLINE |
|
OPJ_BOOL mel_init(dec_mel_t *melp, OPJ_UINT8* bbuf, int lcup, int scup) |
|
{ |
|
int num; |
|
int i; |
|
|
|
melp->data = bbuf + lcup - scup; // move the pointer to the start of MEL |
|
melp->bits = 0; // 0 bits in tmp |
|
melp->tmp = 0; // |
|
melp->unstuff = OPJ_FALSE; // no unstuffing |
|
melp->size = scup - 1; // size is the length of MEL+VLC-1 |
|
melp->k = 0; // 0 for state |
|
melp->num_runs = 0; // num_runs is 0 |
|
melp->runs = 0; // |
|
|
|
//This code is borrowed; original is for a different architecture |
|
//These few lines take care of the case where data is not at a multiple |
|
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the MEL segment |
|
num = 4 - (int)((intptr_t)(melp->data) & 0x3); |
|
for (i = 0; i < num; ++i) { // this code is similar to mel_read |
|
OPJ_UINT64 d; |
|
int d_bits; |
|
|
|
if (melp->unstuff == OPJ_TRUE && melp->data[0] > 0x8F) { |
|
return OPJ_FALSE; |
|
} |
|
d = (melp->size > 0) ? *melp->data : 0xFF; // if buffer is consumed |
|
// set data to 0xFF |
|
if (melp->size == 1) { |
|
d |= 0xF; //if this is MEL+VLC-1, set LSBs to 0xF |
|
} |
|
// see the standard |
|
melp->data += melp->size-- > 0; //increment if the end is not reached |
|
d_bits = 8 - melp->unstuff; //if unstuffing is needed, reduce by 1 |
|
melp->tmp = (melp->tmp << d_bits) | d; //store bits in tmp |
|
melp->bits += d_bits; //increment tmp by number of bits |
|
melp->unstuff = ((d & 0xFF) == 0xFF); //true of next byte needs |
|
//unstuffing |
|
} |
|
melp->tmp <<= (64 - melp->bits); //push all the way up so the first bit |
|
// is the MSB |
|
return OPJ_TRUE; |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Retrieves one run from dec_mel_t; if there are no runs stored |
|
* MEL segment is decoded |
|
* |
|
* @param [in] melp is a pointer to dec_mel_t structure |
|
*/ |
|
static INLINE |
|
int mel_get_run(dec_mel_t *melp) |
|
{ |
|
int t; |
|
if (melp->num_runs == 0) { //if no runs, decode more bit from MEL segment |
|
mel_decode(melp); |
|
} |
|
|
|
t = melp->runs & 0x7F; //retrieve one run |
|
melp->runs >>= 7; // remove the retrieved run |
|
melp->num_runs--; |
|
return t; // return run |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief A structure for reading and unstuffing a segment that grows |
|
* backward, such as VLC and MRP |
|
*/ |
|
typedef struct rev_struct { |
|
//storage |
|
OPJ_UINT8* data; //!<pointer to where to read data |
|
OPJ_UINT64 tmp; //!<temporary buffer of read data |
|
OPJ_UINT32 bits; //!<number of bits stored in tmp |
|
int size; //!<number of bytes left |
|
OPJ_BOOL unstuff; //!<true if the last byte is more than 0x8F |
|
//!<then the current byte is unstuffed if it is 0x7F |
|
} rev_struct_t; |
|
|
|
//************************************************************************/ |
|
/** @brief Read and unstuff data from a backwardly-growing segment |
|
* |
|
* This reader can read up to 8 bytes from before the VLC segment. |
|
* Care must be taken not read from unreadable memory, causing a |
|
* segmentation fault. |
|
* |
|
* Note that there is another subroutine rev_read_mrp that is slightly |
|
* different. The other one fills zeros when the buffer is exhausted. |
|
* This one basically does not care if the bytes are consumed, because |
|
* any extra data should not be used in the actual decoding. |
|
* |
|
* Unstuffing is needed to prevent sequences more than 0xFF8F from |
|
* appearing in the bits stream; since we are reading backward, we keep |
|
* watch when a value larger than 0x8F appears in the bitstream. |
|
* If the byte following this is 0x7F, we unstuff this byte (ignore the |
|
* MSB of that byte, which should be 0). |
|
* |
|
* @param [in] vlcp is a pointer to rev_struct_t structure |
|
*/ |
|
static INLINE |
|
void rev_read(rev_struct_t *vlcp) |
|
{ |
|
OPJ_UINT32 val; |
|
OPJ_UINT32 tmp; |
|
OPJ_UINT32 bits; |
|
OPJ_BOOL unstuff; |
|
|
|
//process 4 bytes at a time |
|
if (vlcp->bits > 32) { // if there are more than 32 bits in tmp, then |
|
return; // reading 32 bits can overflow vlcp->tmp |
|
} |
|
val = 0; |
|
//the next line (the if statement) needs to be tested first |
|
if (vlcp->size > 3) { // if there are more than 3 bytes left in VLC |
|
// (vlcp->data - 3) move pointer back to read 32 bits at once |
|
val = read_le_uint32(vlcp->data - 3); // then read 32 bits |
|
vlcp->data -= 4; // move data pointer back by 4 |
|
vlcp->size -= 4; // reduce available byte by 4 |
|
} else if (vlcp->size > 0) { // 4 or less |
|
int i = 24; |
|
while (vlcp->size > 0) { |
|
OPJ_UINT32 v = *vlcp->data--; // read one byte at a time |
|
val |= (v << i); // put byte in its correct location |
|
--vlcp->size; |
|
i -= 8; |
|
} |
|
} |
|
|
|
//accumulate in tmp, number of bits in tmp are stored in bits |
|
tmp = val >> 24; //start with the MSB byte |
|
|
|
// test unstuff (previous byte is >0x8F), and this byte is 0x7F |
|
bits = 8u - ((vlcp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u); |
|
unstuff = (val >> 24) > 0x8F; //this is for the next byte |
|
|
|
tmp |= ((val >> 16) & 0xFF) << bits; //process the next byte |
|
bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u); |
|
unstuff = ((val >> 16) & 0xFF) > 0x8F; |
|
|
|
tmp |= ((val >> 8) & 0xFF) << bits; |
|
bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u); |
|
unstuff = ((val >> 8) & 0xFF) > 0x8F; |
|
|
|
tmp |= (val & 0xFF) << bits; |
|
bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u); |
|
unstuff = (val & 0xFF) > 0x8F; |
|
|
|
// now move the read and unstuffed bits into vlcp->tmp |
|
vlcp->tmp |= (OPJ_UINT64)tmp << vlcp->bits; |
|
vlcp->bits += bits; |
|
vlcp->unstuff = unstuff; // this for the next read |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Initiates the rev_struct_t structure and reads a few bytes to |
|
* move the read address to multiple of 4 |
|
* |
|
* There is another similar rev_init_mrp subroutine. The difference is |
|
* that this one, rev_init, discards the first 12 bits (they have the |
|
* sum of the lengths of VLC and MEL segments), and first unstuff depends |
|
* on first 4 bits. |
|
* |
|
* @param [in] vlcp is a pointer to rev_struct_t structure |
|
* @param [in] data is a pointer to byte at the start of the cleanup pass |
|
* @param [in] lcup is the length of MagSgn+MEL+VLC segments |
|
* @param [in] scup is the length of MEL+VLC segments |
|
*/ |
|
static INLINE |
|
void rev_init(rev_struct_t *vlcp, OPJ_UINT8* data, int lcup, int scup) |
|
{ |
|
OPJ_UINT32 d; |
|
int num, tnum, i; |
|
|
|
//first byte has only the upper 4 bits |
|
vlcp->data = data + lcup - 2; |
|
|
|
//size can not be larger than this, in fact it should be smaller |
|
vlcp->size = scup - 2; |
|
|
|
d = *vlcp->data--; // read one byte (this is a half byte) |
|
vlcp->tmp = d >> 4; // both initialize and set |
|
vlcp->bits = 4 - ((vlcp->tmp & 7) == 7); //check standard |
|
vlcp->unstuff = (d | 0xF) > 0x8F; //this is useful for the next byte |
|
|
|
//This code is designed for an architecture that read address should |
|
// align to the read size (address multiple of 4 if read size is 4) |
|
//These few lines take care of the case where data is not at a multiple |
|
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the VLC bitstream. |
|
// To read 32 bits, read from (vlcp->data - 3) |
|
num = 1 + (int)((intptr_t)(vlcp->data) & 0x3); |
|
tnum = num < vlcp->size ? num : vlcp->size; |
|
for (i = 0; i < tnum; ++i) { |
|
OPJ_UINT64 d; |
|
OPJ_UINT32 d_bits; |
|
d = *vlcp->data--; // read one byte and move read pointer |
|
//check if the last byte was >0x8F (unstuff == true) and this is 0x7F |
|
d_bits = 8u - ((vlcp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u); |
|
vlcp->tmp |= d << vlcp->bits; // move data to vlcp->tmp |
|
vlcp->bits += d_bits; |
|
vlcp->unstuff = d > 0x8F; // for next byte |
|
} |
|
vlcp->size -= tnum; |
|
rev_read(vlcp); // read another 32 buts |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Retrieves 32 bits from the head of a rev_struct structure |
|
* |
|
* By the end of this call, vlcp->tmp must have no less than 33 bits |
|
* |
|
* @param [in] vlcp is a pointer to rev_struct structure |
|
*/ |
|
static INLINE |
|
OPJ_UINT32 rev_fetch(rev_struct_t *vlcp) |
|
{ |
|
if (vlcp->bits < 32) { // if there are less then 32 bits, read more |
|
rev_read(vlcp); // read 32 bits, but unstuffing might reduce this |
|
if (vlcp->bits < 32) { // if there is still space in vlcp->tmp for 32 bits |
|
rev_read(vlcp); // read another 32 |
|
} |
|
} |
|
return (OPJ_UINT32)vlcp->tmp; // return the head (bottom-most) of vlcp->tmp |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Consumes num_bits from a rev_struct structure |
|
* |
|
* @param [in] vlcp is a pointer to rev_struct structure |
|
* @param [in] num_bits is the number of bits to be removed |
|
*/ |
|
static INLINE |
|
OPJ_UINT32 rev_advance(rev_struct_t *vlcp, OPJ_UINT32 num_bits) |
|
{ |
|
assert(num_bits <= vlcp->bits); // vlcp->tmp must have more than num_bits |
|
vlcp->tmp >>= num_bits; // remove bits |
|
vlcp->bits -= num_bits; // decrement the number of bits |
|
return (OPJ_UINT32)vlcp->tmp; |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Reads and unstuffs from rev_struct |
|
* |
|
* This is different than rev_read in that this fills in zeros when the |
|
* the available data is consumed. The other does not care about the |
|
* values when all data is consumed. |
|
* |
|
* See rev_read for more information about unstuffing |
|
* |
|
* @param [in] mrp is a pointer to rev_struct structure |
|
*/ |
|
static INLINE |
|
void rev_read_mrp(rev_struct_t *mrp) |
|
{ |
|
OPJ_UINT32 val; |
|
OPJ_UINT32 tmp; |
|
OPJ_UINT32 bits; |
|
OPJ_BOOL unstuff; |
|
|
|
//process 4 bytes at a time |
|
if (mrp->bits > 32) { |
|
return; |
|
} |
|
val = 0; |
|
if (mrp->size > 3) { // If there are 3 byte or more |
|
// (mrp->data - 3) move pointer back to read 32 bits at once |
|
val = read_le_uint32(mrp->data - 3); // read 32 bits |
|
mrp->data -= 4; // move back pointer |
|
mrp->size -= 4; // reduce count |
|
} else if (mrp->size > 0) { |
|
int i = 24; |
|
while (mrp->size > 0) { |
|
OPJ_UINT32 v = *mrp->data--; // read one byte at a time |
|
val |= (v << i); // put byte in its correct location |
|
--mrp->size; |
|
i -= 8; |
|
} |
|
} |
|
|
|
|
|
//accumulate in tmp, and keep count in bits |
|
tmp = val >> 24; |
|
|
|
//test if the last byte > 0x8F (unstuff must be true) and this is 0x7F |
|
bits = 8u - ((mrp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u); |
|
unstuff = (val >> 24) > 0x8F; |
|
|
|
//process the next byte |
|
tmp |= ((val >> 16) & 0xFF) << bits; |
|
bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u); |
|
unstuff = ((val >> 16) & 0xFF) > 0x8F; |
|
|
|
tmp |= ((val >> 8) & 0xFF) << bits; |
|
bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u); |
|
unstuff = ((val >> 8) & 0xFF) > 0x8F; |
|
|
|
tmp |= (val & 0xFF) << bits; |
|
bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u); |
|
unstuff = (val & 0xFF) > 0x8F; |
|
|
|
mrp->tmp |= (OPJ_UINT64)tmp << mrp->bits; // move data to mrp pointer |
|
mrp->bits += bits; |
|
mrp->unstuff = unstuff; // next byte |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Initialized rev_struct structure for MRP segment, and reads |
|
* a number of bytes such that the next 32 bits read are from |
|
* an address that is a multiple of 4. Note this is designed for |
|
* an architecture that read size must be compatible with the |
|
* alignment of the read address |
|
* |
|
* There is another similar subroutine rev_init. This subroutine does |
|
* NOT skip the first 12 bits, and starts with unstuff set to true. |
|
* |
|
* @param [in] mrp is a pointer to rev_struct structure |
|
* @param [in] data is a pointer to byte at the start of the cleanup pass |
|
* @param [in] lcup is the length of MagSgn+MEL+VLC segments |
|
* @param [in] len2 is the length of SPP+MRP segments |
|
*/ |
|
static INLINE |
|
void rev_init_mrp(rev_struct_t *mrp, OPJ_UINT8* data, int lcup, int len2) |
|
{ |
|
int num, i; |
|
|
|
mrp->data = data + lcup + len2 - 1; |
|
mrp->size = len2; |
|
mrp->unstuff = OPJ_TRUE; |
|
mrp->bits = 0; |
|
mrp->tmp = 0; |
|
|
|
//This code is designed for an architecture that read address should |
|
// align to the read size (address multiple of 4 if read size is 4) |
|
//These few lines take care of the case where data is not at a multiple |
|
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the MRP stream |
|
num = 1 + (int)((intptr_t)(mrp->data) & 0x3); |
|
for (i = 0; i < num; ++i) { |
|
OPJ_UINT64 d; |
|
OPJ_UINT32 d_bits; |
|
|
|
//read a byte, 0 if no more data |
|
d = (mrp->size-- > 0) ? *mrp->data-- : 0; |
|
//check if unstuffing is needed |
|
d_bits = 8u - ((mrp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u); |
|
mrp->tmp |= d << mrp->bits; // move data to vlcp->tmp |
|
mrp->bits += d_bits; |
|
mrp->unstuff = d > 0x8F; // for next byte |
|
} |
|
rev_read_mrp(mrp); |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Retrieves 32 bits from the head of a rev_struct structure |
|
* |
|
* By the end of this call, mrp->tmp must have no less than 33 bits |
|
* |
|
* @param [in] mrp is a pointer to rev_struct structure |
|
*/ |
|
static INLINE |
|
OPJ_UINT32 rev_fetch_mrp(rev_struct_t *mrp) |
|
{ |
|
if (mrp->bits < 32) { // if there are less than 32 bits in mrp->tmp |
|
rev_read_mrp(mrp); // read 30-32 bits from mrp |
|
if (mrp->bits < 32) { // if there is a space of 32 bits |
|
rev_read_mrp(mrp); // read more |
|
} |
|
} |
|
return (OPJ_UINT32)mrp->tmp; // return the head of mrp->tmp |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Consumes num_bits from a rev_struct structure |
|
* |
|
* @param [in] mrp is a pointer to rev_struct structure |
|
* @param [in] num_bits is the number of bits to be removed |
|
*/ |
|
static INLINE |
|
OPJ_UINT32 rev_advance_mrp(rev_struct_t *mrp, OPJ_UINT32 num_bits) |
|
{ |
|
assert(num_bits <= mrp->bits); // we must not consume more than mrp->bits |
|
mrp->tmp >>= num_bits; // discard the lowest num_bits bits |
|
mrp->bits -= num_bits; |
|
return (OPJ_UINT32)mrp->tmp; // return data after consumption |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Decode initial UVLC to get the u value (or u_q) |
|
* |
|
* @param [in] vlc is the head of the VLC bitstream |
|
* @param [in] mode is 0, 1, 2, 3, or 4. Values in 0 to 3 are composed of |
|
* u_off of 1st quad and 2nd quad of a quad pair. The value |
|
* 4 occurs when both bits are 1, and the event decoded |
|
* from MEL bitstream is also 1. |
|
* @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1; |
|
* this value is a partial calculation of u + kappa. |
|
*/ |
|
static INLINE |
|
OPJ_UINT32 decode_init_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u) |
|
{ |
|
//table stores possible decoding three bits from vlc |
|
// there are 8 entries for xx1, x10, 100, 000, where x means do not care |
|
// table value is made up of |
|
// 2 bits in the LSB for prefix length |
|
// 3 bits for suffix length |
|
// 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814) |
|
static const OPJ_UINT8 dec[8] = { // the index is the prefix codeword |
|
3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000" |
|
1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1" |
|
2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01" |
|
1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1" |
|
3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001" |
|
1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1" |
|
2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01" |
|
1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1" |
|
}; |
|
|
|
OPJ_UINT32 consumed_bits = 0; |
|
if (mode == 0) { // both u_off are 0 |
|
u[0] = u[1] = 1; //Kappa is 1 for initial line |
|
} else if (mode <= 2) { // u_off are either 01 or 10 |
|
OPJ_UINT32 d; |
|
OPJ_UINT32 suffix_len; |
|
|
|
d = dec[vlc & 0x7]; //look at the least significant 3 bits |
|
vlc >>= d & 0x3; //prefix length |
|
consumed_bits += d & 0x3; |
|
|
|
suffix_len = ((d >> 2) & 0x7); |
|
consumed_bits += suffix_len; |
|
|
|
d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
|
u[0] = (mode == 1) ? d + 1 : 1; // kappa is 1 for initial line |
|
u[1] = (mode == 1) ? 1 : d + 1; // kappa is 1 for initial line |
|
} else if (mode == 3) { // both u_off are 1, and MEL event is 0 |
|
OPJ_UINT32 d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
|
vlc >>= d1 & 0x3; // Consume bits |
|
consumed_bits += d1 & 0x3; |
|
|
|
if ((d1 & 0x3) > 2) { |
|
OPJ_UINT32 suffix_len; |
|
|
|
//u_{q_2} prefix |
|
u[1] = (vlc & 1) + 1 + 1; //Kappa is 1 for initial line |
|
++consumed_bits; |
|
vlc >>= 1; |
|
|
|
suffix_len = ((d1 >> 2) & 0x7); |
|
consumed_bits += suffix_len; |
|
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
|
u[0] = d1 + 1; //Kappa is 1 for initial line |
|
} else { |
|
OPJ_UINT32 d2; |
|
OPJ_UINT32 suffix_len; |
|
|
|
d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
|
vlc >>= d2 & 0x3; // Consume bits |
|
consumed_bits += d2 & 0x3; |
|
|
|
suffix_len = ((d1 >> 2) & 0x7); |
|
consumed_bits += suffix_len; |
|
|
|
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
|
u[0] = d1 + 1; //Kappa is 1 for initial line |
|
vlc >>= suffix_len; |
|
|
|
suffix_len = ((d2 >> 2) & 0x7); |
|
consumed_bits += suffix_len; |
|
|
|
d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
|
u[1] = d2 + 1; //Kappa is 1 for initial line |
|
} |
|
} else if (mode == 4) { // both u_off are 1, and MEL event is 1 |
|
OPJ_UINT32 d1; |
|
OPJ_UINT32 d2; |
|
OPJ_UINT32 suffix_len; |
|
|
|
d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
|
vlc >>= d1 & 0x3; // Consume bits |
|
consumed_bits += d1 & 0x3; |
|
|
|
d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
|
vlc >>= d2 & 0x3; // Consume bits |
|
consumed_bits += d2 & 0x3; |
|
|
|
suffix_len = ((d1 >> 2) & 0x7); |
|
consumed_bits += suffix_len; |
|
|
|
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
|
u[0] = d1 + 3; // add 2+kappa |
|
vlc >>= suffix_len; |
|
|
|
suffix_len = ((d2 >> 2) & 0x7); |
|
consumed_bits += suffix_len; |
|
|
|
d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
|
u[1] = d2 + 3; // add 2+kappa |
|
} |
|
return consumed_bits; |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Decode non-initial UVLC to get the u value (or u_q) |
|
* |
|
* @param [in] vlc is the head of the VLC bitstream |
|
* @param [in] mode is 0, 1, 2, or 3. The 1st bit is u_off of 1st quad |
|
* and 2nd for 2nd quad of a quad pair |
|
* @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1; |
|
* this value is a partial calculation of u + kappa. |
|
*/ |
|
static INLINE |
|
OPJ_UINT32 decode_noninit_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u) |
|
{ |
|
//table stores possible decoding three bits from vlc |
|
// there are 8 entries for xx1, x10, 100, 000, where x means do not care |
|
// table value is made up of |
|
// 2 bits in the LSB for prefix length |
|
// 3 bits for suffix length |
|
// 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814) |
|
static const OPJ_UINT8 dec[8] = { |
|
3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000" |
|
1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1" |
|
2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01" |
|
1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1" |
|
3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001" |
|
1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1" |
|
2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01" |
|
1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1" |
|
}; |
|
|
|
OPJ_UINT32 consumed_bits = 0; |
|
if (mode == 0) { |
|
u[0] = u[1] = 1; //for kappa |
|
} else if (mode <= 2) { //u_off are either 01 or 10 |
|
OPJ_UINT32 d; |
|
OPJ_UINT32 suffix_len; |
|
|
|
d = dec[vlc & 0x7]; //look at the least significant 3 bits |
|
vlc >>= d & 0x3; //prefix length |
|
consumed_bits += d & 0x3; |
|
|
|
suffix_len = ((d >> 2) & 0x7); |
|
consumed_bits += suffix_len; |
|
|
|
d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
|
u[0] = (mode == 1) ? d + 1 : 1; //for kappa |
|
u[1] = (mode == 1) ? 1 : d + 1; //for kappa |
|
} else if (mode == 3) { // both u_off are 1 |
|
OPJ_UINT32 d1; |
|
OPJ_UINT32 d2; |
|
OPJ_UINT32 suffix_len; |
|
|
|
d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
|
vlc >>= d1 & 0x3; // Consume bits |
|
consumed_bits += d1 & 0x3; |
|
|
|
d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
|
vlc >>= d2 & 0x3; // Consume bits |
|
consumed_bits += d2 & 0x3; |
|
|
|
suffix_len = ((d1 >> 2) & 0x7); |
|
consumed_bits += suffix_len; |
|
|
|
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
|
u[0] = d1 + 1; //1 for kappa |
|
vlc >>= suffix_len; |
|
|
|
suffix_len = ((d2 >> 2) & 0x7); |
|
consumed_bits += suffix_len; |
|
|
|
d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
|
u[1] = d2 + 1; //1 for kappa |
|
} |
|
return consumed_bits; |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief State structure for reading and unstuffing of forward-growing |
|
* bitstreams; these are: MagSgn and SPP bitstreams |
|
*/ |
|
typedef struct frwd_struct { |
|
const OPJ_UINT8* data; //!<pointer to bitstream |
|
OPJ_UINT64 tmp; //!<temporary buffer of read data |
|
OPJ_UINT32 bits; //!<number of bits stored in tmp |
|
OPJ_BOOL unstuff; //!<true if a bit needs to be unstuffed from next byte |
|
int size; //!<size of data |
|
OPJ_UINT32 X; //!<0 or 0xFF, X's are inserted at end of bitstream |
|
} frwd_struct_t; |
|
|
|
//************************************************************************/ |
|
/** @brief Read and unstuffs 32 bits from forward-growing bitstream |
|
* |
|
* A subroutine to read from both the MagSgn or SPP bitstreams; |
|
* in particular, when MagSgn bitstream is consumed, 0xFF's are fed, |
|
* while when SPP is exhausted 0's are fed in. |
|
* X controls this value. |
|
* |
|
* Unstuffing prevent sequences that are more than 0xFF7F from appearing |
|
* in the conpressed sequence. So whenever a value of 0xFF is coded, the |
|
* MSB of the next byte is set 0 and must be ignored during decoding. |
|
* |
|
* Reading can go beyond the end of buffer by up to 3 bytes. |
|
* |
|
* @param [in] msp is a pointer to frwd_struct_t structure |
|
* |
|
*/ |
|
static INLINE |
|
void frwd_read(frwd_struct_t *msp) |
|
{ |
|
OPJ_UINT32 val; |
|
OPJ_UINT32 bits; |
|
OPJ_UINT32 t; |
|
OPJ_BOOL unstuff; |
|
|
|
assert(msp->bits <= 32); // assert that there is a space for 32 bits |
|
|
|
val = 0u; |
|
if (msp->size > 3) { |
|
val = read_le_uint32(msp->data); // read 32 bits |
|
msp->data += 4; // increment pointer |
|
msp->size -= 4; // reduce size |
|
} else if (msp->size > 0) { |
|
int i = 0; |
|
val = msp->X != 0 ? 0xFFFFFFFFu : 0; |
|
while (msp->size > 0) { |
|
OPJ_UINT32 v = *msp->data++; // read one byte at a time |
|
OPJ_UINT32 m = ~(0xFFu << i); // mask of location |
|
val = (val & m) | (v << i); // put one byte in its correct location |
|
--msp->size; |
|
i += 8; |
|
} |
|
} else { |
|
val = msp->X != 0 ? 0xFFFFFFFFu : 0; |
|
} |
|
|
|
// we accumulate in t and keep a count of the number of bits in bits |
|
bits = 8u - (msp->unstuff ? 1u : 0u); |
|
t = val & 0xFF; |
|
unstuff = ((val & 0xFF) == 0xFF); // Do we need unstuffing next? |
|
|
|
t |= ((val >> 8) & 0xFF) << bits; |
|
bits += 8u - (unstuff ? 1u : 0u); |
|
unstuff = (((val >> 8) & 0xFF) == 0xFF); |
|
|
|
t |= ((val >> 16) & 0xFF) << bits; |
|
bits += 8u - (unstuff ? 1u : 0u); |
|
unstuff = (((val >> 16) & 0xFF) == 0xFF); |
|
|
|
t |= ((val >> 24) & 0xFF) << bits; |
|
bits += 8u - (unstuff ? 1u : 0u); |
|
msp->unstuff = (((val >> 24) & 0xFF) == 0xFF); // for next byte |
|
|
|
msp->tmp |= ((OPJ_UINT64)t) << msp->bits; // move data to msp->tmp |
|
msp->bits += bits; |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Initialize frwd_struct_t struct and reads some bytes |
|
* |
|
* @param [in] msp is a pointer to frwd_struct_t |
|
* @param [in] data is a pointer to the start of data |
|
* @param [in] size is the number of byte in the bitstream |
|
* @param [in] X is the value fed in when the bitstream is exhausted. |
|
* See frwd_read. |
|
*/ |
|
static INLINE |
|
void frwd_init(frwd_struct_t *msp, const OPJ_UINT8* data, int size, |
|
OPJ_UINT32 X) |
|
{ |
|
int num, i; |
|
|
|
msp->data = data; |
|
msp->tmp = 0; |
|
msp->bits = 0; |
|
msp->unstuff = OPJ_FALSE; |
|
msp->size = size; |
|
msp->X = X; |
|
assert(msp->X == 0 || msp->X == 0xFF); |
|
|
|
//This code is designed for an architecture that read address should |
|
// align to the read size (address multiple of 4 if read size is 4) |
|
//These few lines take care of the case where data is not at a multiple |
|
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the bitstream |
|
num = 4 - (int)((intptr_t)(msp->data) & 0x3); |
|
for (i = 0; i < num; ++i) { |
|
OPJ_UINT64 d; |
|
//read a byte if the buffer is not exhausted, otherwise set it to X |
|
d = msp->size-- > 0 ? *msp->data++ : msp->X; |
|
msp->tmp |= (d << msp->bits); // store data in msp->tmp |
|
msp->bits += 8u - (msp->unstuff ? 1u : 0u); // number of bits added to msp->tmp |
|
msp->unstuff = ((d & 0xFF) == 0xFF); // unstuffing for next byte |
|
} |
|
frwd_read(msp); // read 32 bits more |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Consume num_bits bits from the bitstream of frwd_struct_t |
|
* |
|
* @param [in] msp is a pointer to frwd_struct_t |
|
* @param [in] num_bits is the number of bit to consume |
|
*/ |
|
static INLINE |
|
void frwd_advance(frwd_struct_t *msp, OPJ_UINT32 num_bits) |
|
{ |
|
assert(num_bits <= msp->bits); |
|
msp->tmp >>= num_bits; // consume num_bits |
|
msp->bits -= num_bits; |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Fetches 32 bits from the frwd_struct_t bitstream |
|
* |
|
* @param [in] msp is a pointer to frwd_struct_t |
|
*/ |
|
static INLINE |
|
OPJ_UINT32 frwd_fetch(frwd_struct_t *msp) |
|
{ |
|
if (msp->bits < 32) { |
|
frwd_read(msp); |
|
if (msp->bits < 32) { //need to test |
|
frwd_read(msp); |
|
} |
|
} |
|
return (OPJ_UINT32)msp->tmp; |
|
} |
|
|
|
//************************************************************************/ |
|
/** @brief Allocates T1 buffers |
|
* |
|
* @param [in, out] t1 is codeblock cofficients storage |
|
* @param [in] w is codeblock width |
|
* @param [in] h is codeblock height |
|
*/ |
|
static OPJ_BOOL opj_t1_allocate_buffers( |
|
opj_t1_t *t1, |
|
OPJ_UINT32 w, |
|
OPJ_UINT32 h) |
|
{ |
|
OPJ_UINT32 flagssize; |
|
|
|
/* No risk of overflow. Prior checks ensure those assert are met */ |
|
/* They are per the specification */ |
|
assert(w <= 1024); |
|
assert(h <= 1024); |
|
assert(w * h <= 4096); |
|
|
|
/* encoder uses tile buffer, so no need to allocate */ |
|
{ |
|
OPJ_UINT32 datasize = w * h; |
|
|
|
if (datasize > t1->datasize) { |
|
opj_aligned_free(t1->data); |
|
t1->data = (OPJ_INT32*) |
|
opj_aligned_malloc(datasize * sizeof(OPJ_INT32)); |
|
if (!t1->data) { |
|
/* FIXME event manager error callback */ |
|
return OPJ_FALSE; |
|
} |
|
t1->datasize = datasize; |
|
} |
|
/* memset first arg is declared to never be null by gcc */ |
|
if (t1->data != NULL) { |
|
memset(t1->data, 0, datasize * sizeof(OPJ_INT32)); |
|
} |
|
} |
|
|
|
// We expand these buffers to multiples of 16 bytes. |
|
// We need 4 buffers of 129 integers each, expanded to 132 integers each |
|
// We also need 514 bytes of buffer, expanded to 528 bytes |
|
flagssize = 132U * sizeof(OPJ_UINT32) * 4U; // expanded to multiple of 16 |
|
flagssize += 528U; // 514 expanded to multiples of 16 |
|
|
|
{ |
|
if (flagssize > t1->flagssize) { |
|
|
|
opj_aligned_free(t1->flags); |
|
t1->flags = (opj_flag_t*) opj_aligned_malloc(flagssize * sizeof(opj_flag_t)); |
|
if (!t1->flags) { |
|
/* FIXME event manager error callback */ |
|
return OPJ_FALSE; |
|
} |
|
} |
|
t1->flagssize = flagssize; |
|
|
|
memset(t1->flags, 0, flagssize * sizeof(opj_flag_t)); |
|
} |
|
|
|
t1->w = w; |
|
t1->h = h; |
|
|
|
return OPJ_TRUE; |
|
} |
|
|
|
/** |
|
Decode 1 HT code-block |
|
@param t1 T1 handle |
|
