mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
269 lines
6.0 KiB
269 lines
6.0 KiB
/////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas |
|
// Digital Ltd. LLC |
|
// |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Industrial Light & Magic nor the names of |
|
// its contributors may be used to endorse or promote products derived |
|
// from this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
/////////////////////////////////////////////////////////////////////////// |
|
|
|
|
|
|
|
#ifndef INCLUDED_IMATHFUN_H |
|
#define INCLUDED_IMATHFUN_H |
|
|
|
//----------------------------------------------------------------------------- |
|
// |
|
// Miscellaneous utility functions |
|
// |
|
//----------------------------------------------------------------------------- |
|
|
|
#include "ImathExport.h" |
|
#include "ImathLimits.h" |
|
#include "ImathInt64.h" |
|
#include "ImathNamespace.h" |
|
|
|
IMATH_INTERNAL_NAMESPACE_HEADER_ENTER |
|
|
|
template <class T> |
|
inline T |
|
abs (T a) |
|
{ |
|
return (a > T(0)) ? a : -a; |
|
} |
|
|
|
|
|
template <class T> |
|
inline int |
|
sign (T a) |
|
{ |
|
return (a > T(0))? 1 : ((a < T(0)) ? -1 : 0); |
|
} |
|
|
|
|
|
template <class T, class Q> |
|
inline T |
|
lerp (T a, T b, Q t) |
|
{ |
|
return (T) (a * (1 - t) + b * t); |
|
} |
|
|
|
|
|
template <class T, class Q> |
|
inline T |
|
ulerp (T a, T b, Q t) |
|
{ |
|
return (T) ((a > b)? (a - (a - b) * t): (a + (b - a) * t)); |
|
} |
|
|
|
|
|
template <class T> |
|
inline T |
|
lerpfactor(T m, T a, T b) |
|
{ |
|
// |
|
// Return how far m is between a and b, that is return t such that |
|
// if: |
|
// t = lerpfactor(m, a, b); |
|
// then: |
|
// m = lerp(a, b, t); |
|
// |
|
// If a==b, return 0. |
|
// |
|
|
|
T d = b - a; |
|
T n = m - a; |
|
|
|
if (abs(d) > T(1) || abs(n) < limits<T>::max() * abs(d)) |
|
return n / d; |
|
|
|
return T(0); |
|
} |
|
|
|
|
|
template <class T> |
|
inline T |
|
clamp (T a, T l, T h) |
|
{ |
|
return (a < l)? l : ((a > h)? h : a); |
|
} |
|
|
|
|
|
template <class T> |
|
inline int |
|
cmp (T a, T b) |
|
{ |
|
return IMATH_INTERNAL_NAMESPACE::sign (a - b); |
|
} |
|
|
|
|
|
template <class T> |
|
inline int |
|
cmpt (T a, T b, T t) |
|
{ |
|
return (IMATH_INTERNAL_NAMESPACE::abs (a - b) <= t)? 0 : cmp (a, b); |
|
} |
|
|
|
|
|
template <class T> |
|
inline bool |
|
iszero (T a, T t) |
|
{ |
|
return (IMATH_INTERNAL_NAMESPACE::abs (a) <= t) ? 1 : 0; |
|
} |
|
|
|
|
|
template <class T1, class T2, class T3> |
|
inline bool |
|
equal (T1 a, T2 b, T3 t) |
|
{ |
|
return IMATH_INTERNAL_NAMESPACE::abs (a - b) <= t; |
|
} |
|
|
|
template <class T> |
|
inline int |
|
floor (T x) |
|
{ |
|
return (x >= 0)? int (x): -(int (-x) + (-x > int (-x))); |
|
} |
|
|
|
|
|
template <class T> |
|
inline int |
|
ceil (T x) |
|
{ |
|
return -floor (-x); |
|
} |
|
|
|
template <class T> |
|
inline int |
|
trunc (T x) |
|
{ |
|
return (x >= 0) ? int(x) : -int(-x); |
|
} |
|
|
|
|
|
// |
|
// Integer division and remainder where the |
|
// remainder of x/y has the same sign as x: |
|
// |
|
// divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y)) |
|
// mods(x,y) == x - y * divs(x,y) |
|
// |
|
|
|
inline int |
|
divs (int x, int y) |
|
{ |
|
return (x >= 0)? ((y >= 0)? ( x / y): -( x / -y)): |
|
((y >= 0)? -(-x / y): (-x / -y)); |
|
} |
|
|
|
|
|
inline int |
|
mods (int x, int y) |
|
{ |
|
return (x >= 0)? ((y >= 0)? ( x % y): ( x % -y)): |
|
((y >= 0)? -(-x % y): -(-x % -y)); |
|
} |
|
|
|
|
|
// |
|
// Integer division and remainder where the |
|
// remainder of x/y is always positive: |
|
// |
|
// divp(x,y) == floor (double(x) / double (y)) |
|
// modp(x,y) == x - y * divp(x,y) |
|
// |
|
|
|
inline int |
|
divp (int x, int y) |
|
{ |
|
return (x >= 0)? ((y >= 0)? ( x / y): -( x / -y)): |
|
((y >= 0)? -((y-1-x) / y): ((-y-1-x) / -y)); |
|
} |
|
|
|
|
|
inline int |
|
modp (int x, int y) |
|
{ |
|
return x - y * divp (x, y); |
|
} |
|
|
|
//---------------------------------------------------------- |
|
// Successor and predecessor for floating-point numbers: |
|
// |
|
// succf(f) returns float(f+e), where e is the smallest |
|
// positive number such that float(f+e) != f. |
|
// |
|
// predf(f) returns float(f-e), where e is the smallest |
|
// positive number such that float(f-e) != f. |
|
// |
|
// succd(d) returns double(d+e), where e is the smallest |
|
// positive number such that double(d+e) != d. |
|
// |
|
// predd(d) returns double(d-e), where e is the smallest |
|
// positive number such that double(d-e) != d. |
|
// |
|
// Exceptions: If the input value is an infinity or a nan, |
|
// succf(), predf(), succd(), and predd() all |
|
// return the input value without changing it. |
|
// |
|
//---------------------------------------------------------- |
|
|
|
IMATH_EXPORT float succf (float f); |
|
IMATH_EXPORT float predf (float f); |
|
|
|
IMATH_EXPORT double succd (double d); |
|
IMATH_EXPORT double predd (double d); |
|
|
|
// |
|
// Return true if the number is not a NaN or Infinity. |
|
// |
|
|
|
inline bool |
|
finitef (float f) |
|
{ |
|
union {float f; int i;} u; |
|
u.f = f; |
|
|
|
return (u.i & 0x7f800000) != 0x7f800000; |
|
} |
|
|
|
inline bool |
|
finited (double d) |
|
{ |
|
union {double d; Int64 i;} u; |
|
u.d = d; |
|
|
|
return (u.i & 0x7ff0000000000000LL) != 0x7ff0000000000000LL; |
|
} |
|
|
|
|
|
IMATH_INTERNAL_NAMESPACE_HEADER_EXIT |
|
|
|
#endif // INCLUDED_IMATHFUN_H
|
|
|