Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

504 lines
18 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#ifdef HAVE_PROTOBUF
#include <iostream>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <google/protobuf/message.h>
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include "caffe_io.hpp"
#endif
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
#ifdef HAVE_PROTOBUF
using ::google::protobuf::RepeatedField;
using ::google::protobuf::RepeatedPtrField;
using ::google::protobuf::Message;
using ::google::protobuf::Descriptor;
using ::google::protobuf::FieldDescriptor;
using ::google::protobuf::Reflection;
namespace
{
template<typename T>
static cv::String toString(const T &v)
{
std::ostringstream ss;
ss << v;
return ss.str();
}
class CaffeImporter
{
caffe::NetParameter net;
caffe::NetParameter netBinary;
public:
CaffeImporter(const char *pototxt, const char *caffeModel)
{
CV_TRACE_FUNCTION();
ReadNetParamsFromTextFileOrDie(pototxt, &net);
if (caffeModel && caffeModel[0])
ReadNetParamsFromBinaryFileOrDie(caffeModel, &netBinary);
}
CaffeImporter(const char *dataProto, size_t lenProto,
const char *dataModel, size_t lenModel)
{
CV_TRACE_FUNCTION();
ReadNetParamsFromTextBufferOrDie(dataProto, lenProto, &net);
if (dataModel != NULL && lenModel > 0)
ReadNetParamsFromBinaryBufferOrDie(dataModel, lenModel, &netBinary);
}
void extractCustomParams(const google::protobuf::UnknownFieldSet& unknownFields, cv::dnn::LayerParams &params)
{
const int numFields = unknownFields.field_count();
for (int i = 0; i < numFields; ++i)
{
const google::protobuf::UnknownField& field = unknownFields.field(i);
CV_Assert(field.type() == google::protobuf::UnknownField::TYPE_GROUP);
std::string fieldName = field.group().field(0).length_delimited();
std::string fieldValue = field.group().field(1).length_delimited();
params.set(fieldName, fieldValue);
}
}
void addParam(const Message &msg, const FieldDescriptor *field, cv::dnn::LayerParams &params)
{
const Reflection *refl = msg.GetReflection();
int type = field->cpp_type();
bool isRepeated = field->is_repeated();
const std::string &name = field->name();
#define SET_UP_FILED(getter, arrayConstr, gtype) \
if (isRepeated) { \
const RepeatedField<gtype> &v = refl->GetRepeatedField<gtype>(msg, field); \
params.set(name, DictValue::arrayConstr(v.begin(), (int)v.size())); \
} \
else { \
params.set(name, refl->getter(msg, field)); \
}
switch (type)
{
case FieldDescriptor::CPPTYPE_INT32:
SET_UP_FILED(GetInt32, arrayInt, ::google::protobuf::int32);
break;
case FieldDescriptor::CPPTYPE_UINT32:
SET_UP_FILED(GetUInt32, arrayInt, ::google::protobuf::uint32);
break;
case FieldDescriptor::CPPTYPE_INT64:
SET_UP_FILED(GetInt32, arrayInt, ::google::protobuf::int64);
break;
case FieldDescriptor::CPPTYPE_UINT64:
SET_UP_FILED(GetUInt32, arrayInt, ::google::protobuf::uint64);
break;
case FieldDescriptor::CPPTYPE_BOOL:
SET_UP_FILED(GetBool, arrayInt, bool);
break;
case FieldDescriptor::CPPTYPE_DOUBLE:
SET_UP_FILED(GetDouble, arrayReal, double);
break;
case FieldDescriptor::CPPTYPE_FLOAT:
SET_UP_FILED(GetFloat, arrayReal, float);
break;
case FieldDescriptor::CPPTYPE_STRING:
if (isRepeated) {
const RepeatedPtrField<std::string> &v = refl->GetRepeatedPtrField<std::string>(msg, field);
params.set(name, DictValue::arrayString(v.begin(), (int)v.size()));
}
else {
params.set(name, refl->GetString(msg, field));
}
break;
case FieldDescriptor::CPPTYPE_ENUM:
if (isRepeated) {
int size = refl->FieldSize(msg, field);
std::vector<cv::String> buf(size);
for (int i = 0; i < size; i++)
buf[i] = refl->GetRepeatedEnum(msg, field, i)->name();
params.set(name, DictValue::arrayString(buf.begin(), size));
}
else {
params.set(name, refl->GetEnum(msg, field)->name());
}
break;
default:
CV_Error(Error::StsError, "Unknown type \"" + String(field->type_name()) + "\" in prototxt");
break;
}
}
inline static bool ends_with_param(const std::string &str)
{
static const std::string _param("_param");
return (str.size() >= _param.size()) && str.compare(str.size() - _param.size(), _param.size(), _param) == 0;
}
void extractLayerParams(const Message &msg, cv::dnn::LayerParams &params, bool isInternal = false)
{
const Descriptor *msgDesc = msg.GetDescriptor();
const Reflection *msgRefl = msg.GetReflection();
for (int fieldId = 0; fieldId < msgDesc->field_count(); fieldId++)
{
const FieldDescriptor *fd = msgDesc->field(fieldId);
if (!isInternal && !ends_with_param(fd->name()))
continue;
const google::protobuf::UnknownFieldSet& unknownFields = msgRefl->GetUnknownFields(msg);
bool hasData = fd->is_required() ||
(fd->is_optional() && msgRefl->HasField(msg, fd)) ||
(fd->is_repeated() && msgRefl->FieldSize(msg, fd) > 0) ||
!unknownFields.empty();
if (!hasData)
continue;
extractCustomParams(unknownFields, params);
if (fd->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE)
{
if (fd->is_repeated()) //Extract only first item!
extractLayerParams(msgRefl->GetRepeatedMessage(msg, fd, 0), params, true);
else
extractLayerParams(msgRefl->GetMessage(msg, fd), params, true);
}
else
{
addParam(msg, fd, params);
}
}
}
void blobShapeFromProto(const caffe::BlobProto &pbBlob, MatShape& shape)
{
shape.clear();
if (pbBlob.has_num() || pbBlob.has_channels() || pbBlob.has_height() || pbBlob.has_width())
{
shape.push_back(pbBlob.num());
shape.push_back(pbBlob.channels());
shape.push_back(pbBlob.height());
shape.push_back(pbBlob.width());
}
else if (pbBlob.has_shape())
{
const caffe::BlobShape &_shape = pbBlob.shape();
for (int i = 0; i < _shape.dim_size(); i++)
shape.push_back((int)_shape.dim(i));
}
else
shape.resize(1, 1); // Is a scalar.
}
void blobFromProto(const caffe::BlobProto &pbBlob, cv::Mat &dstBlob)
{
MatShape shape;
blobShapeFromProto(pbBlob, shape);
dstBlob.create((int)shape.size(), &shape[0], CV_32F);
if (pbBlob.data_size())
{
// Single precision floats.
CV_Assert(pbBlob.data_size() == (int)dstBlob.total());
CV_DbgAssert(pbBlob.GetDescriptor()->FindFieldByLowercaseName("data")->cpp_type() == FieldDescriptor::CPPTYPE_FLOAT);
Mat(dstBlob.dims, &dstBlob.size[0], CV_32F, (void*)pbBlob.data().data()).copyTo(dstBlob);
}
else
{
CV_Assert(pbBlob.has_raw_data());
const std::string& raw_data = pbBlob.raw_data();
if (pbBlob.raw_data_type() == caffe::FLOAT16)
{
// Half precision floats.
CV_Assert(raw_data.size() / 2 == (int)dstBlob.total());
Mat halfs((int)shape.size(), &shape[0], CV_16SC1, (void*)raw_data.c_str());
convertFp16(halfs, dstBlob);
}
else if (pbBlob.raw_data_type() == caffe::FLOAT)
{
CV_Assert(raw_data.size() / 4 == (int)dstBlob.total());
Mat((int)shape.size(), &shape[0], CV_32FC1, (void*)raw_data.c_str()).copyTo(dstBlob);
}
else
CV_Error(Error::StsNotImplemented, "Unexpected blob data type");
}
}
void extractBinaryLayerParams(const caffe::LayerParameter& layer, LayerParams& layerParams)
{
const std::string &name = layer.name();
int li;
for (li = 0; li != netBinary.layer_size(); li++)
{
const caffe::LayerParameter& binLayer = netBinary.layer(li);
// Break if the layer name is the same and the blobs are not cleared
if (binLayer.name() == name && binLayer.blobs_size() != 0)
break;
}
if (li == netBinary.layer_size())
return;
caffe::LayerParameter* binLayer = netBinary.mutable_layer(li);
const int numBlobs = binLayer->blobs_size();
layerParams.blobs.resize(numBlobs);
for (int bi = 0; bi < numBlobs; bi++)
{
blobFromProto(binLayer->blobs(bi), layerParams.blobs[bi]);
}
binLayer->clear_blobs();
CV_Assert(numBlobs == binLayer->blobs().ClearedCount());
for (int bi = 0; bi < numBlobs; bi++)
{
delete binLayer->mutable_blobs()->ReleaseCleared();
}
}
struct BlobNote
{
BlobNote(const std::string &_name, int _layerId, int _outNum) :
name(_name), layerId(_layerId), outNum(_outNum) {}
std::string name;
int layerId, outNum;
};
std::vector<BlobNote> addedBlobs;
std::map<String, int> layerCounter;
void populateNet(Net dstNet)
{
CV_TRACE_FUNCTION();
int layersSize = net.layer_size();
layerCounter.clear();
addedBlobs.clear();
addedBlobs.reserve(layersSize + 1);
//setup input layer names
std::vector<String> netInputs(net.input_size());
{
for (int inNum = 0; inNum < net.input_size(); inNum++)
{
addedBlobs.push_back(BlobNote(net.input(inNum), 0, inNum));
netInputs[inNum] = net.input(inNum);
}
}
for (int li = 0; li < layersSize; li++)
{
const caffe::LayerParameter &layer = net.layer(li);
String name = layer.name();
String type = layer.type();
LayerParams layerParams;
extractLayerParams(layer, layerParams);
extractBinaryLayerParams(layer, layerParams);
int repetitions = layerCounter[name]++;
if (repetitions)
name += String("_") + toString(repetitions);