@param cblk Code-block coding parameters |
|
@param orient |
|
@param roishift Region of interest shifting value |
|
@param cblksty Code-block style |
|
@param p_manager the event manager |
|
@param p_manager_mutex mutex for the event manager |
|
@param check_pterm whether PTERM correct termination should be checked |
|
*/ |
|
OPJ_BOOL opj_t1_ht_decode_cblk(opj_t1_t *t1, |
|
opj_tcd_cblk_dec_t* cblk, |
|
OPJ_UINT32 orient, |
|
OPJ_UINT32 roishift, |
|
OPJ_UINT32 cblksty, |
|
opj_event_mgr_t *p_manager, |
|
opj_mutex_t* p_manager_mutex, |
|
OPJ_BOOL check_pterm); |
|
|
|
//************************************************************************/ |
|
/** @brief Decodes one codeblock, processing the cleanup, siginificance |
|
* propagation, and magnitude refinement pass |
|
* |
|
* @param [in, out] t1 is codeblock cofficients storage |
|
* @param [in] cblk is codeblock properties |
|
* @param [in] orient is the subband to which the codeblock belongs (not needed) |
|
* @param [in] roishift is region of interest shift |
|
* @param [in] cblksty is codeblock style |
|
* @param [in] p_manager is events print manager |
|
* @param [in] p_manager_mutex a mutex to control access to p_manager |
|
* @param [in] check_pterm: check termination (not used) |
|
*/ |
|
OPJ_BOOL opj_t1_ht_decode_cblk(opj_t1_t *t1, |
|
opj_tcd_cblk_dec_t* cblk, |
|
OPJ_UINT32 orient, |
|
OPJ_UINT32 roishift, |
|
OPJ_UINT32 cblksty, |
|
opj_event_mgr_t *p_manager, |
|
opj_mutex_t* p_manager_mutex, |
|
OPJ_BOOL check_pterm) |
|
{ |
|
OPJ_BYTE* cblkdata = NULL; |
|
OPJ_UINT8* coded_data; |
|
OPJ_UINT32* decoded_data; |
|
OPJ_UINT32 zero_bplanes; |
|
OPJ_UINT32 num_passes; |
|
OPJ_UINT32 lengths1; |
|
OPJ_UINT32 lengths2; |
|
OPJ_INT32 width; |
|
OPJ_INT32 height; |
|
OPJ_INT32 stride; |
|
OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift; |
|
OPJ_UINT32 p; |
|
OPJ_UINT32 zero_bplanes_p1; |
|
int lcup, scup; |
|
dec_mel_t mel; |
|
rev_struct_t vlc; |
|
frwd_struct_t magsgn; |
|
frwd_struct_t sigprop; |
|
rev_struct_t magref; |
|
OPJ_UINT8 *lsp, *line_state; |
|
int run; |
|
OPJ_UINT32 vlc_val; // fetched data from VLC bitstream |
|
OPJ_UINT32 qinf[2]; |
|
OPJ_UINT32 c_q; |
|
OPJ_UINT32* sp; |
|
OPJ_INT32 x, y; // loop indices |
|
OPJ_BOOL stripe_causal = (cblksty & J2K_CCP_CBLKSTY_VSC) != 0; |
|
OPJ_UINT32 cblk_len = 0; |
|
|
|
(void)(orient); // stops unused parameter message |
|
(void)(check_pterm); // stops unused parameter message |
|
|
|
// We ignor orient, because the same decoder is used for all subbands |
|
// We also ignore check_pterm, because I am not sure how it applies |
|
if (roishift != 0) { |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_ERROR, "We do not support ROI in decoding " |
|
"HT codeblocks\n"); |
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
return OPJ_FALSE; |
|
} |
|
|
|
if (!opj_t1_allocate_buffers( |
|
t1, |
|
(OPJ_UINT32)(cblk->x1 - cblk->x0), |
|
(OPJ_UINT32)(cblk->y1 - cblk->y0))) { |
|
return OPJ_FALSE; |
|
} |
|
|
|
if (cblk->Mb == 0) { |
|
return OPJ_TRUE; |
|
} |
|
|
|
/* numbps = Mb + 1 - zero_bplanes, Mb = Kmax, zero_bplanes = missing_msbs */ |
|
zero_bplanes = (cblk->Mb + 1) - cblk->numbps; |
|
|
|
/* Compute whole codeblock length from chunk lengths */ |
|
cblk_len = 0; |
|
{ |
|
OPJ_UINT32 i; |
|
for (i = 0; i < cblk->numchunks; i++) { |
|
cblk_len += cblk->chunks[i].len; |
|
} |
|
} |
|
|
|
if (cblk->numchunks > 1 || t1->mustuse_cblkdatabuffer) { |
|
OPJ_UINT32 i; |
|
|
|
/* Allocate temporary memory if needed */ |
|
if (cblk_len > t1->cblkdatabuffersize) { |
|
cblkdata = (OPJ_BYTE*)opj_realloc( |
|
t1->cblkdatabuffer, cblk_len); |
|
if (cblkdata == NULL) { |
|
return OPJ_FALSE; |
|
} |
|
t1->cblkdatabuffer = cblkdata; |
|
t1->cblkdatabuffersize = cblk_len; |
|
} |
|
|
|
/* Concatenate all chunks */ |
|
cblkdata = t1->cblkdatabuffer; |
|
if (cblkdata == NULL) { |
|
return OPJ_FALSE; |
|
} |
|
cblk_len = 0; |
|
for (i = 0; i < cblk->numchunks; i++) { |
|
memcpy(cblkdata + cblk_len, cblk->chunks[i].data, cblk->chunks[i].len); |
|
cblk_len += cblk->chunks[i].len; |
|
} |
|
} else if (cblk->numchunks == 1) { |
|
cblkdata = cblk->chunks[0].data; |
|
} else { |
|
/* Not sure if that can happen in practice, but avoid Coverity to */ |
|
/* think we will dereference a null cblkdta pointer */ |
|
return OPJ_TRUE; |
|
} |
|
|
|
// OPJ_BYTE* coded_data is a pointer to bitstream |
|
coded_data = cblkdata; |
|
// OPJ_UINT32* decoded_data is a pointer to decoded codeblock data buf. |
|
decoded_data = (OPJ_UINT32*)t1->data; |
|
// OPJ_UINT32 num_passes is the number of passes: 1 if CUP only, 2 for |
|
// CUP+SPP, and 3 for CUP+SPP+MRP |
|
num_passes = cblk->numsegs > 0 ? cblk->segs[0].real_num_passes : 0; |
|
num_passes += cblk->numsegs > 1 ? cblk->segs[1].real_num_passes : 0; |
|
// OPJ_UINT32 lengths1 is the length of cleanup pass |
|
lengths1 = num_passes > 0 ? cblk->segs[0].len : 0; |
|
// OPJ_UINT32 lengths2 is the length of refinement passes (either SPP only or SPP+MRP) |
|
lengths2 = num_passes > 1 ? cblk->segs[1].len : 0; |
|
// OPJ_INT32 width is the decoded codeblock width |
|
width = cblk->x1 - cblk->x0; |
|
// OPJ_INT32 height is the decoded codeblock height |
|
height = cblk->y1 - cblk->y0; |
|
// OPJ_INT32 stride is the decoded codeblock buffer stride |
|
stride = width; |
|
|
|
/* sigma1 and sigma2 contains significant (i.e., non-zero) pixel |
|
* locations. The buffers are used interchangeably, because we need |
|
* more than 4 rows of significance information at a given time. |
|
* Each 32 bits contain significance information for 4 rows of 8 |
|
* columns each. If we denote 32 bits by 0xaaaaaaaa, the each "a" is |
|
* called a nibble and has significance information for 4 rows. |
|
* The least significant nibble has information for the first column, |
|
* and so on. The nibble's LSB is for the first row, and so on. |
|
* Since, at most, we can have 1024 columns in a quad, we need 128 |
|
* entries; we added 1 for convenience when propagation of signifcance |
|
* goes outside the structure |
|
* To work in OpenJPEG these buffers has been expanded to 132. |
|
*/ |
|
// OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift; |
|
pflags = (OPJ_UINT32 *)t1->flags; |
|
sigma1 = pflags; |
|
sigma2 = sigma1 + 132; |
|
// mbr arrangement is similar to sigma; mbr contains locations |
|
// that become significant during significance propagation pass |
|
mbr1 = sigma2 + 132; |
|
mbr2 = mbr1 + 132; |
|
//a pointer to sigma |
|
sip = sigma1; //pointers to arrays to be used interchangeably |
|
sip_shift = 0; //the amount of shift needed for sigma |
|
|
|
if (num_passes > 1 && lengths2 == 0) { |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_WARNING, "A malformed codeblock that has " |
|
"more than one coding pass, but zero length for " |
|
"2nd and potentially the 3rd pass in an HT codeblock.\n"); |
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
num_passes = 1; |
|
} |
|
if (num_passes > 3) { |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_ERROR, "We do not support more than 3 " |
|
"coding passes in an HT codeblock; This codeblocks has " |
|
"%d passes.\n", num_passes); |
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
return OPJ_FALSE; |
|
} |
|
|
|
if (cblk->Mb > 30) { |
|
/* This check is better moved to opj_t2_read_packet_header() in t2.c |
|
We do not have enough precision to decode any passes |
|
The design of openjpeg assumes that the bits of a 32-bit integer are |
|
assigned as follows: |
|
bit 31 is for sign |
|
bits 30-1 are for magnitude |
|
bit 0 is for the center of the quantization bin |
|
Therefore we can only do values of cblk->Mb <= 30 |
|
*/ |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_ERROR, "32 bits are not enough to " |
|
"decode this codeblock, since the number of " |
|
"bitplane, %d, is larger than 30.\n", cblk->Mb); |
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
return OPJ_FALSE; |
|
} |
|
if (zero_bplanes > cblk->Mb) { |
|
/* This check is better moved to opj_t2_read_packet_header() in t2.c, |
|
in the line "l_cblk->numbps = (OPJ_UINT32)l_band->numbps + 1 - i;" |
|
where i is the zero bitplanes, and should be no larger than cblk->Mb |
|
We cannot have more zero bitplanes than there are planes. */ |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
|
"Decoding this codeblock is stopped. There are " |
|
"%d zero bitplanes in %d bitplanes.\n", |
|
zero_bplanes, cblk->Mb); |
|
|
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
return OPJ_FALSE; |
|
} else if (zero_bplanes == cblk->Mb && num_passes > 1) { |
|
/* When the number of zero bitplanes is equal to the number of bitplanes, |
|
only the cleanup pass makes sense*/ |
|
if (only_cleanup_pass_is_decoded == OPJ_FALSE) { |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
/* We have a second check to prevent the possibility of an overrun condition, |
|
in the very unlikely event of a second thread discovering that |
|
only_cleanup_pass_is_decoded is false before the first thread changing |
|
the condition. */ |
|
if (only_cleanup_pass_is_decoded == OPJ_FALSE) { |
|
only_cleanup_pass_is_decoded = OPJ_TRUE; |
|
opj_event_msg(p_manager, EVT_WARNING, "Malformed HT codeblock. " |
|
"When the number of zero planes bitplanes is " |
|
"equal to the number of bitplanes, only the cleanup " |
|
"pass makes sense, but we have %d passes in this " |
