mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
586 lines
18 KiB
586 lines
18 KiB
package org.opencv.test.cv3d; |
|
|
|
import java.util.ArrayList; |
|
|
|
import org.opencv.cv3d.Cv3d; |
|
import org.opencv.core.Core; |
|
import org.opencv.core.CvType; |
|
import org.opencv.core.Mat; |
|
import org.opencv.core.MatOfDouble; |
|
import org.opencv.core.MatOfPoint2f; |
|
import org.opencv.core.MatOfPoint3f; |
|
import org.opencv.core.Point; |
|
import org.opencv.core.Scalar; |
|
import org.opencv.core.Size; |
|
import org.opencv.test.OpenCVTestCase; |
|
import org.opencv.imgproc.Imgproc; |
|
|
|
public class Cv3dTest extends OpenCVTestCase { |
|
|
|
Size size; |
|
|
|
@Override |
|
protected void setUp() throws Exception { |
|
super.setUp(); |
|
|
|
size = new Size(3, 3); |
|
} |
|
|
|
public void testComposeRTMatMatMatMatMatMat() { |
|
Mat rvec1 = new Mat(3, 1, CvType.CV_32F); |
|
rvec1.put(0, 0, 0.5302828, 0.19925919, 0.40105945); |
|
Mat tvec1 = new Mat(3, 1, CvType.CV_32F); |
|
tvec1.put(0, 0, 0.81438506, 0.43713298, 0.2487897); |
|
Mat rvec2 = new Mat(3, 1, CvType.CV_32F); |
|
rvec2.put(0, 0, 0.77310503, 0.76209372, 0.30779448); |
|
Mat tvec2 = new Mat(3, 1, CvType.CV_32F); |
|
tvec2.put(0, 0, 0.70243168, 0.4784472, 0.79219002); |
|
|
|
Mat rvec3 = new Mat(); |
|
Mat tvec3 = new Mat(); |
|
|
|
Mat outRvec = new Mat(3, 1, CvType.CV_32F); |
|
outRvec.put(0, 0, 1.418641, 0.88665926, 0.56020796); |
|
Mat outTvec = new Mat(3, 1, CvType.CV_32F); |
|
outTvec.put(0, 0, 1.4560841, 1.0680628, 0.81598103); |
|
|
|
Cv3d.composeRT(rvec1, tvec1, rvec2, tvec2, rvec3, tvec3); |
|
|
|
assertMatEqual(outRvec, rvec3, EPS); |
|
assertMatEqual(outTvec, tvec3, EPS); |
|
} |
|
|
|
public void testComposeRTMatMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testComposeRTMatMatMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testComposeRTMatMatMatMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testComposeRTMatMatMatMatMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testComposeRTMatMatMatMatMatMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testComposeRTMatMatMatMatMatMatMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testComposeRTMatMatMatMatMatMatMatMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testComposeRTMatMatMatMatMatMatMatMatMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
// Mat dr3dr1; |
|
// Mat dr3dt1; |
|
// Mat dr3dr2; |
|
// Mat dr3dt2; |
|
// Mat dt3dr1; |
|
// Mat dt3dt1; |
|
// Mat dt3dr2; |
|
// Mat dt3dt2; |
|
// , dr3dr1, dr3dt1, dr3dr2, dr3dt2, dt3dr1, dt3dt1, dt3dr2, dt3dt2); |
|
// [0.97031879, -0.091774099, 0.38594806; |
|
// 0.15181915, 0.98091727, -0.44186208; |
|
// -0.39509675, 0.43839464, 0.93872648] |
|
// [0, 0, 0; |
|
// 0, 0, 0; |
|
// 0, 0, 0] |
|
// [1.0117353, 0.16348237, -0.083180845; |
|
// -0.1980398, 1.006078, 0.30299222; |
|
// 0.075766489, -0.32784501, 1.0163091] |
|
// [0, 0, 0; |
|
// 0, 0, 0; |
|
// 0, 0, 0] |
|
// [0, 0, 0; |
|
// 0, 0, 0; |
|
// 0, 0, 0] |
|
// [0.69658804, 0.018115902, 0.7172426; |
|
// 0.51114357, 0.68899536, -0.51382649; |
|
// -0.50348526, 0.72453934, 0.47068608] |
|
// [0.18536358, -0.20515044, -0.48834875; |
|
// -0.25120571, 0.29043972, 0.60573936; |
|
// 0.35370794, -0.69923931, 0.45781645] |
|
// [1, 0, 0; |
|
// 0, 1, 0; |
|
// 0, 0, 1] |
|
} |
|
|
|
