mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
5.5 KiB
171 lines
5.5 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "perf_precomp.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
namespace opencv_test { |
|
|
|
struct Conv1DParam_t { |
|
int kernel; |
|
struct BlobShape { int dims[3]; } shapeIn; |
|
int outCN; |
|
int groups; |
|
int stride; |
|
int dilation; |
|
int pad[2]; |
|
const char* padMode; |
|
bool hasBias; |
|
double declared_flops; |
|
}; |
|
// Details: #12142 |
|
static const Conv1DParam_t testConvolution1DConfigs[] = { |
|
{3, {{1, 6, 10}}, 6, 1, 1, 1, {0, 0}, "VALID", true, 1776.}, |
|
{3, {{1, 2, 19}}, 2, 2, 2, 1, {1, 1}, "", true, 260.}, |
|
{3, {{1, 2, 25}}, 2, 2, 1, 1, {2, 2}, "SAME", false, 650.}, |
|
}; |
|
|
|
struct Conv1DParamID |
|
{ |
|
enum { |
|
CONV_0 = 0, |
|
CONV_LAST = sizeof(testConvolution1DConfigs) / sizeof(testConvolution1DConfigs[0]) |
|
}; |
|
int val_; |
|
Conv1DParamID(int val = 0) : val_(val) {} |
|
operator int() const { return val_; } |
|
static ::testing::internal::ParamGenerator<Conv1DParamID> all() |
|
{ |
|
enum { NUM = (int)CONV_LAST }; |
|
Conv1DParamID v_[NUM]; for (int i = 0; i < NUM; ++i) { v_[i] = Conv1DParamID(i); } // reduce generated code size |
|
return ::testing::ValuesIn(v_, v_ + NUM); |
|
} |
|
}; |
|
static inline void PrintTo(const Conv1DParamID& v, std::ostream* os) |
|
{ |
|
CV_Assert((int)v >= 0); CV_Assert((int)v < Conv1DParamID::CONV_LAST); |
|
const Conv1DParam_t& p = testConvolution1DConfigs[(int)v]; |
|
|
|
*os << "GFLOPS=" << cv::format("%.3f", p.declared_flops * 1e-9) |
|
<< ", K=[" << p.kernel << "]" |
|
<< ", IN={" << p.shapeIn.dims[0] << ", " << p.shapeIn.dims[1] << ", " << p.shapeIn.dims[2] << "}" |
|
<< ", OCN=" << p.outCN; |
|
if (p.groups > 1) |
|
*os << ", G=" << p.groups; |
|
if (p.stride != 1) |
|
*os << ", S=" << p.stride; |
|
if (p.dilation != 1) |
|
*os << ", D=" << p.dilation; |
|
if (p.pad[0] != 0 && p.pad[1] != 0 ) |
|
*os << ", P=(" << p.pad[0] << ", " << p.pad[1] << ")"; |
|
if (!((std::string)p.padMode).empty()) |
|
*os << ", PM=" << ((std::string)p.padMode); |
|
if (p.hasBias) |
|
*os << ", BIAS"; |
|
} |
|
|
|
|
|
typedef tuple<Conv1DParamID, tuple<Backend, Target> > Conv1DTestParam_t; |
|
typedef TestBaseWithParam<Conv1DTestParam_t> Conv1D; |
|
|
|
PERF_TEST_P_(Conv1D, conv1d) |
|
{ |
|
int test_id = (int)get<0>(GetParam()); |
|
ASSERT_GE(test_id, 0); ASSERT_LT(test_id, Conv1DParamID::CONV_LAST); |
|
const Conv1DParam_t& params = testConvolution1DConfigs[test_id]; |
|
double declared_flops = params.declared_flops; |
|
|
|
DictValue kernel = DictValue::arrayInt(¶ms.kernel, 1); |
|
DictValue stride = DictValue::arrayInt(¶ms.stride, 1); |
|
DictValue pad = DictValue::arrayInt(¶ms.pad[0], 2); |
|
DictValue dilation = DictValue::arrayInt(¶ms.dilation, 1); |
|
|
|
MatShape inputShape = MatShape(params.shapeIn.dims, params.shapeIn.dims + 3); |
|
int outChannels = params.outCN; |
|
int groups = params.groups; |
|
std::string padMode(params.padMode); |
|
|
|
bool hasBias = params.hasBias; |
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
if (targetId != DNN_TARGET_CPU) |
|
throw SkipTestException("Only CPU is supported"); |
|
|
|
int inChannels = inputShape[1]; |
|
|
|
int sz[] = {outChannels, inChannels / groups, params.kernel}; |
|
Mat weights(3, &sz[0], CV_32F); |
|
randu(weights, -1.0f, 1.0f); |
|
|
|
LayerParams lp; |
|
lp.set("kernel_size", kernel); |
|
lp.set("pad", pad); |
|
if (!padMode.empty()) |
|
lp.set("pad_mode", padMode); |
|
|
|
lp.set("stride", stride); |
|
lp.set("dilation", dilation); |
|
lp.set("num_output", outChannels); |
|
lp.set("group", groups); |
|
lp.set("bias_term", hasBias); |
|
lp.type = "Convolution"; |
|
lp.name = "testLayer"; |
|
lp.blobs.push_back(weights); |
|
|
|
if (hasBias) |
|
{ |
|
Mat bias(1, outChannels, CV_32F); |
|
randu(bias, -1.0f, 1.0f); |
|
lp.blobs.push_back(bias); |
|
} |
|
|
|
int inpSz[] = {1, inChannels, inputShape[2]}; |
|
Mat input(3, &inpSz[0], CV_32F); |
|
randu(input, -1.0f, 1.0f); |
|
|
|
Net net; |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
net.setInput(input); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
|
|
// warmup |
|
Mat output = net.forward(); |
|
|
|
MatShape netInputShape = shape(input); |
|
cv::dnn::MatType netInputType = input.depth(); |
|
|
|
bool fp16 = false; |
|
#ifdef HAVE_OPENCL |
|
fp16 = ocl::Device::getDefault().isExtensionSupported("cl_khr_fp16"); |
|
#endif |
|
if (netInputType == CV_32F && fp16 && targetId == DNN_TARGET_OPENCL_FP16) |
|
netInputType = CV_16F; |
|
size_t weightsMemory = 0, blobsMemory = 0; |
|
net.getMemoryConsumption(netInputShape, netInputType, weightsMemory, blobsMemory); |
|
int64 flops = net.getFLOPS(netInputShape, netInputType); |
|
CV_Assert(flops > 0); |
|
|
|
std::cout |
|
<< "IN=" << divUp(input.total() * input.elemSize(), 1u<<10) << " Kb " << netInputShape |
|
<< " OUT=" << divUp(output.total() * output.elemSize(), 1u<<10) << " Kb " << shape(output) |
|
<< " Weights(parameters): " << divUp(weightsMemory, 1u<<10) << " Kb" |
|
<< " MFLOPS=" << flops * 1e-6 << std::endl; |
|
|
|
TEST_CYCLE() |
|
{ |
|
Mat res = net.forward(); |
|
} |
|
EXPECT_NEAR(flops, declared_flops, declared_flops * 1e-6); |
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Conv1D, Combine( |
|
Conv1DParamID::all(), |
|
dnnBackendsAndTargets(/* withInferenceEngine = */false, /* obsolete_withHalide = */false) // defined in ../test/test_common.hpp |
|
)); |
|
|
|
} // namespace
|
|
|