|
"codeblock. Therefore, only the cleanup pass will be " |
|
"decoded. This message will not be displayed again.\n", |
|
num_passes); |
|
} |
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
} |
|
num_passes = 1; |
|
} |
|
|
|
/* OPJ_UINT32 */ |
|
p = cblk->numbps; |
|
|
|
// OPJ_UINT32 zero planes plus 1 |
|
zero_bplanes_p1 = zero_bplanes + 1; |
|
|
|
if (lengths1 < 2 || (OPJ_UINT32)lengths1 > cblk_len || |
|
(OPJ_UINT32)(lengths1 + lengths2) > cblk_len) { |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
|
"Invalid codeblock length values.\n"); |
|
|
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
return OPJ_FALSE; |
|
} |
|
// read scup and fix the bytes there |
|
lcup = (int)lengths1; // length of CUP |
|
//scup is the length of MEL + VLC |
|
scup = (((int)coded_data[lcup - 1]) << 4) + (coded_data[lcup - 2] & 0xF); |
|
if (scup < 2 || scup > lcup || scup > 4079) { //something is wrong |
|
/* The standard stipulates 2 <= Scup <= min(Lcup, 4079) */ |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
|
"One of the following condition is not met: " |
|
"2 <= Scup <= min(Lcup, 4079)\n"); |
|
|
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
return OPJ_FALSE; |
|
} |
|
|
|
// init structures |
|
if (mel_init(&mel, coded_data, lcup, scup) == OPJ_FALSE) { |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
|
"Incorrect MEL segment sequence.\n"); |
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
return OPJ_FALSE; |
|
} |
|
rev_init(&vlc, coded_data, lcup, scup); |
|
frwd_init(&magsgn, coded_data, lcup - scup, 0xFF); |
|
if (num_passes > 1) { // needs to be tested |
|
frwd_init(&sigprop, coded_data + lengths1, (int)lengths2, 0); |
|
} |
|
if (num_passes > 2) { |
|
rev_init_mrp(&magref, coded_data, (int)lengths1, (int)lengths2); |
|
} |
|
|
|
/** State storage |
|
* One byte per quad; for 1024 columns, or 512 quads, we need |
|
* 512 bytes. We are using 2 extra bytes one on the left and one on |
|
* the right for convenience. |
|
* |
|
* The MSB bit in each byte is (\sigma^nw | \sigma^n), and the 7 LSBs |
|
* contain max(E^nw | E^n) |
|
*/ |
|
|
|
// 514 is enough for a block width of 1024, +2 extra |
|
// here expanded to 528 |
|
line_state = (OPJ_UINT8 *)(mbr2 + 132); |
|
|
|
//initial 2 lines |
|
///////////////// |
|
lsp = line_state; // point to line state |
|
lsp[0] = 0; // for initial row of quad, we set to 0 |
|
run = mel_get_run(&mel); // decode runs of events from MEL bitstrm |
|
// data represented as runs of 0 events |
|
// See mel_decode description |
|
qinf[0] = qinf[1] = 0; // quad info decoded from VLC bitstream |
|
c_q = 0; // context for quad q |
|
sp = decoded_data; // decoded codeblock samples |
|
// vlc_val; // fetched data from VLC bitstream |
|
|
|
for (x = 0; x < width; x += 4) { // one iteration per quad pair |
|
OPJ_UINT32 U_q[2]; // u values for the quad pair |
|
OPJ_UINT32 uvlc_mode; |
|
OPJ_UINT32 consumed_bits; |
|
OPJ_UINT32 m_n, v_n; |
|
OPJ_UINT32 ms_val; |
|
OPJ_UINT32 locs; |
|
|
|
// decode VLC |
|
///////////// |
|
|
|
//first quad |
|
// Get the head of the VLC bitstream. One fetch is enough for two |
|
// quads, since the largest VLC code is 7 bits, and maximum number of |
|
// bits used for u is 8. Therefore for two quads we need 30 bits |
|
// (if we include unstuffing, then 32 bits are enough, since we have |
|
// a maximum of one stuffing per two bytes) |
|
vlc_val = rev_fetch(&vlc); |
|
|
|
//decode VLC using the context c_q and the head of the VLC bitstream |
|
qinf[0] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F) ]; |
|
|
|
if (c_q == 0) { // if zero context, we need to use one MEL event |
|
run -= 2; //the number of 0 events is multiplied by 2, so subtract 2 |
|
|
|
// Is the run terminated in 1? if so, use decoded VLC code, |
|
// otherwise, discard decoded data, since we will decoded again |
|
// using a different context |
|
qinf[0] = (run == -1) ? qinf[0] : 0; |
|
|
|
// is run -1 or -2? this means a run has been consumed |
|
if (run < 0) { |
|
run = mel_get_run(&mel); // get another run |
|
} |
|
} |
|
|
|
// prepare context for the next quad; eqn. 1 in ITU T.814 |
|
c_q = ((qinf[0] & 0x10) >> 4) | ((qinf[0] & 0xE0) >> 5); |
|
|
|
//remove data from vlc stream (0 bits are removed if qinf is not used) |
|
vlc_val = rev_advance(&vlc, qinf[0] & 0x7); |
|
|
|
//update sigma |
|
// The update depends on the value of x; consider one OPJ_UINT32 |
|
// if x is 0, 8, 16 and so on, then this line update c locations |
|
// nibble (4 bits) number 0 1 2 3 4 5 6 7 |
|
// LSB c c 0 0 0 0 0 0 |
|
// c c 0 0 0 0 0 0 |
|
// 0 0 0 0 0 0 0 0 |
|
// 0 0 0 0 0 0 0 0 |
|
// if x is 4, 12, 20, then this line update locations c |
|
// nibble (4 bits) number 0 1 2 3 4 5 6 7 |
|
// LSB 0 0 0 0 c c 0 0 |
|
// 0 0 0 0 c c 0 0 |
|
// 0 0 0 0 0 0 0 0 |
|
// 0 0 0 0 0 0 0 0 |
|
*sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift; |
|
|
|
//second quad |
|
qinf[1] = 0; |
|
if (x + 2 < width) { // do not run if codeblock is narrower |
|
//decode VLC using the context c_q and the head of the VLC bitstream |
|
qinf[1] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F)]; |
|
|
|
// if context is zero, use one MEL event |
|
if (c_q == 0) { //zero context |
|
run -= 2; //subtract 2, since events number if multiplied by 2 |
|
|
|
// if event is 0, discard decoded qinf |
|
qinf[1] = (run == -1) ? qinf[1] : 0; |
|
|
|
if (run < 0) { // have we consumed all events in a run |
|
run = mel_get_run(&mel); // if yes, then get another run |
|
} |
|
} |
|
|
|
//prepare context for the next quad, eqn. 1 in ITU T.814 |
|
c_q = ((qinf[1] & 0x10) >> 4) | ((qinf[1] & 0xE0) >> 5); |
|
|
|
//remove data from vlc stream, if qinf is not used, cwdlen is 0 |
|
vlc_val = rev_advance(&vlc, qinf[1] & 0x7); |
|
} |
|
|
|
//update sigma |
|
// The update depends on the value of x; consider one OPJ_UINT32 |
|
// if x is 0, 8, 16 and so on, then this line update c locations |
|
// nibble (4 bits) number 0 1 2 3 4 5 6 7 |
|
// LSB 0 0 c c 0 0 0 0 |
|
// 0 0 c c 0 0 0 0 |
|
// 0 0 0 0 0 0 0 0 |
|
// 0 0 0 0 0 0 0 0 |
|
// if x is 4, 12, 20, then this line update locations c |
|
// nibble (4 bits) number 0 1 2 3 4 5 6 7 |
|
// LSB 0 0 0 0 0 0 c c |
|
// 0 0 0 0 0 0 c c |
|
// 0 0 0 0 0 0 0 0 |
|
// 0 0 0 0 0 0 0 0 |
|
*sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift); |
|
|
|
sip += x & 0x7 ? 1 : 0; // move sigma pointer to next entry |
|
sip_shift ^= 0x10; // increment/decrement sip_shift by 16 |
|
|
|
// retrieve u |
|
///////////// |
|
|
|
// uvlc_mode is made up of u_offset bits from the quad pair |
|
uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2); |
|
if (uvlc_mode == 3) { // if both u_offset are set, get an event from |
|
// the MEL run of events |
|
run -= 2; //subtract 2, since events number if multiplied by 2 |
|
uvlc_mode += (run == -1) ? 1 : 0; //increment uvlc_mode if event is 1 |
|
if (run < 0) { // if run is consumed (run is -1 or -2), get another run |
|
run = mel_get_run(&mel); |
|
} |
|
} |
|
//decode uvlc_mode to get u for both quads |
|
consumed_bits = decode_init_uvlc(vlc_val, uvlc_mode, U_q); |
|
if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) { |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. Decoding " |
|
"this codeblock is stopped. U_q is larger than zero " |
|
"bitplanes + 1 \n"); |
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
return OPJ_FALSE; |
|
} |
|
|
|
//consume u bits in the VLC code |
|
vlc_val = rev_advance(&vlc, consumed_bits); |
|
|
|
//decode magsgn and update line_state |
|
///////////////////////////////////// |
|
|
|
//We obtain a mask for the samples locations that needs evaluation |
|
locs = 0xFF; |
|
if (x + 4 > width) { |
|
locs >>= (x + 4 - width) << 1; // limits width |
|
} |
|
locs = height > 1 ? locs : (locs & 0x55); // limits height |
|
|
|
if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) { |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
|
"VLC code produces significant samples outside " |
|
"the codeblock area.\n"); |
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
return OPJ_FALSE; |
|
} |
|
|
|
//first quad, starting at first sample in quad and moving on |
|
if (qinf[0] & 0x10) { //is it significant? (sigma_n) |
|
OPJ_UINT32 val; |
|
|
|
ms_val = frwd_fetch(&magsgn); //get 32 bits of magsgn data |
|
m_n = U_q[0] - ((qinf[0] >> 12) & 1); //evaluate m_n (number of bits |
|
// to read from bitstream), using EMB e_k |
|
frwd_advance(&magsgn, m_n); //consume m_n |
|
val = ms_val << 31; //get sign bit |
|
v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits |
|
v_n |= ((qinf[0] & 0x100) >> 8) << m_n; //add EMB e_1 as MSB |
|
v_n |= 1; //add center of bin |
|
//v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit |
|
//add 2 to make it 2*\mu+0.5, shift it up to missing MSBs |
|
sp[0] = val | ((v_n + 2) << (p - 1)); |
|
} else if (locs & 0x1) { // if this is inside the codeblock, set the |
|
sp[0] = 0; // sample to zero |
|
} |
|
|
|
if (qinf[0] & 0x20) { //sigma_n |
|
OPJ_UINT32 val, t; |
|
|
|
ms_val = frwd_fetch(&magsgn); //get 32 bits |
|
m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n, uses EMB e_k |
|
frwd_advance(&magsgn, m_n); //consume m_n |
|
val = ms_val << 31; //get sign bit |
|
v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits |
|