public void testConvertPointsFromHomogeneous() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testConvertPointsToHomogeneous() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testDecomposeProjectionMatrixMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testDecomposeProjectionMatrixMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testDecomposeProjectionMatrixMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testDecomposeProjectionMatrixMatMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testDecomposeProjectionMatrixMatMatMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testEstimateAffine3DMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testEstimateAffine3DMatMatMatMatDouble() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testEstimateAffine3DMatMatMatMatDoubleDouble() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testFindFundamentalMatListOfPointListOfPointInt() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testFindFundamentalMatListOfPointListOfPointIntDouble() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testFindFundamentalMatListOfPointListOfPointIntDoubleDouble() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testFindFundamentalMatListOfPointListOfPointIntDoubleDoubleMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testFindHomographyListOfPointListOfPoint() { |
|
final int NUM = 20; |
|
|
|
MatOfPoint2f originalPoints = new MatOfPoint2f(); |
|
originalPoints.alloc(NUM); |
|
MatOfPoint2f transformedPoints = new MatOfPoint2f(); |
|
transformedPoints.alloc(NUM); |
|
|
|
for (int i = 0; i < NUM; i++) { |
|
double x = Math.random() * 100 - 50; |
|
double y = Math.random() * 100 - 50; |
|
originalPoints.put(i, 0, x, y); |
|
transformedPoints.put(i, 0, y, x); |
|
} |
|
|
|
Mat hmg = Cv3d.findHomography(originalPoints, transformedPoints); |
|
|
|
truth = new Mat(3, 3, CvType.CV_64F); |
|
truth.put(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1); |
|
|
|
assertMatEqual(truth, hmg, EPS); |
|
} |
|
|
|
public void testFindHomographyListOfPointListOfPointInt() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testFindHomographyListOfPointListOfPointIntDouble() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testFindHomographyListOfPointListOfPointIntDoubleMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testGetOptimalNewCameraMatrixMatMatSizeDouble() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testGetOptimalNewCameraMatrixMatMatSizeDoubleSize() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testGetOptimalNewCameraMatrixMatMatSizeDoubleSizeRect() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testGetOptimalNewCameraMatrixMatMatSizeDoubleSizeRectBoolean() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testGetValidDisparityROI() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testMatMulDeriv() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testProjectPointsMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testProjectPointsMatMatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testProjectPointsMatMatMatMatMatMatMatDouble() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testRectify3Collinear() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testRodriguesMatMat() { |
|
Mat r = new Mat(3, 1, CvType.CV_32F); |
|
Mat R = new Mat(3, 3, CvType.CV_32F); |
|
|
|
r.put(0, 0, Math.PI, 0, 0); |
|
|
|
Cv3d.Rodrigues(r, R); |
|
|
|
truth = new Mat(3, 3, CvType.CV_32F); |
|
truth.put(0, 0, 1, 0, 0, 0, -1, 0, 0, 0, -1); |
|
assertMatEqual(truth, R, EPS); |
|
|
|
Mat r2 = new Mat(); |
|
Cv3d.Rodrigues(R, r2); |
|
|
|
assertMatEqual(r, r2, EPS); |
|
} |
|
|
|
public void testRodriguesMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testRQDecomp3x3MatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testRQDecomp3x3MatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testRQDecomp3x3MatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testRQDecomp3x3MatMatMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testSolvePnPListOfPoint3ListOfPointMatMatMatMat() { |
|
Mat intrinsics = Mat.eye(3, 3, CvType.CV_64F); |
|
intrinsics.put(0, 0, 400); |
|
intrinsics.put(1, 1, 400); |
|
intrinsics.put(0, 2, 640 / 2); |
|
intrinsics.put(1, 2, 480 / 2); |
|
|
|
final int minPnpPointsNum = 4; |
|
|
|
MatOfPoint3f points3d = new MatOfPoint3f(); |
|
points3d.alloc(minPnpPointsNum); |
|
MatOfPoint2f points2d = new MatOfPoint2f(); |
|
points2d.alloc(minPnpPointsNum); |
|
|
|
for (int i = 0; i < minPnpPointsNum; i++) { |
|
double x = Math.random() * 100 - 50; |
|
double y = Math.random() * 100 - 50; |
|
points2d.put(i, 0, x, y); //add(new Point(x, y)); |
|
points3d.put(i, 0, 0, y, x); // add(new Point3(0, y, x)); |
|
} |
|
|
|
Mat rvec = new Mat(); |
|
Mat tvec = new Mat(); |
|
Cv3d.solvePnP(points3d, points2d, intrinsics, new MatOfDouble(), rvec, tvec); |
|
|
|
Mat truth_rvec = new Mat(3, 1, CvType.CV_64F); |
|
truth_rvec.put(0, 0, 0, Math.PI / 2, 0); |
|
|
|
Mat truth_tvec = new Mat(3, 1, CvType.CV_64F); |
|
truth_tvec.put(0, 0, -320, -240, 400); |
|
|
|
assertMatEqual(truth_rvec, rvec, EPS*2); |
|
assertMatEqual(truth_tvec, tvec, EPS*2); |
|
} |
|
|
|
public void testSolvePnPListOfPoint3ListOfPointMatMatMatMatBoolean() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMatBoolean() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMatBooleanInt() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMatBooleanIntFloat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMatBooleanIntFloatInt() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMatBooleanIntFloatIntMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testStereoCalibrateListOfMatListOfMatListOfMatMatMatMatMatSizeMatMatMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testStereoCalibrateListOfMatListOfMatListOfMatMatMatMatMatSizeMatMatMatMatTermCriteria() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testStereoCalibrateListOfMatListOfMatListOfMatMatMatMatMatSizeMatMatMatMatTermCriteriaInt() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testStereoRectifyUncalibratedMatMatMatSizeMatMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testStereoRectifyUncalibratedMatMatMatSizeMatMatDouble() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testValidateDisparityMatMatIntInt() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testValidateDisparityMatMatIntIntInt() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testComputeCorrespondEpilines() |
|
{ |
|
Mat fundamental = new Mat(3, 3, CvType.CV_64F); |
|
fundamental.put(0, 0, 0, -0.577, 0.288, 0.577, 0, 0.288, -0.288, -0.288, 0); |
|
MatOfPoint2f left = new MatOfPoint2f(); |
|
left.alloc(1); |
|
left.put(0, 0, 2, 3); //add(new Point(x, y)); |
|
Mat lines = new Mat(); |
|
Mat truth = new Mat(1, 1, CvType.CV_32FC3); |
|
truth.put(0, 0, -0.70735186, 0.70686162, -0.70588124); |
|
Cv3d.computeCorrespondEpilines(left, 1, fundamental, lines); |
|
assertMatEqual(truth, lines, EPS); |
|
} |
|
|
|
public void testSolvePnPGeneric_regression_16040() { |
|
Mat intrinsics = Mat.eye(3, 3, CvType.CV_64F); |
|
intrinsics.put(0, 0, 400); |
|
intrinsics.put(1, 1, 400); |
|
intrinsics.put(0, 2, 640 / 2); |
|
intrinsics.put(1, 2, 480 / 2); |
|
|
|
final int minPnpPointsNum = 4; |
|
|
|
MatOfPoint3f points3d = new MatOfPoint3f(); |
|
points3d.alloc(minPnpPointsNum); |
|
MatOfPoint2f points2d = new MatOfPoint2f(); |
|
points2d.alloc(minPnpPointsNum); |
|
|
|
for (int i = 0; i < minPnpPointsNum; i++) { |
|
double x = Math.random() * 100 - 50; |
|
double y = Math.random() * 100 - 50; |
|
points2d.put(i, 0, x, y); //add(new Point(x, y)); |
|
points3d.put(i, 0, 0, y, x); // add(new Point3(0, y, x)); |
|
} |
|
|
|
ArrayList<Mat> rvecs = new ArrayList<Mat>(); |
|
ArrayList<Mat> tvecs = new ArrayList<Mat>(); |
|
|
|
Mat rvec = new Mat(); |
|
Mat tvec = new Mat(); |
|
|
|
Mat reprojectionError = new Mat(2, 1, CvType.CV_64FC1); |
|
|
|
Cv3d.solvePnPGeneric(points3d, points2d, intrinsics, new MatOfDouble(), rvecs, tvecs, false, Cv3d.SOLVEPNP_IPPE, rvec, tvec, reprojectionError); |
|
|
|
Mat truth_rvec = new Mat(3, 1, CvType.CV_64F); |
|
truth_rvec.put(0, 0, 0, Math.PI / 2, 0); |
|
|
|
Mat truth_tvec = new Mat(3, 1, CvType.CV_64F); |
|
truth_tvec.put(0, 0, -320, -240, 400); |
|
|
|
assertMatEqual(truth_rvec, rvecs.get(0), 10 * EPS); |
|
assertMatEqual(truth_tvec, tvecs.get(0), 1000 * EPS); |
|
} |
|
|
|
public void testGetDefaultNewCameraMatrixMat() { |
|
Mat mtx = Cv3d.getDefaultNewCameraMatrix(gray0); |
|
|
|
assertFalse(mtx.empty()); |
|
assertEquals(0, Core.countNonZero(mtx)); |
|
} |
|
|
|
public void testGetDefaultNewCameraMatrixMatSizeBoolean() { |
|
Mat mtx = Cv3d.getDefaultNewCameraMatrix(gray0, size, true); |
|
|
|
assertFalse(mtx.empty()); |
|
assertFalse(0 == Core.countNonZero(mtx)); |
|
// TODO_: write better test |
|
} |
|
|
|
public void testInitUndistortRectifyMap() { |
|
fail("Not yet implemented"); |
|
Mat cameraMatrix = new Mat(3, 3, CvType.CV_32F); |
|
cameraMatrix.put(0, 0, 1, 0, 1); |
|
cameraMatrix.put(1, 0, 0, 1, 1); |
|
cameraMatrix.put(2, 0, 0, 0, 1); |
|
|
|
Mat R = new Mat(3, 3, CvType.CV_32F, new Scalar(2)); |
|
Mat newCameraMatrix = new Mat(3, 3, CvType.CV_32F, new Scalar(3)); |
|
|
|
Mat distCoeffs = new Mat(); |
|
Mat map1 = new Mat(); |
|
Mat map2 = new Mat(); |
|
|
|
// TODO: complete this test |
|
Cv3d.initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, CvType.CV_32F, map1, map2); |
|
} |
|
|
|
public void testInitWideAngleProjMapMatMatSizeIntIntMatMat() { |
|
fail("Not yet implemented"); |
|
Mat cameraMatrix = new Mat(3, 3, CvType.CV_32F); |
|
Mat distCoeffs = new Mat(1, 4, CvType.CV_32F); |
|
// Size imageSize = new Size(2, 2); |
|
|
|
cameraMatrix.put(0, 0, 1, 0, 1); |
|
cameraMatrix.put(1, 0, 0, 1, 2); |
|
cameraMatrix.put(2, 0, 0, 0, 1); |
|
|
|
distCoeffs.put(0, 0, 1, 3, 2, 4); |
|
truth = new Mat(3, 3, CvType.CV_32F); |
|
truth.put(0, 0, 0, 0, 0); |
|
truth.put(1, 0, 0, 0, 0); |
|
truth.put(2, 0, 0, 3, 0); |
|
// TODO: No documentation for this function |
|
// Cv3d.initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, |
|
// 5, m1type, truthput1, truthput2); |
|
} |
|
|
|
public void testInitWideAngleProjMapMatMatSizeIntIntMatMatInt() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testInitWideAngleProjMapMatMatSizeIntIntMatMatIntDouble() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testUndistortMatMatMatMat() { |
|
Mat src = new Mat(3, 3, CvType.CV_32F, new Scalar(3)); |
|
Mat cameraMatrix = new Mat(3, 3, CvType.CV_32F) { |
|
{ |
|
put(0, 0, 1, 0, 1); |
|
put(1, 0, 0, 1, 2); |
|
put(2, 0, 0, 0, 1); |
|
} |
|
}; |
|
Mat distCoeffs = new Mat(1, 4, CvType.CV_32F) { |
|
{ |
|
put(0, 0, 1, 3, 2, 4); |
|
} |
|
}; |
|
|
|
Cv3d.undistort(src, dst, cameraMatrix, distCoeffs); |
|
|
|
truth = new Mat(3, 3, CvType.CV_32F) { |
|
{ |
|
put(0, 0, 0, 0, 0); |
|
put(1, 0, 0, 0, 0); |
|
put(2, 0, 0, 3, 0); |
|
} |
|
}; |
|
assertMatEqual(truth, dst, EPS); |
|
} |
|
|
|
public void testUndistortMatMatMatMatMat() { |
|
Mat src = new Mat(3, 3, CvType.CV_32F, new Scalar(3)); |
|
Mat cameraMatrix = new Mat(3, 3, CvType.CV_32F) { |
|
{ |
|
put(0, 0, 1, 0, 1); |
|
put(1, 0, 0, 1, 2); |
|
put(2, 0, 0, 0, 1); |
|
} |
|
}; |
|
Mat distCoeffs = new Mat(1, 4, CvType.CV_32F) { |
|
{ |
|
put(0, 0, 2, 1, 4, 5); |
|
} |
|
}; |
|
Mat newCameraMatrix = new Mat(3, 3, CvType.CV_32F, new Scalar(1)); |
|
|
|
Cv3d.undistort(src, dst, cameraMatrix, distCoeffs, newCameraMatrix); |
|
|
|
truth = new Mat(3, 3, CvType.CV_32F, new Scalar(3)); |
|
assertMatEqual(truth, dst, EPS); |
|
} |
|
|
|
//undistortPoints(List<Point> src, List<Point> dst, Mat cameraMatrix, Mat distCoeffs) |
|
public void testUndistortPointsListOfPointListOfPointMatMat() { |
|
MatOfPoint2f src = new MatOfPoint2f(new Point(1, 2), new Point(3, 4), new Point(-1, -1)); |
|
MatOfPoint2f dst = new MatOfPoint2f(); |
|
Mat cameraMatrix = Mat.eye(3, 3, CvType.CV_64FC1); |
|
Mat distCoeffs = new Mat(8, 1, CvType.CV_64FC1, new Scalar(0)); |
|
|
|
Cv3d.undistortPoints(src, dst, cameraMatrix, distCoeffs); |
|
|
|
assertEquals(src.cols(), dst.rows()); |
|
assertEquals(src.rows(), dst.cols()); |
|
for(int i=0; i<src.toList().size(); i++) { |
|
//Log.d("UndistortPoints", "s="+src.get(i)+", d="+dst.get(i)); |
|
assertTrue(src.toList().get(i).equals(dst.toList().get(i))); |
|
} |
|
} |
|
|
|
public void testEstimateNewCameraMatrixForUndistortRectify() { |
|
Mat K = new Mat().eye(3, 3, CvType.CV_64FC1); |
|
Mat K_new = new Mat().eye(3, 3, CvType.CV_64FC1); |
|
Mat K_new_truth = new Mat().eye(3, 3, CvType.CV_64FC1); |
|
Mat D = new Mat().zeros(4, 1, CvType.CV_64FC1); |
|
|
|
K.put(0,0,600.4447738238429); |
|
K.put(1,1,578.9929805505851); |
|
K.put(0,2,992.0642578801213); |
|
K.put(1,2,549.2682624212172); |
|
|
|
D.put(0,0,-0.05090103223466704); |
|
D.put(1,0,0.030944413642173308); |
|
D.put(2,0,-0.021509225493198905); |
|
D.put(3,0,0.0043378096628297145); |
|
|
|
K_new_truth.put(0,0, 387.5118215642316); |
|
K_new_truth.put(0,2, 1033.936556777084); |
|
K_new_truth.put(1,1, 373.6673784974842); |
|
K_new_truth.put(1,2, 538.794152656429); |
|
|
|
Cv3d.fisheye_estimateNewCameraMatrixForUndistortRectify(K,D,new Size(1920,1080), |
|
new Mat().eye(3, 3, CvType.CV_64F), K_new, 0.0, new Size(1920,1080)); |
|
|
|
assertMatEqual(K_new, K_new_truth, EPS); |
|
} |
|
}
|
|
|