mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
226 lines
7.2 KiB
226 lines
7.2 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
#include <opencv2/3d.hpp> |
|
|
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/3d.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/core/utility.hpp> |
|
#include <opencv2/core/quaternion.hpp> |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
#define BILATERAL_FILTER 0// if 1 then bilateral filter will be used for the depth |
|
|
|
static |
|
void writeResults( const string& filename, const vector<string>& timestamps, const vector<Mat>& Rt ) |
|
{ |
|
CV_Assert( timestamps.size() == Rt.size() ); |
|
|
|
ofstream file( filename.c_str() ); |
|
if( !file.is_open() ) |
|
return; |
|
|
|
cout.precision(4); |
|
for( size_t i = 0; i < Rt.size(); i++ ) |
|
{ |
|
const Mat& Rt_curr = Rt[i]; |
|
if( Rt_curr.empty() ) |
|
continue; |
|
|
|
CV_Assert( Rt_curr.type() == CV_64FC1 ); |
|
|
|
Quatd rot = Quatd::createFromRotMat(Rt_curr(Rect(0, 0, 3, 3))); |
|
|
|
// timestamp tx ty tz qx qy qz qw |
|
file << timestamps[i] << " " << fixed |
|
<< Rt_curr.at<double>(0,3) << " " << Rt_curr.at<double>(1,3) << " " << Rt_curr.at<double>(2,3) << " " |
|
<< rot.x << " " << rot.y << " " << rot.z << " " << rot.w << endl; |
|
|
|
} |
|
file.close(); |
|
} |
|
|
|
static |
|
void setCameraMatrixFreiburg1(float& fx, float& fy, float& cx, float& cy) |
|
{ |
|
fx = 517.3f; fy = 516.5f; cx = 318.6f; cy = 255.3f; |
|
} |
|
|
|
static |
|
void setCameraMatrixFreiburg2(float& fx, float& fy, float& cx, float& cy) |
|
{ |
|
fx = 520.9f; fy = 521.0f; cx = 325.1f; cy = 249.7f; |
|
} |
|
|
|
/* |
|
* This sample helps to evaluate odometry on TUM datasets and benchmark http://vision.in.tum.de/data/datasets/rgbd-dataset. |
|
* At this link you can find instructions for evaluation. The sample runs some opencv odometry and saves a camera trajectory |
|
* to file of format that the benchmark requires. Saved file can be used for online evaluation. |
|
*/ |
|
int main(int argc, char** argv) |
|
{ |
|
if(argc != 4) |
|
{ |
|
cout << "Format: file_with_rgb_depth_pairs trajectory_file odometry_name [Rgbd or ICP or RgbdICP or FastICP]" << endl; |
|
return -1; |
|
} |
|
|
|
vector<string> timestamps; |
|
vector<Mat> Rts; |
|
|
|
const string filename = argv[1]; |
|
ifstream file( filename.c_str() ); |
|
if( !file.is_open() ) |
|
return -1; |
|
|
|
char dlmrt1 = '/'; |
|
char dlmrt2 = '\\'; |
|
|
|
size_t pos1 = filename.rfind(dlmrt1); |
|
size_t pos2 = filename.rfind(dlmrt2); |
|
size_t pos = pos1 < pos2 ? pos1 : pos2; |
|
char dlmrt = pos1 < pos2 ? dlmrt1 : dlmrt2; |
|
|
|
string dirname = pos == string::npos ? "" : filename.substr(0, pos) + dlmrt; |
|
|
|
const int timestampLength = 17; |
|
const int rgbPathLehgth = 17+8; |
|
const int depthPathLehgth = 17+10; |
|
|
|
float fx = 525.0f, // default |
|
fy = 525.0f, |
|
cx = 319.5f, |
|
cy = 239.5f; |
|
if(filename.find("freiburg1") != string::npos) |
|
setCameraMatrixFreiburg1(fx, fy, cx, cy); |
|
if(filename.find("freiburg2") != string::npos) |
|
setCameraMatrixFreiburg2(fx, fy, cx, cy); |
|
Mat cameraMatrix = Mat::eye(3,3,CV_32FC1); |
|
{ |
|
cameraMatrix.at<float>(0,0) = fx; |
|
cameraMatrix.at<float>(1,1) = fy; |
|
cameraMatrix.at<float>(0,2) = cx; |
|
cameraMatrix.at<float>(1,2) = cy; |
|
} |
|
|
|
OdometrySettings ods; |
|
ods.setCameraMatrix(cameraMatrix); |
|
Odometry odometry; |
|
String odname = string(argv[3]); |
|
if (odname == "Rgbd") |
|
odometry = Odometry(OdometryType::RGB, ods, OdometryAlgoType::COMMON); |
|
else if (odname == "ICP") |
|
odometry = Odometry(OdometryType::DEPTH, ods, OdometryAlgoType::COMMON); |
|
else if (odname == "RgbdICP") |
|
odometry = Odometry(OdometryType::RGB_DEPTH, ods, OdometryAlgoType::COMMON); |
|
else if (odname == "FastICP") |
|
odometry = Odometry(OdometryType::DEPTH, ods, OdometryAlgoType::FAST); |
|
else |
|
{ |
|
std::cout << "Can not create Odometry algorithm. Check the passed odometry name." << std::endl; |
|
return -1; |
|
} |
|
|
|
OdometryFrame frame_prev, frame_curr; |
|
|
|
TickMeter gtm; |
|
int count = 0; |
|
for(int i = 0; !file.eof(); i++) |
|
{ |
|
string str; |
|
std::getline(file, str); |
|
if(str.empty()) break; |
|
if(str.at(0) == '#') continue; /* comment */ |
|
|
|
Mat image, depth; |
|
// Read one pair (rgb and depth) |
|
// example: 1305031453.359684 rgb/1305031453.359684.png 1305031453.374112 depth/1305031453.374112.png |
|
#if BILATERAL_FILTER |
|
TickMeter tm_bilateral_filter; |
|
#endif |
|
{ |
|
string rgbFilename = str.substr(timestampLength + 1, rgbPathLehgth ); |
|
string timestap = str.substr(0, timestampLength); |
|
string depthFilename = str.substr(2*timestampLength + rgbPathLehgth + 3, depthPathLehgth ); |
|
|
|
image = imread(dirname + rgbFilename); |
|
depth = imread(dirname + depthFilename, -1); |
|
|
|
CV_Assert(!image.empty()); |
|
CV_Assert(!depth.empty()); |
|
CV_Assert(depth.type() == CV_16UC1); |
|
|
|
// scale depth |
|
Mat depth_flt; |
|
depth.convertTo(depth_flt, CV_32FC1, 1.f/5000.f); |
|
#if !BILATERAL_FILTER |
|
depth_flt.setTo(std::numeric_limits<float>::quiet_NaN(), depth == 0); |
|
depth = depth_flt; |
|
#else |
|
tm_bilateral_filter.start(); |
|
depth = Mat(depth_flt.size(), CV_32FC1, Scalar(0)); |
|
const double depth_sigma = 0.03; |
|
const double space_sigma = 4.5; // in pixels |
|
Mat invalidDepthMask = depth_flt == 0.f; |
|
depth_flt.setTo(-5*depth_sigma, invalidDepthMask); |
|
bilateralFilter(depth_flt, depth, -1, depth_sigma, space_sigma); |
|
depth.setTo(std::numeric_limits<float>::quiet_NaN(), invalidDepthMask); |
|
tm_bilateral_filter.stop(); |
|
cout << "Time filter " << tm_bilateral_filter.getTimeSec() << endl; |
|
#endif |
|
timestamps.push_back( timestap ); |
|
} |
|
|
|
{ |
|
Mat gray; |
|
cvtColor(image, gray, COLOR_BGR2GRAY); |
|
frame_curr = OdometryFrame(depth, gray); |
|
|
|
Mat Rt; |
|
if(!Rts.empty()) |
|
{ |
|
TickMeter tm; |
|
tm.start(); |
|
gtm.start(); |
|
odometry.prepareFrames(frame_curr, frame_prev); |
|
bool res = odometry.compute(frame_curr, frame_prev, Rt); |
|
gtm.stop(); |
|
tm.stop(); |
|
count++; |
|
cout << "Time " << tm.getTimeSec() << endl; |
|
#if BILATERAL_FILTER |
|
cout << "Time ratio " << tm_bilateral_filter.getTimeSec() / tm.getTimeSec() << endl; |
|
#endif |
|
if(!res) |
|
Rt = Mat::eye(4,4,CV_64FC1); |
|
} |
|
|
|
if( Rts.empty() ) |
|
Rts.push_back(Mat::eye(4,4,CV_64FC1)); |
|
else |
|
{ |
|
Mat& prevRt = *Rts.rbegin(); |
|
cout << "Rt " << Rt << endl; |
|
Rts.push_back( prevRt * Rt ); |
|
} |
|
|
|
//if (!frame_prev.empty()) |
|
// frame_prev.release(); |
|
frame_prev = frame_curr; |
|
frame_curr = OdometryFrame(); |
|
//std::swap(frame_prev, frame_curr); |
|
} |
|
} |
|
|
|
std::cout << "Average time " << gtm.getAvgTimeSec() << std::endl; |
|
writeResults(argv[2], timestamps, Rts); |
|
|
|
return 0; |
|
}
|
|
|