v_n |= ((qinf[0] & 0x200) >> 9) << m_n; //add EMB e_1 |
|
v_n |= 1; //bin center |
|
//v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit |
|
//add 2 to make it 2*\mu+0.5, shift it up to missing MSBs |
|
sp[stride] = val | ((v_n + 2) << (p - 1)); |
|
|
|
//update line_state: bit 7 (\sigma^N), and E^N |
|
t = lsp[0] & 0x7F; // keep E^NW |
|
v_n = 32 - count_leading_zeros(v_n); |
|
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s |
|
} else if (locs & 0x2) { // if this is inside the codeblock, set the |
|
sp[stride] = 0; // sample to zero |
|
} |
|
|
|
++lsp; // move to next quad information |
|
++sp; // move to next column of samples |
|
|
|
//this is similar to the above two samples |
|
if (qinf[0] & 0x40) { |
|
OPJ_UINT32 val; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[0] - ((qinf[0] >> 14) & 1); |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= (((qinf[0] & 0x400) >> 10) << m_n); |
|
v_n |= 1; |
|
sp[0] = val | ((v_n + 2) << (p - 1)); |
|
} else if (locs & 0x4) { |
|
sp[0] = 0; |
|
} |
|
|
|
lsp[0] = 0; |
|
if (qinf[0] & 0x80) { |
|
OPJ_UINT32 val; |
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= ((qinf[0] & 0x800) >> 11) << m_n; |
|
v_n |= 1; //center of bin |
|
sp[stride] = val | ((v_n + 2) << (p - 1)); |
|
|
|
//line_state: bit 7 (\sigma^NW), and E^NW for next quad |
|
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); |
|
} else if (locs & 0x8) { //if outside set to 0 |
|
sp[stride] = 0; |
|
} |
|
|
|
++sp; //move to next column |
|
|
|
//second quad |
|
if (qinf[1] & 0x10) { |
|
OPJ_UINT32 val; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= (((qinf[1] & 0x100) >> 8) << m_n); |
|
v_n |= 1; |
|
sp[0] = val | ((v_n + 2) << (p - 1)); |
|
} else if (locs & 0x10) { |
|
sp[0] = 0; |
|
} |
|
|
|
if (qinf[1] & 0x20) { |
|
OPJ_UINT32 val, t; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= (((qinf[1] & 0x200) >> 9) << m_n); |
|
v_n |= 1; |
|
sp[stride] = val | ((v_n + 2) << (p - 1)); |
|
|
|
//update line_state: bit 7 (\sigma^N), and E^N |
|
t = lsp[0] & 0x7F; //E^NW |
|
v_n = 32 - count_leading_zeros(v_n); //E^N |
|
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s |
|
} else if (locs & 0x20) { |
|
sp[stride] = 0; //no need to update line_state |
|
} |
|
|
|
++lsp; //move line state to next quad |
|
++sp; //move to next sample |
|
|
|
if (qinf[1] & 0x40) { |
|
OPJ_UINT32 val; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= (((qinf[1] & 0x400) >> 10) << m_n); |
|
v_n |= 1; |
|
sp[0] = val | ((v_n + 2) << (p - 1)); |
|
} else if (locs & 0x40) { |
|
sp[0] = 0; |
|
} |
|
|
|
lsp[0] = 0; |
|
if (qinf[1] & 0x80) { |
|
OPJ_UINT32 val; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= (((qinf[1] & 0x800) >> 11) << m_n); |
|
v_n |= 1; //center of bin |
|
sp[stride] = val | ((v_n + 2) << (p - 1)); |
|
|
|
//line_state: bit 7 (\sigma^NW), and E^NW for next quad |
|
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); |
|
} else if (locs & 0x80) { |
|
sp[stride] = 0; |
|
} |
|
|
|
++sp; |
|
} |
|
|
|
//non-initial lines |
|
////////////////////////// |
|
for (y = 2; y < height; /*done at the end of loop*/) { |
|
OPJ_UINT32 *sip; |
|
OPJ_UINT8 ls0; |
|
OPJ_INT32 x; |
|
|
|
sip_shift ^= 0x2; // shift sigma to the upper half od the nibble |
|
sip_shift &= 0xFFFFFFEFU; //move back to 0 (it might have been at 0x10) |
|
sip = y & 0x4 ? sigma2 : sigma1; //choose sigma array |
|
|
|
lsp = line_state; |
|
ls0 = lsp[0]; // read the line state value |
|
lsp[0] = 0; // and set it to zero |
|
sp = decoded_data + y * stride; // generated samples |
|
c_q = 0; // context |
|
for (x = 0; x < width; x += 4) { |
|
OPJ_UINT32 U_q[2]; |
|
OPJ_UINT32 uvlc_mode, consumed_bits; |
|
OPJ_UINT32 m_n, v_n; |
|
OPJ_UINT32 ms_val; |
|
OPJ_UINT32 locs; |
|
|
|
// decode vlc |
|
///////////// |
|
|
|
//first quad |
|
// get context, eqn. 2 ITU T.814 |
|
// c_q has \sigma^W | \sigma^SW |
|
c_q |= (ls0 >> 7); //\sigma^NW | \sigma^N |
|
c_q |= (lsp[1] >> 5) & 0x4; //\sigma^NE | \sigma^NF |
|
|
|
//the following is very similar to previous code, so please refer to |
|
// that |
|
vlc_val = rev_fetch(&vlc); |
|
qinf[0] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)]; |
|
if (c_q == 0) { //zero context |
|
run -= 2; |
|
qinf[0] = (run == -1) ? qinf[0] : 0; |
|
if (run < 0) { |
|
run = mel_get_run(&mel); |
|
} |
|
} |
|
//prepare context for the next quad, \sigma^W | \sigma^SW |
|
c_q = ((qinf[0] & 0x40) >> 5) | ((qinf[0] & 0x80) >> 6); |
|
|
|
//remove data from vlc stream |
|
vlc_val = rev_advance(&vlc, qinf[0] & 0x7); |
|
|
|
//update sigma |
|
// The update depends on the value of x and y; consider one OPJ_UINT32 |
|
// if x is 0, 8, 16 and so on, and y is 2, 6, etc., then this |
|
// line update c locations |
|
// nibble (4 bits) number 0 1 2 3 4 5 6 7 |
|
// LSB 0 0 0 0 0 0 0 0 |
|
// 0 0 0 0 0 0 0 0 |
|
// c c 0 0 0 0 0 0 |
|
// c c 0 0 0 0 0 0 |
|
*sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift; |
|
|
|
//second quad |
|
qinf[1] = 0; |
|
if (x + 2 < width) { |
|
c_q |= (lsp[1] >> 7); |
|
c_q |= (lsp[2] >> 5) & 0x4; |
|
qinf[1] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)]; |
|
if (c_q == 0) { //zero context |
|
run -= 2; |
|
qinf[1] = (run == -1) ? qinf[1] : 0; |
|
if (run < 0) { |
|
run = mel_get_run(&mel); |
|
} |
|
} |
|
//prepare context for the next quad |
|
c_q = ((qinf[1] & 0x40) >> 5) | ((qinf[1] & 0x80) >> 6); |
|
//remove data from vlc stream |
|
vlc_val = rev_advance(&vlc, qinf[1] & 0x7); |
|
} |
|
|
|
//update sigma |
|
*sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift); |
|
|
|
sip += x & 0x7 ? 1 : 0; |
|
sip_shift ^= 0x10; |
|
|
|
//retrieve u |
|
//////////// |
|
uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2); |
|
consumed_bits = decode_noninit_uvlc(vlc_val, uvlc_mode, U_q); |
|
vlc_val = rev_advance(&vlc, consumed_bits); |
|
|
|
//calculate E^max and add it to U_q, eqns 5 and 6 in ITU T.814 |
|
if ((qinf[0] & 0xF0) & ((qinf[0] & 0xF0) - 1)) { // is \gamma_q 1? |
|
OPJ_UINT32 E = (ls0 & 0x7Fu); |
|
E = E > (lsp[1] & 0x7Fu) ? E : (lsp[1] & 0x7Fu); //max(E, E^NE, E^NF) |
|
//since U_q already has u_q + 1, we subtract 2 instead of 1 |
|
U_q[0] += E > 2 ? E - 2 : 0; |
|
} |
|
|
|
if ((qinf[1] & 0xF0) & ((qinf[1] & 0xF0) - 1)) { //is \gamma_q 1? |
|
OPJ_UINT32 E = (lsp[1] & 0x7Fu); |
|
E = E > (lsp[2] & 0x7Fu) ? E : (lsp[2] & 0x7Fu); //max(E, E^NE, E^NF) |
|
//since U_q already has u_q + 1, we subtract 2 instead of 1 |
|
U_q[1] += E > 2 ? E - 2 : 0; |
|
} |
|
|
|
if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) { |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
|
"Decoding this codeblock is stopped. U_q is" |
|
"larger than bitplanes + 1 \n"); |
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
return OPJ_FALSE; |
|
} |
|
|
|
ls0 = lsp[2]; //for next double quad |
|
lsp[1] = lsp[2] = 0; |
|
|
|
//decode magsgn and update line_state |
|
///////////////////////////////////// |
|
|
|
//locations where samples need update |
|
locs = 0xFF; |
|
if (x + 4 > width) { |
|
locs >>= (x + 4 - width) << 1; |
|
} |
|
locs = y + 2 <= height ? locs : (locs & 0x55); |
|
|
|
if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) { |
|
if (p_manager_mutex) { |
|
opj_mutex_lock(p_manager_mutex); |
|
} |
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
|
"VLC code produces significant samples outside " |
|
"the codeblock area.\n"); |
|
if (p_manager_mutex) { |
|
opj_mutex_unlock(p_manager_mutex); |
|
} |
|
return OPJ_FALSE; |
|
} |
|
|
|
|
|
|
|
if (qinf[0] & 0x10) { //sigma_n |
|
OPJ_UINT32 val; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[0] - ((qinf[0] >> 12) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= ((qinf[0] & 0x100) >> 8) << m_n; |
|
v_n |= 1; //center of bin |
|
sp[0] = val | ((v_n + 2) << (p - 1)); |
|
} else if (locs & 0x1) { |
|
sp[0] = 0; |
|
} |
|
|
|
if (qinf[0] & 0x20) { //sigma_n |
|
OPJ_UINT32 val, t; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= ((qinf[0] & 0x200) >> 9) << m_n; |
|
v_n |= 1; //center of bin |
|
sp[stride] = val | ((v_n + 2) << (p - 1)); |
|
|
|
//update line_state: bit 7 (\sigma^N), and E^N |
|
t = lsp[0] & 0x7F; //E^NW |
|
v_n = 32 - count_leading_zeros(v_n); |
|
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); |
|
} else if (locs & 0x2) { |
|
sp[stride] = 0; //no need to update line_state |
|
} |
|
|
|
++lsp; |
|
++sp; |
|
|
|
if (qinf[0] & 0x40) { //sigma_n |
|
OPJ_UINT32 val; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[0] - ((qinf[0] >> 14) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= (((qinf[0] & 0x400) >> 10) << m_n); |
|
v_n |= 1; //center of bin |
|
sp[0] = val | ((v_n + 2) << (p - 1)); |
|
} else if (locs & 0x4) { |
|
sp[0] = 0; |
|
} |
|
|
|
if (qinf[0] & 0x80) { //sigma_n |
|
OPJ_UINT32 val; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= ((qinf[0] & 0x800) >> 11) << m_n; |
|
v_n |= 1; //center of bin |
|
sp[stride] = val | ((v_n + 2) << (p - 1)); |
|
|
|
//update line_state: bit 7 (\sigma^NW), and E^NW for next quad |
|
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); |
|
} else if (locs & 0x8) { |
|
sp[stride] = 0; |
|
} |
|
|
|
++sp; |
|
|
|
if (qinf[1] & 0x10) { //sigma_n |
|
OPJ_UINT32 val; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= (((qinf[1] & 0x100) >> 8) << m_n); |
|
v_n |= 1; //center of bin |
|
sp[0] = val | ((v_n + 2) << (p - 1)); |
|
} else if (locs & 0x10) { |
|
sp[0] = 0; |
|
} |
|
|
|
if (qinf[1] & 0x20) { //sigma_n |
|
OPJ_UINT32 val, t; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= (((qinf[1] & 0x200) >> 9) << m_n); |
|
v_n |= 1; //center of bin |
|
sp[stride] = val | ((v_n + 2) << (p - 1)); |
|
|
|
//update line_state: bit 7 (\sigma^N), and E^N |
|
t = lsp[0] & 0x7F; //E^NW |
|
v_n = 32 - count_leading_zeros(v_n); |
|
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); |
|
} else if (locs & 0x20) { |
|
sp[stride] = 0; //no need to update line_state |
|
} |
|
|
|
++lsp; |
|
++sp; |
|
|
|
if (qinf[1] & 0x40) { //sigma_n |
|
OPJ_UINT32 val; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= (((qinf[1] & 0x400) >> 10) << m_n); |
|
v_n |= 1; //center of bin |
|
sp[0] = val | ((v_n + 2) << (p - 1)); |
|
} else if (locs & 0x40) { |
|
sp[0] = 0; |
|
} |
|
|
|
if (qinf[1] & 0x80) { //sigma_n |
|
OPJ_UINT32 val; |
|
|
|
ms_val = frwd_fetch(&magsgn); |
|
m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n |
|
frwd_advance(&magsgn, m_n); |
|
val = ms_val << 31; |
|
v_n = ms_val & ((1U << m_n) - 1); |
|
v_n |= (((qinf[1] & 0x800) >> 11) << m_n); |
|
v_n |= 1; //center of bin |
|
sp[stride] = val | ((v_n + 2) << (p - 1)); |
|
|
|
//update line_state: bit 7 (\sigma^NW), and E^NW for next quad |
|
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); |
|
} else if (locs & 0x80) { |
|
sp[stride] = 0; |
|
} |
|
|
|
++sp; |
|
} |
|
|
|
y += 2; |
|
if (num_passes > 1 && (y & 3) == 0) { //executed at multiples of 4 |
|
// This is for SPP and potentially MRP |
|
|
|
if (num_passes > 2) { //do MRP |
|
// select the current stripe |
|
OPJ_UINT32 *cur_sig = y & 0x4 ? sigma1 : sigma2; |
|
// the address of the data that needs updating |
|
OPJ_UINT32 *dpp = decoded_data + (y - 4) * stride; |
|
OPJ_UINT32 half = 1u << (p - 2); // half the center of the bin |
|
OPJ_INT32 i; |
|
for (i = 0; i < width; i += 8) { |
|
//Process one entry from sigma array at a time |
|
// Each nibble (4 bits) in the sigma array represents 4 rows, |
|
// and the 32 bits contain 8 columns |
|
OPJ_UINT32 cwd = rev_fetch_mrp(&magref); // get 32 bit data |
|
OPJ_UINT32 sig = *cur_sig++; // 32 bit that will be processed now |
|
OPJ_UINT32 col_mask = 0xFu; // a mask for a column in sig |
|
OPJ_UINT32 *dp = dpp + i; // next column in decode samples |
|
if (sig) { // if any of the 32 bits are set |
|
int j; |
|
for (j = 0; j < 8; ++j, dp++) { //one column at a time |
|
if (sig & col_mask) { // lowest nibble |
|
OPJ_UINT32 sample_mask = 0x11111111u & col_mask; //LSB |
|
|
|
if (sig & sample_mask) { //if LSB is set |
|
OPJ_UINT32 sym; |
|
|
|
assert(dp[0] != 0); // decoded value cannot be zero |
|
sym = cwd & 1; // get it value |
|
// remove center of bin if sym is 0 |
|
dp[0] ^= (1 - sym) << (p - 1); |
|
dp[0] |= half; // put half the center of bin |
|
cwd >>= 1; //consume word |
|
} |
|
sample_mask += sample_mask; //next row |
|
|
|
if (sig & sample_mask) { |
|
OPJ_UINT32 sym; |
|
|
|
assert(dp[stride] != 0); |
|
sym = cwd & 1; |
|
dp[stride] ^= (1 - sym) << (p - 1); |
|
dp[stride] |= half; |
|
cwd >>= 1; |
|
} |
|
sample_mask += sample_mask; |
|
|
|
if (sig & sample_mask) { |
|
OPJ_UINT32 sym; |
|
|
|
assert(dp[2 * stride] != 0); |
|
sym = cwd & 1; |
|
dp[2 * stride] ^= (1 - sym) << (p - 1); |
|
dp[2 * stride] |= half; |
|
cwd >>= 1; |
|
} |
|
sample_mask += sample_mask; |
|
|
|
if (sig & sample_mask) { |
|
OPJ_UINT32 sym; |
|
|
|
assert(dp[3 * stride] != 0); |
|
sym = cwd & 1; |
|
dp[3 * stride] ^= (1 - sym) << (p - 1); |
|
dp[3 * stride] |= half; |
|
cwd >>= 1; |
|
} |
|
sample_mask += sample_mask; |
|
} |
|
col_mask <<= 4; //next column |
|
} |
|
} |
|
// consume data according to the number of bits set |
|
rev_advance_mrp(&magref, population_count(sig)); |
|
} |
|
} |
|
|
|
if (y >= 4) { // update mbr array at the end of each stripe |
|
//generate mbr corresponding to a stripe |
|
OPJ_UINT32 *sig = y & 0x4 ? sigma1 : sigma2; |
|
OPJ_UINT32 *mbr = y & 0x4 ? mbr1 : mbr2; |
|
|
|
//data is processed in patches of 8 columns, each |
|
// each 32 bits in sigma1 or mbr1 represent 4 rows |
|
|
|
//integrate horizontally |
|
OPJ_UINT32 prev = 0; // previous columns |
|
OPJ_INT32 i; |
|
for (i = 0; i < width; i += 8, mbr++, sig++) { |
|
OPJ_UINT32 t, z; |
|
|
|
mbr[0] = sig[0]; //start with significant samples |
|
mbr[0] |= prev >> 28; //for first column, left neighbors |
|
mbr[0] |= sig[0] << 4; //left neighbors |
|
mbr[0] |= sig[0] >> 4; //right neighbors |
|
mbr[0] |= sig[1] << 28; //for last column, right neighbors |
|
prev = sig[0]; // for next group of columns |
|
|
|
//integrate vertically |
|
t = mbr[0], z = mbr[0]; |
|
z |= (t & 0x77777777) << 1; //above neighbors |
|
z |= (t & 0xEEEEEEEE) >> 1; //below neighbors |
|
mbr[0] = z & ~sig[0]; //remove already significance samples |
|
} |
|
} |
|
|
|
if (y >= 8) { //wait until 8 rows has been processed |
|
OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr; |
|
OPJ_UINT32 prev; |
|
OPJ_UINT32 val; |
|
OPJ_INT32 i; |
|
|
|
// add membership from the next stripe, obtained above |
|
cur_sig = y & 0x4 ? sigma2 : sigma1; |
|
cur_mbr = y & 0x4 ? mbr2 : mbr1; |
|
nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples |
|
prev = 0; // the columns before these group of 8 columns |
|
for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) { |
|
OPJ_UINT32 t = nxt_sig[0]; |
|
t |= prev >> 28; //for first column, left neighbors |
|
t |= nxt_sig[0] << 4; //left neighbors |
|
t |= nxt_sig[0] >> 4; //right neighbors |
|
t |= nxt_sig[1] << 28; //for last column, right neighbors |
|
prev = nxt_sig[0]; // for next group of columns |
|
|
|
if (!stripe_causal) { |
|
cur_mbr[0] |= (t & 0x11111111u) << 3; //propagate up to cur_mbr |
|
} |
|
cur_mbr[0] &= ~cur_sig[0]; //remove already significance samples |
|
} |
|
|
|
//find new locations and get signs |
|
cur_sig = y & 0x4 ? sigma2 : sigma1; |
|
cur_mbr = y & 0x4 ? mbr2 : mbr1; |
|
nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples |
|
nxt_mbr = y & 0x4 ? mbr1 : mbr2; //future samples |
|
val = 3u << (p - 2); // sample values for newly discovered |
|
// significant samples including the bin center |
|
for (i = 0; i < width; |
|
i += 8, cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) { |
|
OPJ_UINT32 ux, tx; |
|
OPJ_UINT32 mbr = *cur_mbr; |
|
OPJ_UINT32 new_sig = 0; |
|
if (mbr) { //are there any samples that might be significant |
|
OPJ_INT32 n; |
|
for (n = 0; n < 8; n += 4) { |
|
OPJ_UINT32 col_mask; |
|
OPJ_UINT32 inv_sig; |
|
OPJ_INT32 end; |
|
OPJ_INT32 j; |
|
|
|
OPJ_UINT32 cwd = frwd_fetch(&sigprop); //get 32 bits |
|
OPJ_UINT32 cnt = 0; |
|
|
|
OPJ_UINT32 *dp = decoded_data + (y - 8) * stride; |
|
dp += i + n; //address for decoded samples |
|
|
|
col_mask = 0xFu << (4 * n); //a mask to select a column |
|
|
|
inv_sig = ~cur_sig[0]; // insignificant samples |
|
|
|
//find the last sample we operate on |
|
end = n + 4 + i < width ? n + 4 : width - i; |
|
|
|
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { |
|
OPJ_UINT32 sample_mask; |
|
|
|
if ((col_mask & mbr) == 0) { //no samples need checking |
|
continue; |
|
} |
|
|
|
//scan mbr to find a new significant sample |
|
sample_mask = 0x11111111u & col_mask; // LSB |
|
if (mbr & sample_mask) { |
|
assert(dp[0] == 0); // the sample must have been 0 |
|
if (cwd & 1) { //if this sample has become significant |
|
// must propagate it to nearby samples |
|
OPJ_UINT32 t; |
|
new_sig |= sample_mask; // new significant samples |
|
t = 0x32u << (j * 4);// propagation to neighbors |
|
mbr |= t & inv_sig; //remove already significant samples |
|
} |
|
cwd >>= 1; |
|
++cnt; //consume bit and increment number of |
|
//consumed bits |
|
} |
|
|
|
sample_mask += sample_mask; // next row |
|
if (mbr & sample_mask) { |
|
assert(dp[stride] == 0); |
|
if (cwd & 1) { |
|
OPJ_UINT32 t; |
|
new_sig |= sample_mask; |
|
t = 0x74u << (j * 4); |
|
mbr |= t & inv_sig; |
|
} |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
|
|
sample_mask += sample_mask; |
|
if (mbr & sample_mask) { |
|
assert(dp[2 * stride] == 0); |
|
if (cwd & 1) { |
|
OPJ_UINT32 t; |
|
new_sig |= sample_mask; |
|
t = 0xE8u << (j * 4); |
|
mbr |= t & inv_sig; |
|
} |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
|
|
sample_mask += sample_mask; |
|
if (mbr & sample_mask) { |
|
assert(dp[3 * stride] == 0); |
|
if (cwd & 1) { |
|
OPJ_UINT32 t; |
|
new_sig |= sample_mask; |
|
t = 0xC0u << (j * 4); |
|
mbr |= t & inv_sig; |
|
} |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
} |
|
|
|
//obtain signs here |
|
if (new_sig & (0xFFFFu << (4 * n))) { //if any |
|
OPJ_UINT32 col_mask; |
|
OPJ_INT32 j; |
|
OPJ_UINT32 *dp = decoded_data + (y - 8) * stride; |
|
dp += i + n; // decoded samples address |
|
col_mask = 0xFu << (4 * n); //mask to select a column |
|
|
|
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { |
|
OPJ_UINT32 sample_mask; |
|
|
|
if ((col_mask & new_sig) == 0) { //if non is significant |
|
continue; |
|
} |
|
|
|
//scan 4 signs |
|
sample_mask = 0x11111111u & col_mask; |
|
if (new_sig & sample_mask) { |
|
assert(dp[0] == 0); |
|
dp[0] |= ((cwd & 1) << 31) | val; //put value and sign |
|
cwd >>= 1; |
|
++cnt; //consume bit and increment number |
|
//of consumed bits |
|
} |
|
|
|
sample_mask += sample_mask; |
|
if (new_sig & sample_mask) { |
|
assert(dp[stride] == 0); |
|
dp[stride] |= ((cwd & 1) << 31) | val; |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
|
|
sample_mask += sample_mask; |
|
if (new_sig & sample_mask) { |
|
assert(dp[2 * stride] == 0); |
|
dp[2 * stride] |= ((cwd & 1) << 31) | val; |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
|
|
sample_mask += sample_mask; |
|
if (new_sig & sample_mask) { |
|
assert(dp[3 * stride] == 0); |
|
dp[3 * stride] |= ((cwd & 1) << 31) | val; |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
} |
|
|
|
} |
|
frwd_advance(&sigprop, cnt); //consume the bits from bitstrm |
|
cnt = 0; |
|
|
|
//update the next 8 columns |
|
if (n == 4) { |
|
//horizontally |
|
OPJ_UINT32 t = new_sig >> 28; |
|
t |= ((t & 0xE) >> 1) | ((t & 7) << 1); |
|
cur_mbr[1] |= t & ~cur_sig[1]; |
|
} |
|
} |
|
} |
|
//update the next stripe (vertically propagation) |
|
new_sig |= cur_sig[0]; |
|
ux = (new_sig & 0x88888888) >> 3; |
|
tx = ux | (ux << 4) | (ux >> 4); //left and right neighbors |
|
if (i > 0) { |
|
nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1]; |
|
} |
|
nxt_mbr[0] |= tx & ~nxt_sig[0]; |
|
nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1]; |
|
} |
|
|
|
//clear current sigma |
|
//mbr need not be cleared because it is overwritten |
|
cur_sig = y & 0x4 ? sigma2 : sigma1; |
|
memset(cur_sig, 0, ((((OPJ_UINT32)width + 7u) >> 3) + 1u) << 2); |
|
} |
|
} |
|
} |
|
|
|
//terminating |
|
if (num_passes > 1) { |
|
OPJ_INT32 st, y; |
|
|
|
if (num_passes > 2 && ((height & 3) == 1 || (height & 3) == 2)) { |
|
//do magref |
|
OPJ_UINT32 *cur_sig = height & 0x4 ? sigma2 : sigma1; //reversed |
|
OPJ_UINT32 *dpp = decoded_data + (height & 0xFFFFFC) * stride; |
|
OPJ_UINT32 half = 1u << (p - 2); |
|
OPJ_INT32 i; |
|
for (i = 0; i < width; i += 8) { |
|
OPJ_UINT32 cwd = rev_fetch_mrp(&magref); |
|
OPJ_UINT32 sig = *cur_sig++; |
|
OPJ_UINT32 col_mask = 0xF; |
|
OPJ_UINT32 *dp = dpp + i; |
|
if (sig) { |
|
int j; |
|
for (j = 0; j < 8; ++j, dp++) { |
|
if (sig & col_mask) { |
|
OPJ_UINT32 sample_mask = 0x11111111 & col_mask; |
|
|
|
if (sig & sample_mask) { |
|
OPJ_UINT32 sym; |
|
assert(dp[0] != 0); |
|
sym = cwd & 1; |
|
dp[0] ^= (1 - sym) << (p - 1); |
|
dp[0] |= half; |
|
cwd >>= 1; |
|
} |
|
sample_mask += sample_mask; |
|
|
|
if (sig & sample_mask) { |
|
OPJ_UINT32 sym; |
|
assert(dp[stride] != 0); |
|
sym = cwd & 1; |
|
dp[stride] ^= (1 - sym) << (p - 1); |
|
dp[stride] |= half; |
|
cwd >>= 1; |
|
} |
|
sample_mask += sample_mask; |
|
|
|
if (sig & sample_mask) { |
|
OPJ_UINT32 sym; |
|
assert(dp[2 * stride] != 0); |
|
sym = cwd & 1; |
|
dp[2 * stride] ^= (1 - sym) << (p - 1); |
|
dp[2 * stride] |= half; |
|
cwd >>= 1; |
|
} |
|
sample_mask += sample_mask; |
|
|
|
if (sig & sample_mask) { |
|
OPJ_UINT32 sym; |
|
assert(dp[3 * stride] != 0); |
|
sym = cwd & 1; |
|
dp[3 * stride] ^= (1 - sym) << (p - 1); |
|
dp[3 * stride] |= half; |
|
cwd >>= 1; |
|
} |
|
sample_mask += sample_mask; |
|
} |
|
col_mask <<= 4; |
|
} |
|
} |
|
rev_advance_mrp(&magref, population_count(sig)); |
|
} |
|
} |
|
|
|
//do the last incomplete stripe |
|
// for cases of (height & 3) == 0 and 3 |
|
// the should have been processed previously |
|
if ((height & 3) == 1 || (height & 3) == 2) { |
|
//generate mbr of first stripe |
|
OPJ_UINT32 *sig = height & 0x4 ? sigma2 : sigma1; |
|
OPJ_UINT32 *mbr = height & 0x4 ? mbr2 : mbr1; |
|
//integrate horizontally |
|
OPJ_UINT32 prev = 0; |
|
OPJ_INT32 i; |
|
for (i = 0; i < width; i += 8, mbr++, sig++) { |
|
OPJ_UINT32 t, z; |
|
|
|
mbr[0] = sig[0]; |
|
mbr[0] |= prev >> 28; //for first column, left neighbors |
|
mbr[0] |= sig[0] << 4; //left neighbors |
|
mbr[0] |= sig[0] >> 4; //left neighbors |
|
mbr[0] |= sig[1] << 28; //for last column, right neighbors |
|
prev = sig[0]; |
|
|
|
//integrate vertically |
|
t = mbr[0], z = mbr[0]; |
|
z |= (t & 0x77777777) << 1; //above neighbors |
|
z |= (t & 0xEEEEEEEE) >> 1; //below neighbors |
|
mbr[0] = z & ~sig[0]; //remove already significance samples |
|
} |
|
} |
|
|
|
st = height; |
|
st -= height > 6 ? (((height + 1) & 3) + 3) : height; |
|
for (y = st; y < height; y += 4) { |
|
OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr; |
|
OPJ_UINT32 val; |
|
OPJ_INT32 i; |
|
|
|
OPJ_UINT32 pattern = 0xFFFFFFFFu; // a pattern needed samples |
|
if (height - y == 3) { |
|
pattern = 0x77777777u; |
|
} else if (height - y == 2) { |
|
pattern = 0x33333333u; |
|
} else if (height - y == 1) { |
|
pattern = 0x11111111u; |
|
} |
|
|
|
//add membership from the next stripe, obtained above |
|
if (height - y > 4) { |
|
OPJ_UINT32 prev = 0; |
|
OPJ_INT32 i; |
|
cur_sig = y & 0x4 ? sigma2 : sigma1; |
|
cur_mbr = y & 0x4 ? mbr2 : mbr1; |
|
nxt_sig = y & 0x4 ? sigma1 : sigma2; |
|
for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) { |
|
OPJ_UINT32 t = nxt_sig[0]; |
|
t |= prev >> 28; //for first column, left neighbors |
|
t |= nxt_sig[0] << 4; //left neighbors |
|
t |= nxt_sig[0] >> 4; //left neighbors |
|
t |= nxt_sig[1] << 28; //for last column, right neighbors |
|
prev = nxt_sig[0]; |
|
|
|
if (!stripe_causal) { |
|
cur_mbr[0] |= (t & 0x11111111u) << 3; |
|
} |
|
//remove already significance samples |
|
cur_mbr[0] &= ~cur_sig[0]; |
|
} |
|
} |
|
|
|
//find new locations and get signs |
|
cur_sig = y & 0x4 ? sigma2 : sigma1; |
|
cur_mbr = y & 0x4 ? mbr2 : mbr1; |
|
nxt_sig = y & 0x4 ? sigma1 : sigma2; |
|
nxt_mbr = y & 0x4 ? mbr1 : mbr2; |
|
val = 3u << (p - 2); |
|
for (i = 0; i < width; i += 8, |
|
cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) { |
|
OPJ_UINT32 mbr = *cur_mbr & pattern; //skip unneeded samples |
|
OPJ_UINT32 new_sig = 0; |
|
OPJ_UINT32 ux, tx; |
|
if (mbr) { |
|
OPJ_INT32 n; |
|
for (n = 0; n < 8; n += 4) { |
|
OPJ_UINT32 col_mask; |
|
OPJ_UINT32 inv_sig; |
|
OPJ_INT32 end; |
|
OPJ_INT32 j; |
|
|
|
OPJ_UINT32 cwd = frwd_fetch(&sigprop); |
|
OPJ_UINT32 cnt = 0; |
|
|
|
OPJ_UINT32 *dp = decoded_data + y * stride; |
|
dp += i + n; |
|
|
|
col_mask = 0xFu << (4 * n); |
|
|
|
inv_sig = ~cur_sig[0] & pattern; |
|
|
|
end = n + 4 + i < width ? n + 4 : width - i; |
|
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { |
|
OPJ_UINT32 sample_mask; |
|
|
|
if ((col_mask & mbr) == 0) { |
|
continue; |
|
} |
|
|
|
//scan 4 mbr |
|
sample_mask = 0x11111111u & col_mask; |
|
if (mbr & sample_mask) { |
|
assert(dp[0] == 0); |
|
if (cwd & 1) { |
|
OPJ_UINT32 t; |
|
new_sig |= sample_mask; |
|
t = 0x32u << (j * 4); |
|
mbr |= t & inv_sig; |
|
} |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
|
|
sample_mask += sample_mask; |
|
if (mbr & sample_mask) { |
|
assert(dp[stride] == 0); |
|
if (cwd & 1) { |
|
OPJ_UINT32 t; |
|
new_sig |= sample_mask; |
|
t = 0x74u << (j * 4); |
|
mbr |= t & inv_sig; |
|
} |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
|
|
sample_mask += sample_mask; |
|
if (mbr & sample_mask) { |
|
assert(dp[2 * stride] == 0); |
|
if (cwd & 1) { |
|
OPJ_UINT32 t; |
|
new_sig |= sample_mask; |
|
t = 0xE8u << (j * 4); |
|
mbr |= t & inv_sig; |
|
} |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
|
|
sample_mask += sample_mask; |
|
if (mbr & sample_mask) { |
|
assert(dp[3 * stride] == 0); |
|
if (cwd & 1) { |
|
OPJ_UINT32 t; |
|
new_sig |= sample_mask; |
|
t = 0xC0u << (j * 4); |
|
mbr |= t & inv_sig; |
|
} |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
} |
|
|
|
//signs here |
|
if (new_sig & (0xFFFFu << (4 * n))) { |
|
OPJ_UINT32 col_mask; |
|
OPJ_INT32 j; |
|
OPJ_UINT32 *dp = decoded_data + y * stride; |
|
dp += i + n; |
|
col_mask = 0xFu << (4 * n); |
|
|
|
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { |
|
OPJ_UINT32 sample_mask; |
|
if ((col_mask & new_sig) == 0) { |
|
continue; |
|
} |
|
|
|
//scan 4 signs |
|
sample_mask = 0x11111111u & col_mask; |
|
if (new_sig & sample_mask) { |
|
assert(dp[0] == 0); |
|
dp[0] |= ((cwd & 1) << 31) | val; |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
|
|
sample_mask += sample_mask; |
|
if (new_sig & sample_mask) { |
|
assert(dp[stride] == 0); |
|
dp[stride] |= ((cwd & 1) << 31) | val; |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
|
|
sample_mask += sample_mask; |
|
if (new_sig & sample_mask) { |
|
assert(dp[2 * stride] == 0); |
|
dp[2 * stride] |= ((cwd & 1) << 31) | val; |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
|
|
sample_mask += sample_mask; |
|
if (new_sig & sample_mask) { |
|
assert(dp[3 * stride] == 0); |
|
dp[3 * stride] |= ((cwd & 1) << 31) | val; |
|
cwd >>= 1; |
|
++cnt; |
|
} |
|
} |
|
|
|
} |
|
frwd_advance(&sigprop, cnt); |
|
cnt = 0; |
|
|
|
//update next columns |
|
if (n == 4) { |
|
//horizontally |
|
OPJ_UINT32 t = new_sig >> 28; |
|
t |= ((t & 0xE) >> 1) | ((t & 7) << 1); |
|
cur_mbr[1] |= t & ~cur_sig[1]; |
|
} |
|
} |
|
} |
|
//propagate down (vertically propagation) |
|
new_sig |= cur_sig[0]; |
|
ux = (new_sig & 0x88888888) >> 3; |
|
tx = ux | (ux << 4) | (ux >> 4); |
|
if (i > 0) { |
|
nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1]; |
|
} |
|
nxt_mbr[0] |= tx & ~nxt_sig[0]; |
|
nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1]; |
|
} |
|
} |
|
} |
|
|
|
{ |
|
OPJ_INT32 x, y; |
|
for (y = 0; y < height; ++y) { |
|
OPJ_INT32* sp = (OPJ_INT32*)decoded_data + y * stride; |
|
for (x = 0; x < width; ++x, ++sp) { |
|
OPJ_INT32 val = (*sp & 0x7FFFFFFF); |
|
*sp = ((OPJ_UINT32) * sp & 0x80000000) ? -val : val; |
|
} |
|
} |
|
} |
|
|
|
return OPJ_TRUE; |
|
}
|
|
|