if (type == "Input")
{
for (int outNum = 0; outNum < layer.top_size(); outNum++)
{
addOutput(layer, 0, outNum);
addedBlobs.back().outNum = netInputs.size();
netInputs.push_back(addedBlobs.back().name);
}
continue;
}
else if (type == "BatchNorm")
{
if (!layerParams.get<bool>("use_global_stats", true))
{
CV_Assert_N(layer.bottom_size() == 1, layer.top_size() == 1);
LayerParams mvnParams;
mvnParams.set("eps", layerParams.get<float>("eps", 1e-5));
std::string mvnName = name + "/mvn";
int repetitions = layerCounter[mvnName]++;
if (repetitions)
mvnName += String("_") + toString(repetitions);
int mvnId = dstNet.addLayer(mvnName, "MVN", mvnParams);
addInput(layer.bottom(0), mvnId, 0, dstNet);
addOutput(layer, mvnId, 0);
net.mutable_layer(li)->set_bottom(0, layer.top(0));
layerParams.blobs[0].setTo(0); // mean
layerParams.blobs[1].setTo(1); // std
}
}
else if (type == "Axpy")
{
CV_Assert_N(layer.bottom_size() == 3, layer.top_size() == 1);
std::string scaleName = name + "/scale";
int repetitions = layerCounter[scaleName]++;
if (repetitions) {
scaleName += String("_") + toString(repetitions);
}
LayerParams scaleParams;
scaleParams.set("axis", 1);
scaleParams.set("has_bias", false);
int scaleId = dstNet.addLayer(scaleName, "Scale", scaleParams);
addInput(layer.bottom(2), scaleId, 0, dstNet);
addInput(layer.bottom(0), scaleId, 1, dstNet);
addOutput(layer, scaleId, 0);
net.mutable_layer(li)->set_bottom(0, layer.top(0));
net.mutable_layer(li)->mutable_bottom()->RemoveLast();
type = "Eltwise";
}
else if ("ConvolutionDepthwise" == type)
{
type = "Convolution";
}
int id = dstNet.addLayer(name, type, layerParams);
for (int inNum = 0; inNum < layer.bottom_size(); inNum++)
addInput(layer.bottom(inNum), id, inNum, dstNet);
for (int outNum = 0; outNum < layer.top_size(); outNum++)
addOutput(layer, id, outNum);
}
dstNet.setInputsNames(netInputs);
addedBlobs.clear();
}
void addOutput(const caffe::LayerParameter &layer, int layerId, int outNum)
{
const std::string &name = layer.top(outNum);
bool haveDups = false;
for (int idx = (int)addedBlobs.size() - 1; idx >= 0; idx--)
{
if (addedBlobs[idx].name == name)
{
haveDups = true;
break;
}
}
if (haveDups)
{
bool isInplace = layer.bottom_size() > outNum && layer.bottom(outNum) == name;
if (!isInplace)
CV_Error(Error::StsBadArg, "Duplicate blobs produced by multiple sources");
}
addedBlobs.push_back(BlobNote(name, layerId, outNum));
}
void addInput(const std::string &name, int layerId, int inNum, Net &dstNet)
{
int idx;
for (idx = (int)addedBlobs.size() - 1; idx >= 0; idx--)
{
if (addedBlobs[idx].name == name)
break;
}
if (idx < 0)
{
CV_Error(Error::StsObjectNotFound, "Can't find output blob \"" + name + "\"");
return;
}
dstNet.connect(addedBlobs[idx].layerId, addedBlobs[idx].outNum, layerId, inNum);
}
};
}
Net readNetFromCaffe(const String &prototxt, const String &caffeModel /*= String()*/)
{
CaffeImporter caffeImporter(prototxt.c_str(), caffeModel.c_str());
Net net;
caffeImporter.populateNet(net);
return net;
}
Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
const char *bufferModel, size_t lenModel)
{
CaffeImporter caffeImporter(bufferProto, lenProto, bufferModel, lenModel);
Net net;
caffeImporter.populateNet(net);
return net;
}
Net readNetFromCaffe(const std::vector<uchar>& bufferProto, const std::vector<uchar>& bufferModel)
{
const char* bufferProtoPtr = reinterpret_cast<const char*>(&bufferProto[0]);
const char* bufferModelPtr = bufferModel.empty() ? NULL :
reinterpret_cast<const char*>(&bufferModel[0]);
return readNetFromCaffe(bufferProtoPtr, bufferProto.size(),
bufferModelPtr, bufferModel.size());
}
#endif //HAVE_PROTOBUF
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace