Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1106 lines
41 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#include "../test_precomp.hpp"
#ifdef HAVE_ONNX
#include <stdexcept>
#include <codecvt> // wstring_convert
#include <onnxruntime_cxx_api.h>
#include <ade/util/iota_range.hpp>
#include <ade/util/algorithm.hpp>
#include <opencv2/gapi/own/convert.hpp>
#include <opencv2/gapi/infer/onnx.hpp>
namespace {
class TestMediaBGR final: public cv::MediaFrame::IAdapter {
cv::Mat m_mat;
using Cb = cv::MediaFrame::View::Callback;
Cb m_cb;
public:
explicit TestMediaBGR(cv::Mat m, Cb cb = [](){})
: m_mat(m), m_cb(cb) {
}
cv::GFrameDesc meta() const override {
return cv::GFrameDesc{cv::MediaFormat::BGR, cv::Size(m_mat.cols, m_mat.rows)};
}
cv::MediaFrame::View access(cv::MediaFrame::Access) override {
cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr };
cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u };
return cv::MediaFrame::View(std::move(pp), std::move(ss), Cb{m_cb});
}
};
class TestMediaNV12 final: public cv::MediaFrame::IAdapter {
cv::Mat m_y;
cv::Mat m_uv;
public:
TestMediaNV12(cv::Mat y, cv::Mat uv) : m_y(y), m_uv(uv) {
}
cv::GFrameDesc meta() const override {
return cv::GFrameDesc{cv::MediaFormat::NV12, cv::Size(m_y.cols, m_y.rows)};
}
cv::MediaFrame::View access(cv::MediaFrame::Access) override {
cv::MediaFrame::View::Ptrs pp = {
m_y.ptr(), m_uv.ptr(), nullptr, nullptr
};
cv::MediaFrame::View::Strides ss = {
m_y.step, m_uv.step, 0u, 0u
};
return cv::MediaFrame::View(std::move(pp), std::move(ss));
}
};
struct ONNXInitPath {
ONNXInitPath() {
const char* env_path = getenv("OPENCV_GAPI_ONNX_MODEL_PATH");
if (env_path) {
cvtest::addDataSearchPath(env_path);
}
}
};
static ONNXInitPath g_init_path;
cv::Mat initMatrixRandU(const int type, const cv::Size& sz_in) {
const cv::Mat in_mat1 = cv::Mat(sz_in, type);
if (CV_MAT_DEPTH(type) < CV_32F) {
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
} else {
const int fscale = 256; // avoid bits near ULP, generate stable test input
cv::Mat in_mat32s(in_mat1.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type)));
cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale));
in_mat32s.convertTo(in_mat1, type, 1.0f / fscale, 0);
}
return in_mat1;
}
} // anonymous namespace
namespace opencv_test
{
namespace {
void initTestDataPath()
{
#ifndef WINRT
static bool initialized = false;
if (!initialized)
{
// Since G-API has no own test data (yet), it is taken from the common space
const char* testDataPath = getenv("OPENCV_TEST_DATA_PATH");
if (testDataPath) {
cvtest::addDataSearchPath(testDataPath);
}
initialized = true;
}
#endif // WINRT
}
// FIXME: taken from the DNN module
void normAssert(cv::InputArray& ref, cv::InputArray& test,
const char *comment /*= ""*/,
const double l1 = 0.00001, const double lInf = 0.0001) {
const double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
EXPECT_LE(normL1, l1) << comment;
const double normInf = cvtest::norm(ref, test, cv::NORM_INF);
EXPECT_LE(normInf, lInf) << comment;
}
inline std::string findModel(const std::string &model_name) {
return findDataFile("vision/" + model_name + ".onnx", false);
}
inline void toCHW(const cv::Mat& src, cv::Mat& dst) {
dst.create(cv::Size(src.cols, src.rows * src.channels()), CV_32F);
std::vector<cv::Mat> planes;
for (int i = 0; i < src.channels(); ++i) {
planes.push_back(dst.rowRange(i * src.rows, (i + 1) * src.rows));
}
cv::split(src, planes);
}
inline int toCV(ONNXTensorElementDataType prec) {
switch (prec) {
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32: return CV_32S;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: return CV_32S;
default: GAPI_Assert(false && "Unsupported data type");
}
return -1;
}
void copyFromONNX(Ort::Value &v, cv::Mat& mat) {
const auto info = v.GetTensorTypeAndShapeInfo();
const auto prec = info.GetElementType();
const auto shape = info.GetShape();
const std::vector<int> dims(shape.begin(), shape.end());
mat.create(dims, toCV(prec));
switch (prec) {
#define HANDLE(E,T) \
case E: std::copy_n(v.GetTensorMutableData<T>(), \
mat.total(), \
reinterpret_cast<T*>(mat.data)); \
break;
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8, uint8_t);
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, float);
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32, int);
#undef HANDLE
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: {
const auto o_ptr = v.GetTensorMutableData<int64_t>();
const auto g_ptr = reinterpret_cast<int*>(mat.data);
std::transform(o_ptr, o_ptr + mat.total(), g_ptr,
[](int64_t el) { return static_cast<int>(el); });
break;
}
default: GAPI_Assert(false && "ONNX. Unsupported data type");
}
}
inline std::vector<int64_t> toORT(const cv::MatSize &sz) {
return cv::to_own<int64_t>(sz);
}
inline std::vector<const char*> getCharNames(const std::vector<std::string>& names) {
std::vector<const char*> out_ptrs;
out_ptrs.reserve(names.size());
ade::util::transform(names, std::back_inserter(out_ptrs),
[](const std::string& name) { return name.c_str(); });
return out_ptrs;
}
template<typename T>
void copyToOut(const cv::Mat& onnx_out, const T end_mark, cv::Mat& gapi_out) {
// This function is part of some remap__ function.
