mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
6.0 KiB
204 lines
6.0 KiB
#ifndef OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP |
|
#define OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP |
|
|
|
struct PerfReport { |
|
std::string name; |
|
double avg_latency = 0.0; |
|
double throughput = 0.0; |
|
int64_t first_run_latency = 0; |
|
int64_t elapsed = 0; |
|
int64_t compilation_time = 0; |
|
std::vector<int64_t> latencies; |
|
|
|
std::string toStr(bool expanded = false) const; |
|
}; |
|
|
|
std::string PerfReport::toStr(bool expand) const { |
|
std::stringstream ss; |
|
ss << name << ": Compilation time: " << compilation_time << " ms; " |
|
<< "Average latency: " << avg_latency << " ms; Throughput: " |
|
<< throughput << " FPS; First latency: " |
|
<< first_run_latency << " ms"; |
|
|
|
if (expand) { |
|
ss << "\nTotal processed frames: " << latencies.size() |
|
<< "\nTotal elapsed time: " << elapsed << " ms" << std::endl; |
|
for (size_t i = 0; i < latencies.size(); ++i) { |
|
ss << std::endl; |
|
ss << "Frame:" << i << "\nLatency: " |
|
<< latencies[i] << " ms"; |
|
} |
|
} |
|
|
|
return ss.str(); |
|
} |
|
|
|
class Pipeline { |
|
public: |
|
using Ptr = std::shared_ptr<Pipeline>; |
|
|
|
Pipeline(std::string&& name, |
|
cv::GComputation&& comp, |
|
cv::gapi::wip::IStreamSource::Ptr&& src, |
|
cv::GCompileArgs&& args, |
|
const size_t num_outputs); |
|
|
|
void compile(); |
|
void run(double work_time_ms); |
|
const PerfReport& report() const; |
|
|
|
virtual ~Pipeline() = default; |
|
|
|
protected: |
|
struct RunPerf { |
|
int64_t elapsed = 0; |
|
std::vector<int64_t> latencies; |
|
}; |
|
|
|
virtual void _compile() = 0; |
|
virtual RunPerf _run(double work_time_ms) = 0; |
|
|
|
std::string m_name; |
|
cv::GComputation m_comp; |
|
cv::gapi::wip::IStreamSource::Ptr m_src; |
|
cv::GCompileArgs m_args; |
|
size_t m_num_outputs; |
|
PerfReport m_perf; |
|
}; |
|
|
|
Pipeline::Pipeline(std::string&& name, |
|
cv::GComputation&& comp, |
|
cv::gapi::wip::IStreamSource::Ptr&& src, |
|
cv::GCompileArgs&& args, |
|
const size_t num_outputs) |
|
: m_name(std::move(name)), |
|
m_comp(std::move(comp)), |
|
m_src(std::move(src)), |
|
m_args(std::move(args)), |
|
m_num_outputs(num_outputs) { |
|
m_perf.name = m_name; |
|
} |
|
|
|
void Pipeline::compile() { |
|
m_perf.compilation_time = |
|
utils::measure<std::chrono::milliseconds>([this]() { |
|
_compile(); |
|
}); |
|
} |
|
|
|
void Pipeline::run(double work_time_ms) { |
|
auto run_perf = _run(work_time_ms); |
|
|
|
m_perf.elapsed = run_perf.elapsed; |
|
m_perf.latencies = std::move(run_perf.latencies); |
|
|
|
m_perf.avg_latency = |
|
std::accumulate(m_perf.latencies.begin(), |
|
m_perf.latencies.end(), |
|
0.0) / static_cast<double>(m_perf.latencies.size()); |
|
m_perf.throughput = |
|
(m_perf.latencies.size() / static_cast<double>(m_perf.elapsed)) * 1000; |
|
|
|
m_perf.first_run_latency = m_perf.latencies[0]; |
|
} |
|
|
|
const PerfReport& Pipeline::report() const { |
|
return m_perf; |
|
} |
|
|
|
class StreamingPipeline : public Pipeline { |
|
public: |
|
using Pipeline::Pipeline; |
|
|
|
private: |
|
void _compile() override { |
|
m_compiled = |
|
m_comp.compileStreaming({m_src->descr_of()}, |
|
cv::GCompileArgs(m_args)); |
|
} |
|
|
|
Pipeline::RunPerf _run(double work_time_ms) override { |
|
// NB: Setup. |
|
using namespace std::chrono; |
|
// NB: N-1 buffers + timestamp. |
|
std::vector<cv::Mat> out_mats(m_num_outputs - 1); |
|
int64_t start_ts = -1; |
|
cv::GRunArgsP pipeline_outputs; |
|
for (auto& m : out_mats) { |
|
pipeline_outputs += cv::gout(m); |
|
} |
|
pipeline_outputs += cv::gout(start_ts); |
|
m_compiled.setSource(m_src); |
|
|
|
// NB: Start execution & measure performance statistics. |
|
Pipeline::RunPerf perf; |
|
auto start = high_resolution_clock::now(); |
|
m_compiled.start(); |
|
while (m_compiled.pull(cv::GRunArgsP{pipeline_outputs})) { |
|
int64_t latency = utils::timestamp<milliseconds>() - start_ts; |
|
|
|
perf.latencies.push_back(latency); |
|
perf.elapsed = duration_cast<milliseconds>( |
|
high_resolution_clock::now() - start).count(); |
|
|
|
if (perf.elapsed >= work_time_ms) { |
|
m_compiled.stop(); |
|
break; |
|
} |
|
}; |
|
return perf; |
|
} |
|
|
|
cv::GStreamingCompiled m_compiled; |
|
}; |
|
|
|
class RegularPipeline : public Pipeline { |
|
public: |
|
using Pipeline::Pipeline; |
|
|
|
private: |
|
void _compile() override { |
|
m_compiled = |
|
m_comp.compile({m_src->descr_of()}, |
|
cv::GCompileArgs(m_args)); |
|
} |
|
|
|
Pipeline::RunPerf _run(double work_time_ms) override { |
|
// NB: Setup |
|
using namespace std::chrono; |
|
cv::gapi::wip::Data d; |
|
std::vector<cv::Mat> out_mats(m_num_outputs); |
|
cv::GRunArgsP pipeline_outputs; |
|
for (auto& m : out_mats) { |
|
pipeline_outputs += cv::gout(m); |
|
} |
|
|
|
// NB: Start execution & measure performance statistics. |
|
Pipeline::RunPerf perf; |
|
auto start = high_resolution_clock::now(); |
|
while (m_src->pull(d)) { |
|
auto in_mat = cv::util::get<cv::Mat>(d); |
|
int64_t latency = utils::measure<milliseconds>([&]{ |
|
m_compiled(cv::gin(in_mat), cv::GRunArgsP{pipeline_outputs}); |
|
}); |
|
|
|
perf.latencies.push_back(latency); |
|
perf.elapsed = duration_cast<milliseconds>( |
|
high_resolution_clock::now() - start).count(); |
|
|
|
if (perf.elapsed >= work_time_ms) { |
|
break; |
|
} |
|
}; |
|
return perf; |
|
} |
|
|
|
cv::GCompiled m_compiled; |
|
}; |
|
|
|
enum class PLMode { |
|
REGULAR, |
|
STREAMING |
|
}; |
|
|
|
#endif // OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP
|
|
|