Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

204 lines
6.0 KiB

#ifndef OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP
#define OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP
struct PerfReport {
std::string name;
double avg_latency = 0.0;
double throughput = 0.0;
int64_t first_run_latency = 0;
int64_t elapsed = 0;
int64_t compilation_time = 0;
std::vector<int64_t> latencies;
std::string toStr(bool expanded = false) const;
};
std::string PerfReport::toStr(bool expand) const {
std::stringstream ss;
ss << name << ": Compilation time: " << compilation_time << " ms; "
<< "Average latency: " << avg_latency << " ms; Throughput: "
<< throughput << " FPS; First latency: "
<< first_run_latency << " ms";
if (expand) {
ss << "\nTotal processed frames: " << latencies.size()
<< "\nTotal elapsed time: " << elapsed << " ms" << std::endl;
for (size_t i = 0; i < latencies.size(); ++i) {
ss << std::endl;
ss << "Frame:" << i << "\nLatency: "
<< latencies[i] << " ms";
}
}
return ss.str();
}
class Pipeline {
public:
using Ptr = std::shared_ptr<Pipeline>;
Pipeline(std::string&& name,
cv::GComputation&& comp,
cv::gapi::wip::IStreamSource::Ptr&& src,
cv::GCompileArgs&& args,
const size_t num_outputs);
void compile();
void run(double work_time_ms);
const PerfReport& report() const;
virtual ~Pipeline() = default;
protected:
struct RunPerf {
int64_t elapsed = 0;
std::vector<int64_t> latencies;
};
virtual void _compile() = 0;
virtual RunPerf _run(double work_time_ms) = 0;
std::string m_name;
cv::GComputation m_comp;
cv::gapi::wip::IStreamSource::Ptr m_src;
cv::GCompileArgs m_args;
size_t m_num_outputs;
PerfReport m_perf;
};
Pipeline::Pipeline(std::string&& name,
cv::GComputation&& comp,
cv::gapi::wip::IStreamSource::Ptr&& src,
cv::GCompileArgs&& args,
const size_t num_outputs)
: m_name(std::move(name)),
m_comp(std::move(comp)),
m_src(std::move(src)),
m_args(std::move(args)),
m_num_outputs(num_outputs) {
m_perf.name = m_name;
}
void Pipeline::compile() {
m_perf.compilation_time =
utils::measure<std::chrono::milliseconds>([this]() {
_compile();
});
}
void Pipeline::run(double work_time_ms) {
auto run_perf = _run(work_time_ms);
m_perf.elapsed = run_perf.elapsed;
m_perf.latencies = std::move(run_perf.latencies);
m_perf.avg_latency =
std::accumulate(m_perf.latencies.begin(),
m_perf.latencies.end(),
0.0) / static_cast<double>(m_perf.latencies.size());
m_perf.throughput =
(m_perf.latencies.size() / static_cast<double>(m_perf.elapsed)) * 1000;
m_perf.first_run_latency = m_perf.latencies[0];
}
const PerfReport& Pipeline::report() const {
return m_perf;
}
class StreamingPipeline : public Pipeline {
public:
using Pipeline::Pipeline;
private:
void _compile() override {
m_compiled =
m_comp.compileStreaming({m_src->descr_of()},
cv::GCompileArgs(m_args));
}
Pipeline::RunPerf _run(double work_time_ms) override {
// NB: Setup.
using namespace std::chrono;
// NB: N-1 buffers + timestamp.
std::vector<cv::Mat> out_mats(m_num_outputs - 1);
int64_t start_ts = -1;
cv::GRunArgsP pipeline_outputs;
for (auto& m : out_mats) {
pipeline_outputs += cv::gout(m);
}
pipeline_outputs += cv::gout(start_ts);
m_compiled.setSource(m_src);
// NB: Start execution & measure performance statistics.
Pipeline::RunPerf perf;
auto start = high_resolution_clock::now();
m_compiled.start();
while (m_compiled.pull(cv::GRunArgsP{pipeline_outputs})) {
int64_t latency = utils::timestamp<milliseconds>() - start_ts;
perf.latencies.push_back(latency);
perf.elapsed = duration_cast<milliseconds>(
high_resolution_clock::now() - start).count();
if (perf.elapsed >= work_time_ms) {
m_compiled.stop();
break;
}
};
return perf;
}
cv::GStreamingCompiled m_compiled;
};
class RegularPipeline : public Pipeline {
public:
using Pipeline::Pipeline;
private:
void _compile() override {
m_compiled =
m_comp.compile({m_src->descr_of()},
cv::GCompileArgs(m_args));
}
Pipeline::RunPerf _run(double work_time_ms) override {
// NB: Setup
using namespace std::chrono;
cv::gapi::wip::Data d;
std::vector<cv::Mat> out_mats(m_num_outputs);
cv::GRunArgsP pipeline_outputs;
for (auto& m : out_mats) {
pipeline_outputs += cv::gout(m);
}
// NB: Start execution & measure performance statistics.
Pipeline::RunPerf perf;
auto start = high_resolution_clock::now();
while (m_src->pull(d)) {
auto in_mat = cv::util::get<cv::Mat>(d);
int64_t latency = utils::measure<milliseconds>([&]{
m_compiled(cv::gin(in_mat), cv::GRunArgsP{pipeline_outputs});
});
perf.latencies.push_back(latency);
perf.elapsed = duration_cast<milliseconds>(
high_resolution_clock::now() - start).count();
if (perf.elapsed >= work_time_ms) {
break;
}
};
return perf;
}
cv::GCompiled m_compiled;
};
enum class PLMode {
REGULAR,
STREAMING
};
#endif // OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP