Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
504 lines
18 KiB
504 lines
18 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
|
|
#ifdef HAVE_PROTOBUF |
|
#include <iostream> |
|
#include <fstream> |
|
#include <sstream> |
|
#include <algorithm> |
|
#include <google/protobuf/message.h> |
|
#include <google/protobuf/text_format.h> |
|
#include <google/protobuf/io/zero_copy_stream_impl.h> |
|
#include "caffe_io.hpp" |
|
#endif |
|
|
|
namespace cv { |
|
namespace dnn { |
|
CV__DNN_EXPERIMENTAL_NS_BEGIN |
|
|
|
#ifdef HAVE_PROTOBUF |
|
using ::google::protobuf::RepeatedField; |
|
using ::google::protobuf::RepeatedPtrField; |
|
using ::google::protobuf::Message; |
|
using ::google::protobuf::Descriptor; |
|
using ::google::protobuf::FieldDescriptor; |
|
using ::google::protobuf::Reflection; |
|
|
|
namespace |
|
{ |
|
|
|
template<typename T> |
|
static cv::String toString(const T &v) |
|
{ |
|
std::ostringstream ss; |
|
ss << v; |
|
return ss.str(); |
|
} |
|
|
|
class CaffeImporter |
|
{ |
|
caffe::NetParameter net; |
|
caffe::NetParameter netBinary; |
|
|
|
public: |
|
|
|
CaffeImporter(const char *pototxt, const char *caffeModel) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
ReadNetParamsFromTextFileOrDie(pototxt, &net); |
|
|
|
if (caffeModel && caffeModel[0]) |
|
ReadNetParamsFromBinaryFileOrDie(caffeModel, &netBinary); |
|
} |
|
|
|
CaffeImporter(const char *dataProto, size_t lenProto, |
|
const char *dataModel, size_t lenModel) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
ReadNetParamsFromTextBufferOrDie(dataProto, lenProto, &net); |
|
|
|
if (dataModel != NULL && lenModel > 0) |
|
ReadNetParamsFromBinaryBufferOrDie(dataModel, lenModel, &netBinary); |
|
} |
|
|
|
void extractCustomParams(const google::protobuf::UnknownFieldSet& unknownFields, cv::dnn::LayerParams ¶ms) |
|
{ |
|
const int numFields = unknownFields.field_count(); |
|
for (int i = 0; i < numFields; ++i) |
|
{ |
|
const google::protobuf::UnknownField& field = unknownFields.field(i); |
|
CV_Assert(field.type() == google::protobuf::UnknownField::TYPE_GROUP); |
|
std::string fieldName = field.group().field(0).length_delimited(); |
|
std::string fieldValue = field.group().field(1).length_delimited(); |
|
params.set(fieldName, fieldValue); |
|
} |
|
} |
|
|
|
void addParam(const Message &msg, const FieldDescriptor *field, cv::dnn::LayerParams ¶ms) |
|
{ |
|
const Reflection *refl = msg.GetReflection(); |
|
int type = field->cpp_type(); |
|
bool isRepeated = field->is_repeated(); |
|
const std::string &name = field->name(); |
|
|
|
#define SET_UP_FILED(getter, arrayConstr, gtype) \ |
|
if (isRepeated) { \ |
|
const RepeatedField<gtype> &v = refl->GetRepeatedField<gtype>(msg, field); \ |
|
params.set(name, DictValue::arrayConstr(v.begin(), (int)v.size())); \ |
|
} \ |
|
else { \ |
|
params.set(name, refl->getter(msg, field)); \ |
|
} |
|
|
|
switch (type) |
|
{ |
|
case FieldDescriptor::CPPTYPE_INT32: |
|
SET_UP_FILED(GetInt32, arrayInt, ::google::protobuf::int32); |
|
break; |
|
case FieldDescriptor::CPPTYPE_UINT32: |
|
SET_UP_FILED(GetUInt32, arrayInt, ::google::protobuf::uint32); |
|
break; |
|
case FieldDescriptor::CPPTYPE_INT64: |
|
SET_UP_FILED(GetInt32, arrayInt, ::google::protobuf::int64); |
|
break; |
|
case FieldDescriptor::CPPTYPE_UINT64: |
|
SET_UP_FILED(GetUInt32, arrayInt, ::google::protobuf::uint64); |
|
break; |
|
case FieldDescriptor::CPPTYPE_BOOL: |
|
SET_UP_FILED(GetBool, arrayInt, bool); |
|
break; |
|
case FieldDescriptor::CPPTYPE_DOUBLE: |
|
SET_UP_FILED(GetDouble, arrayReal, double); |
|
break; |
|
case FieldDescriptor::CPPTYPE_FLOAT: |
|
SET_UP_FILED(GetFloat, arrayReal, float); |
|
break; |
|
case FieldDescriptor::CPPTYPE_STRING: |
|
if (isRepeated) { |
|
const RepeatedPtrField<std::string> &v = refl->GetRepeatedPtrField<std::string>(msg, field); |
|
params.set(name, DictValue::arrayString(v.begin(), (int)v.size())); |
|
} |
|
else { |
|
params.set(name, refl->GetString(msg, field)); |
|
} |
|
break; |
|
case FieldDescriptor::CPPTYPE_ENUM: |
|
if (isRepeated) { |
|
int size = refl->FieldSize(msg, field); |
|
std::vector<cv::String> buf(size); |
|
for (int i = 0; i < size; i++) |
|
buf[i] = refl->GetRepeatedEnum(msg, field, i)->name(); |
|
params.set(name, DictValue::arrayString(buf.begin(), size)); |
|
} |
|
else { |
|
params.set(name, refl->GetEnum(msg, field)->name()); |
|
} |
|
break; |
|
default: |
|
CV_Error(Error::StsError, "Unknown type \"" + String(field->type_name()) + "\" in prototxt"); |
|
break; |
|
} |
|
} |
|
|
|
inline static bool ends_with_param(const std::string &str) |
|
{ |
|
static const std::string _param("_param"); |
|
return (str.size() >= _param.size()) && str.compare(str.size() - _param.size(), _param.size(), _param) == 0; |
|
} |
|
|
|
void extractLayerParams(const Message &msg, cv::dnn::LayerParams ¶ms, bool isInternal = false) |
|
{ |
|
const Descriptor *msgDesc = msg.GetDescriptor(); |
|
const Reflection *msgRefl = msg.GetReflection(); |
|
|
|
for (int fieldId = 0; fieldId < msgDesc->field_count(); fieldId++) |
|
{ |
|
const FieldDescriptor *fd = msgDesc->field(fieldId); |
|
|
|
if (!isInternal && !ends_with_param(fd->name())) |
|
continue; |
|
|
|
const google::protobuf::UnknownFieldSet& unknownFields = msgRefl->GetUnknownFields(msg); |
|
bool hasData = fd->is_required() || |
|
(fd->is_optional() && msgRefl->HasField(msg, fd)) || |
|
(fd->is_repeated() && msgRefl->FieldSize(msg, fd) > 0) || |
|
!unknownFields.empty(); |
|
if (!hasData) |
|
continue; |
|
|
|
extractCustomParams(unknownFields, params); |
|
if (fd->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) |
|
{ |
|
if (fd->is_repeated()) //Extract only first item! |
|
extractLayerParams(msgRefl->GetRepeatedMessage(msg, fd, 0), params, true); |
|
else |
|
extractLayerParams(msgRefl->GetMessage(msg, fd), params, true); |
|
} |
|
else |
|
{ |
|
addParam(msg, fd, params); |
|
} |
|
} |
|
} |
|
|
|
void blobShapeFromProto(const caffe::BlobProto &pbBlob, MatShape& shape) |
|
{ |
|
shape.clear(); |
|
if (pbBlob.has_num() || pbBlob.has_channels() || pbBlob.has_height() || pbBlob.has_width()) |
|
{ |
|
shape.push_back(pbBlob.num()); |
|
shape.push_back(pbBlob.channels()); |
|
shape.push_back(pbBlob.height()); |
|
shape.push_back(pbBlob.width()); |
|
} |
|
else if (pbBlob.has_shape()) |
|
{ |
|
const caffe::BlobShape &_shape = pbBlob.shape(); |
|
|
|
for (int i = 0; i < _shape.dim_size(); i++) |
|
shape.push_back((int)_shape.dim(i)); |
|
} |
|
else |
|
shape.resize(1, 1); // Is a scalar. |
|
} |
|
|
|
void blobFromProto(const caffe::BlobProto &pbBlob, cv::Mat &dstBlob) |
|
{ |
|
MatShape shape; |
|
blobShapeFromProto(pbBlob, shape); |
|
|
|
dstBlob.create((int)shape.size(), &shape[0], CV_32F); |
|
if (pbBlob.data_size()) |
|
{ |
|
// Single precision floats. |
|
CV_Assert(pbBlob.data_size() == (int)dstBlob.total()); |
|
|
|
CV_DbgAssert(pbBlob.GetDescriptor()->FindFieldByLowercaseName("data")->cpp_type() == FieldDescriptor::CPPTYPE_FLOAT); |
|
Mat(dstBlob.dims, &dstBlob.size[0], CV_32F, (void*)pbBlob.data().data()).copyTo(dstBlob); |
|
} |
|
else |
|
{ |
|
CV_Assert(pbBlob.has_raw_data()); |
|
const std::string& raw_data = pbBlob.raw_data(); |
|
if (pbBlob.raw_data_type() == caffe::FLOAT16) |
|
{ |
|
// Half precision floats. |
|
CV_Assert(raw_data.size() / 2 == (int)dstBlob.total()); |
|
|
|
Mat halfs((int)shape.size(), &shape[0], CV_16SC1, (void*)raw_data.c_str()); |
|
convertFp16(halfs, dstBlob); |
|
} |
|
else if (pbBlob.raw_data_type() == caffe::FLOAT) |
|
{ |
|
CV_Assert(raw_data.size() / 4 == (int)dstBlob.total()); |
|
Mat((int)shape.size(), &shape[0], CV_32FC1, (void*)raw_data.c_str()).copyTo(dstBlob); |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unexpected blob data type"); |
|
} |
|
} |
|
|
|
void extractBinaryLayerParams(const caffe::LayerParameter& layer, LayerParams& layerParams) |
|
{ |
|
const std::string &name = layer.name(); |
|
|
|
int li; |
|
for (li = 0; li != netBinary.layer_size(); li++) |
|
{ |
|
const caffe::LayerParameter& binLayer = netBinary.layer(li); |
|
// Break if the layer name is the same and the blobs are not cleared |
|
if (binLayer.name() == name && binLayer.blobs_size() != 0) |
|
break; |
|
} |
|
|
|
if (li == netBinary.layer_size()) |
|
return; |
|
|
|
caffe::LayerParameter* binLayer = netBinary.mutable_layer(li); |
|
const int numBlobs = binLayer->blobs_size(); |
|
layerParams.blobs.resize(numBlobs); |
|
for (int bi = 0; bi < numBlobs; bi++) |
|
{ |
|
blobFromProto(binLayer->blobs(bi), layerParams.blobs[bi]); |
|
} |
|
binLayer->clear_blobs(); |
|
CV_Assert(numBlobs == binLayer->blobs().ClearedCount()); |
|
for (int bi = 0; bi < numBlobs; bi++) |
|
{ |
|
delete binLayer->mutable_blobs()->ReleaseCleared(); |
|
} |
|
} |
|
|
|
struct BlobNote |
|
{ |
|
BlobNote(const std::string &_name, int _layerId, int _outNum) : |
|
name(_name), layerId(_layerId), outNum(_outNum) {} |
|
|
|
std::string name; |
|
int layerId, outNum; |
|
}; |
|
|
|
std::vector<BlobNote> addedBlobs; |
|
std::map<String, int> layerCounter; |
|
|
|
void populateNet(Net dstNet) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
int layersSize = net.layer_size(); |
|
layerCounter.clear(); |
|
addedBlobs.clear(); |
|
addedBlobs.reserve(layersSize + 1); |
|
|
|
//setup input layer names |
|
std::vector<String> netInputs(net.input_size()); |
|
{ |
|
for (int inNum = 0; inNum < net.input_size(); inNum++) |
|
{ |
|
addedBlobs.push_back(BlobNote(net.input(inNum), 0, inNum)); |
|
netInputs[inNum] = net.input(inNum); |
|
} |
|
} |
|
|
|
for (int li = 0; li < layersSize; li++) |
|
{ |
|
const caffe::LayerParameter &layer = net.layer(li); |
|
String name = layer.name(); |
|
String type = layer.type(); |
|
LayerParams layerParams; |
|
|
|
extractLayerParams(layer, layerParams); |
|
extractBinaryLayerParams(layer, layerParams); |
|
|
|
int repetitions = layerCounter[name]++; |
|
if (repetitions) |
|
name += String("_") + toString(repetitions); |
|
|
|
if (type == "Input") |
|
{ |
|
for (int outNum = 0; outNum < layer.top_size(); outNum++) |
|
{ |
|
addOutput(layer, 0, outNum); |
|
addedBlobs.back().outNum = netInputs.size(); |
|
netInputs.push_back(addedBlobs.back().name); |
|
} |
|
continue; |
|
} |
|
else if (type == "BatchNorm") |
|
{ |
|
if (!layerParams.get<bool>("use_global_stats", true)) |
|
{ |
|
CV_Assert_N(layer.bottom_size() == 1, layer.top_size() == 1); |
|
|
|
LayerParams mvnParams; |
|
mvnParams.set("eps", layerParams.get<float>("eps", 1e-5)); |
|
std::string mvnName = name + "/mvn"; |
|
|
|
int repetitions = layerCounter[mvnName]++; |
|
if (repetitions) |
|
mvnName += String("_") + toString(repetitions); |
|
|
|
int mvnId = dstNet.addLayer(mvnName, "MVN", mvnParams); |
|
addInput(layer.bottom(0), mvnId, 0, dstNet); |
|
addOutput(layer, mvnId, 0); |
|
net.mutable_layer(li)->set_bottom(0, layer.top(0)); |
|
layerParams.blobs[0].setTo(0); // mean |
|
layerParams.blobs[1].setTo(1); // std |
|
} |
|
} |
|
else if (type == "Axpy") |
|
{ |
|
CV_Assert_N(layer.bottom_size() == 3, layer.top_size() == 1); |
|
|
|
std::string scaleName = name + "/scale"; |
|
int repetitions = layerCounter[scaleName]++; |
|
if (repetitions) { |
|
scaleName += String("_") + toString(repetitions); |
|
} |
|
|
|
LayerParams scaleParams; |
|
scaleParams.set("axis", 1); |
|
scaleParams.set("has_bias", false); |
|
int scaleId = dstNet.addLayer(scaleName, "Scale", scaleParams); |
|
addInput(layer.bottom(2), scaleId, 0, dstNet); |
|
addInput(layer.bottom(0), scaleId, 1, dstNet); |
|
addOutput(layer, scaleId, 0); |
|
net.mutable_layer(li)->set_bottom(0, layer.top(0)); |
|
net.mutable_layer(li)->mutable_bottom()->RemoveLast(); |
|
type = "Eltwise"; |
|
} |
|
else if ("ConvolutionDepthwise" == type) |
|
{ |
|
type = "Convolution"; |
|
} |
|
|
|
int id = dstNet.addLayer(name, type, layerParams); |
|
|
|
for (int inNum = 0; inNum < layer.bottom_size(); inNum++) |
|
addInput(layer.bottom(inNum), id, inNum, dstNet); |
|
|
|
for (int outNum = 0; outNum < layer.top_size(); outNum++) |
|
addOutput(layer, id, outNum); |
|
} |
|
dstNet.setInputsNames(netInputs); |
|
|
|
addedBlobs.clear(); |
|
} |
|
|
|
void addOutput(const caffe::LayerParameter &layer, int layerId, int outNum) |
|
{ |
|
const std::string &name = layer.top(outNum); |
|
|
|
bool haveDups = false; |
|
for (int idx = (int)addedBlobs.size() - 1; idx >= 0; idx--) |
|
{ |
|
if (addedBlobs[idx].name == name) |
|
{ |
|
haveDups = true; |
|
break; |
|
} |
|
} |
|
|
|
if (haveDups) |
|
{ |
|
bool isInplace = layer.bottom_size() > outNum && layer.bottom(outNum) == name; |
|
if (!isInplace) |
|
CV_Error(Error::StsBadArg, "Duplicate blobs produced by multiple sources"); |
|
} |
|
|
|
addedBlobs.push_back(BlobNote(name, layerId, outNum)); |
|
} |
|
|
|
void addInput(const std::string &name, int layerId, int inNum, Net &dstNet) |
|
{ |
|
int idx; |
|
for (idx = (int)addedBlobs.size() - 1; idx >= 0; idx--) |
|
{ |
|
if (addedBlobs[idx].name == name) |
|
break; |
|
} |
|
|
|
if (idx < 0) |
|
{ |
|
CV_Error(Error::StsObjectNotFound, "Can't find output blob \"" + name + "\""); |
|
return; |
|
} |
|
|
|
dstNet.connect(addedBlobs[idx].layerId, addedBlobs[idx].outNum, layerId, inNum); |
|
} |
|
}; |
|
|
|
} |
|
|
|
Net readNetFromCaffe(const String &prototxt, const String &caffeModel /*= String()*/) |
|
{ |
|
CaffeImporter caffeImporter(prototxt.c_str(), caffeModel.c_str()); |
|
Net net; |
|
caffeImporter.populateNet(net); |
|
return net; |
|
} |
|
|
|
Net readNetFromCaffe(const char *bufferProto, size_t lenProto, |
|
const char *bufferModel, size_t lenModel) |
|
{ |
|
CaffeImporter caffeImporter(bufferProto, lenProto, bufferModel, lenModel); |
|
Net net; |
|
caffeImporter.populateNet(net); |
|
return net; |
|
} |
|
|
|
Net readNetFromCaffe(const std::vector<uchar>& bufferProto, const std::vector<uchar>& bufferModel) |
|
{ |
|
const char* bufferProtoPtr = reinterpret_cast<const char*>(&bufferProto[0]); |
|
const char* bufferModelPtr = bufferModel.empty() ? NULL : |
|
reinterpret_cast<const char*>(&bufferModel[0]); |
|
return readNetFromCaffe(bufferProtoPtr, bufferProto.size(), |
|
bufferModelPtr, bufferModel.size()); |
|
} |
|
|
|
#endif //HAVE_PROTOBUF |
|
|
|
CV__DNN_EXPERIMENTAL_NS_END |
|
}} // namespace
|
|
|