mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
312 lines
9.8 KiB
312 lines
9.8 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "perf_precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace testing; |
|
using namespace perf; |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// FAST |
|
|
|
DEF_PARAM_TEST(Image_Threshold_NonMaxSuppression, string, int, bool); |
|
|
|
PERF_TEST_P(Image_Threshold_NonMaxSuppression, FAST, |
|
Combine(Values<string>("gpu/perf/aloe.png"), |
|
Values(20), |
|
Bool())) |
|
{ |
|
const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
const int threshold = GET_PARAM(1); |
|
const bool nonMaxSuppersion = GET_PARAM(2); |
|
|
|
if (PERF_RUN_CUDA()) |
|
{ |
|
cv::Ptr<cv::cuda::FastFeatureDetector> d_fast = |
|
cv::cuda::FastFeatureDetector::create(threshold, nonMaxSuppersion, |
|
cv::FastFeatureDetector::TYPE_9_16, |
|
0.5 * img.size().area()); |
|
|
|
const cv::cuda::GpuMat d_img(img); |
|
cv::cuda::GpuMat d_keypoints; |
|
|
|
TEST_CYCLE() d_fast->detectAsync(d_img, d_keypoints); |
|
|
|
std::vector<cv::KeyPoint> gpu_keypoints; |
|
d_fast->convert(d_keypoints, gpu_keypoints); |
|
|
|
sortKeyPoints(gpu_keypoints); |
|
|
|
SANITY_CHECK_KEYPOINTS(gpu_keypoints); |
|
} |
|
else |
|
{ |
|
std::vector<cv::KeyPoint> cpu_keypoints; |
|
|
|
TEST_CYCLE() cv::FAST(img, cpu_keypoints, threshold, nonMaxSuppersion); |
|
|
|
SANITY_CHECK_KEYPOINTS(cpu_keypoints); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// ORB |
|
|
|
DEF_PARAM_TEST(Image_NFeatures, string, int); |
|
|
|
PERF_TEST_P(Image_NFeatures, ORB, |
|
Combine(Values<string>("gpu/perf/aloe.png"), |
|
Values(4000))) |
|
{ |
|
declare.time(300.0); |
|
|
|
const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
const int nFeatures = GET_PARAM(1); |
|
|
|
if (PERF_RUN_CUDA()) |
|
{ |
|
cv::Ptr<cv::cuda::ORB> d_orb = cv::cuda::ORB::create(nFeatures); |
|
|
|
const cv::cuda::GpuMat d_img(img); |
|
cv::cuda::GpuMat d_keypoints, d_descriptors; |
|
|
|
TEST_CYCLE() d_orb->detectAndComputeAsync(d_img, cv::noArray(), d_keypoints, d_descriptors); |
|
|
|
std::vector<cv::KeyPoint> gpu_keypoints; |
|
d_orb->convert(d_keypoints, gpu_keypoints); |
|
|
|
cv::Mat gpu_descriptors(d_descriptors); |
|
|
|
gpu_keypoints.resize(10); |
|
gpu_descriptors = gpu_descriptors.rowRange(0, 10); |
|
|
|
sortKeyPoints(gpu_keypoints, gpu_descriptors); |
|
|
|
SANITY_CHECK_KEYPOINTS(gpu_keypoints, 1e-4); |
|
SANITY_CHECK(gpu_descriptors); |
|
} |
|
else |
|
{ |
|
cv::Ptr<cv::ORB> orb = cv::ORB::create(nFeatures); |
|
|
|
std::vector<cv::KeyPoint> cpu_keypoints; |
|
cv::Mat cpu_descriptors; |
|
|
|
TEST_CYCLE() orb->detectAndCompute(img, cv::noArray(), cpu_keypoints, cpu_descriptors); |
|
|
|
SANITY_CHECK_KEYPOINTS(cpu_keypoints); |
|
SANITY_CHECK(cpu_descriptors); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BFMatch |
|
|
|
DEF_PARAM_TEST(DescSize_Norm, int, NormType); |
|
|
|
PERF_TEST_P(DescSize_Norm, BFMatch, |
|
Combine(Values(64, 128, 256), |
|
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))) |
|
{ |
|
declare.time(20.0); |
|
|
|
const int desc_size = GET_PARAM(0); |
|
const int normType = GET_PARAM(1); |
|
|
|
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
|
|
|
cv::Mat query(3000, desc_size, type); |
|
declare.in(query, WARMUP_RNG); |
|
|
|
cv::Mat train(3000, desc_size, type); |
|
declare.in(train, WARMUP_RNG); |
|
|
|
if (PERF_RUN_CUDA()) |
|
{ |
|
cv::Ptr<cv::cuda::DescriptorMatcher> d_matcher = cv::cuda::DescriptorMatcher::createBFMatcher(normType); |
|
|
|
const cv::cuda::GpuMat d_query(query); |
|
const cv::cuda::GpuMat d_train(train); |
|
cv::cuda::GpuMat d_matches; |
|
|
|
TEST_CYCLE() d_matcher->matchAsync(d_query, d_train, d_matches); |
|
|
|
std::vector<cv::DMatch> gpu_matches; |
|
d_matcher->matchConvert(d_matches, gpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(gpu_matches); |
|
} |
|
else |
|
{ |
|
cv::BFMatcher matcher(normType); |
|
|
|
std::vector<cv::DMatch> cpu_matches; |
|
|
|
TEST_CYCLE() matcher.match(query, train, cpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(cpu_matches); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BFKnnMatch |
|
|
|
static void toOneRowMatches(const std::vector< std::vector<cv::DMatch> >& src, std::vector<cv::DMatch>& dst) |
|
{ |
|
dst.clear(); |
|
for (size_t i = 0; i < src.size(); ++i) |
|
for (size_t j = 0; j < src[i].size(); ++j) |
|
dst.push_back(src[i][j]); |
|
} |
|
|
|
DEF_PARAM_TEST(DescSize_K_Norm, int, int, NormType); |
|
|
|
PERF_TEST_P(DescSize_K_Norm, BFKnnMatch, |
|
Combine(Values(64, 128, 256), |
|
Values(2, 3), |
|
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2)))) |
|
{ |
|
declare.time(30.0); |
|
|
|
const int desc_size = GET_PARAM(0); |
|
const int k = GET_PARAM(1); |
|
const int normType = GET_PARAM(2); |
|
|
|
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
|
|
|
cv::Mat query(3000, desc_size, type); |
|
declare.in(query, WARMUP_RNG); |
|
|
|
cv::Mat train(3000, desc_size, type); |
|
declare.in(train, WARMUP_RNG); |
|
|
|
if (PERF_RUN_CUDA()) |
|
{ |
|
cv::Ptr<cv::cuda::DescriptorMatcher> d_matcher = cv::cuda::DescriptorMatcher::createBFMatcher(normType); |
|
|
|
const cv::cuda::GpuMat d_query(query); |
|
const cv::cuda::GpuMat d_train(train); |
|
cv::cuda::GpuMat d_matches; |
|
|
|
TEST_CYCLE() d_matcher->knnMatchAsync(d_query, d_train, d_matches, k); |
|
|
|
std::vector< std::vector<cv::DMatch> > matchesTbl; |
|
d_matcher->knnMatchConvert(d_matches, matchesTbl); |
|
|
|
std::vector<cv::DMatch> gpu_matches; |
|
toOneRowMatches(matchesTbl, gpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(gpu_matches); |
|
} |
|
else |
|
{ |
|
cv::BFMatcher matcher(normType); |
|
|
|
std::vector< std::vector<cv::DMatch> > matchesTbl; |
|
|
|
TEST_CYCLE() matcher.knnMatch(query, train, matchesTbl, k); |
|
|
|
std::vector<cv::DMatch> cpu_matches; |
|
toOneRowMatches(matchesTbl, cpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(cpu_matches); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BFRadiusMatch |
|
|
|
PERF_TEST_P(DescSize_Norm, BFRadiusMatch, |
|
Combine(Values(64, 128, 256), |
|
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2)))) |
|
{ |
|
declare.time(30.0); |
|
|
|
const int desc_size = GET_PARAM(0); |
|
const int normType = GET_PARAM(1); |
|
|
|
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
|
const float maxDistance = 10000; |
|
|
|
cv::Mat query(3000, desc_size, type); |
|
declare.in(query, WARMUP_RNG); |
|
|
|
cv::Mat train(3000, desc_size, type); |
|
declare.in(train, WARMUP_RNG); |
|
|
|
if (PERF_RUN_CUDA()) |
|
{ |
|
cv::Ptr<cv::cuda::DescriptorMatcher> d_matcher = cv::cuda::DescriptorMatcher::createBFMatcher(normType); |
|
|
|
const cv::cuda::GpuMat d_query(query); |
|
const cv::cuda::GpuMat d_train(train); |
|
cv::cuda::GpuMat d_matches; |
|
|
|
TEST_CYCLE() d_matcher->radiusMatchAsync(d_query, d_train, d_matches, maxDistance); |
|
|
|
std::vector< std::vector<cv::DMatch> > matchesTbl; |
|
d_matcher->radiusMatchConvert(d_matches, matchesTbl); |
|
|
|
std::vector<cv::DMatch> gpu_matches; |
|
toOneRowMatches(matchesTbl, gpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(gpu_matches); |
|
} |
|
else |
|
{ |
|
cv::BFMatcher matcher(normType); |
|
|
|
std::vector< std::vector<cv::DMatch> > matchesTbl; |
|
|
|
TEST_CYCLE() matcher.radiusMatch(query, train, matchesTbl, maxDistance); |
|
|
|
std::vector<cv::DMatch> cpu_matches; |
|
toOneRowMatches(matchesTbl, cpu_matches); |
|
|
|
SANITY_CHECK_MATCHES(cpu_matches); |
|
} |
|
}
|
|
|