// You can set graph output size (gapi_out) larger than real out from ONNX
// so you have to add something for separate correct data and garbage.
// For example, end of data can be marked with -1 (for positive values)
// or you can put size of correct data at first/last element of output matrix.
const size_t size = std::min(onnx_out.total(), gapi_out.total());
std::copy(onnx_out.begin<T>(),
onnx_out.begin<T>() + size,
gapi_out.begin<T>());
if (gapi_out.total() > onnx_out.total()) {
T* gptr = gapi_out.ptr<T>();
gptr[size] = end_mark;
}
}
void remapYolo(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
GAPI_Assert(onnx.size() == 1u);
GAPI_Assert(gapi.size() == 1u);
// Result from Run method
const cv::Mat& in = onnx.begin()->second;
GAPI_Assert(in.depth() == CV_32F);
// Configured output
cv::Mat& out = gapi.begin()->second;
// Simple copy
copyToOut<float>(in, -1.f, out);
}
void remapYoloV3(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Simple copy for outputs
const cv::Mat& in_boxes = onnx.at("yolonms_layer_1/ExpandDims_1:0");
const cv::Mat& in_scores = onnx.at("yolonms_layer_1/ExpandDims_3:0");
const cv::Mat& in_indices = onnx.at("yolonms_layer_1/concat_2:0");
GAPI_Assert(in_boxes.depth() == CV_32F);
GAPI_Assert(in_scores.depth() == CV_32F);
GAPI_Assert(in_indices.depth() == CV_32S);
cv::Mat& out_boxes = gapi.at("out1");
cv::Mat& out_scores = gapi.at("out2");
cv::Mat& out_indices = gapi.at("out3");
copyToOut<float>(in_boxes, -1.f, out_boxes);
copyToOut<float>(in_scores, -1.f, out_scores);
copyToOut<int>(in_indices, -1, out_indices);
}
void remapToIESSDOut(const std::vector<cv::Mat> &detections,
cv::Mat &ssd_output) {
GAPI_Assert(detections.size() == 4u);
for (const auto &det_el : detections) {
GAPI_Assert(det_el.depth() == CV_32F);
GAPI_Assert(!det_el.empty());
}
// SSD-MobilenetV1 structure check
ASSERT_EQ(detections[0].total(), 1u);
ASSERT_EQ(detections[2].total(), detections[0].total() * 100);
ASSERT_EQ(detections[2].total(), detections[3].total());
ASSERT_EQ((detections[2].total() * 4), detections[1].total());
const int num_objects = static_cast<int>(detections[0].ptr<float>()[0]);
GAPI_Assert(num_objects <= (ssd_output.size[2] - 1));
const float *in_boxes = detections[1].ptr<float>();
const float *in_scores = detections[2].ptr<float>();
const float *in_classes = detections[3].ptr<float>();
float *ptr = ssd_output.ptr<float>();
for (int i = 0; i < num_objects; ++i) {
ptr[0] = 0.f; // "image_id"
ptr[1] = in_classes[i]; // "label"
ptr[2] = in_scores[i]; // "confidence"
ptr[3] = in_boxes[4 * i + 1]; // left
ptr[4] = in_boxes[4 * i + 0]; // top
ptr[5] = in_boxes[4 * i + 3]; // right
ptr[6] = in_boxes[4 * i + 2]; // bottom
ptr += 7;
in_boxes += 4;
}
if (num_objects < ssd_output.size[2] - 1) {
// put a -1 mark at the end of output blob if there is space left
ptr[0] = -1.f;
}
}
void remapSSDPorts(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Assemble ONNX-processed outputs back to a single 1x1x200x7 blob
// to preserve compatibility with OpenVINO-based SSD pipeline
const cv::Mat &num_detections = onnx.at("num_detections:0");
const cv::Mat &detection_boxes = onnx.at("detection_boxes:0");
const cv::Mat &detection_scores = onnx.at("detection_scores:0");
const cv::Mat &detection_classes = onnx.at("detection_classes:0");
cv::Mat &ssd_output = gapi.at("detection_output");
remapToIESSDOut({num_detections, detection_boxes, detection_scores, detection_classes}, ssd_output);
}
void reallocSSDPort(const std::unordered_map<std::string, cv::Mat> &/*onnx*/,
std::unordered_map<std::string, cv::Mat> &gapi) {
gapi["detection_boxes"].create(1000, 3000, CV_32FC3);
}
void remapRCNNPortsC(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Simple copy for outputs
const cv::Mat& in_boxes = onnx.at("6379");
const cv::Mat& in_labels = onnx.at("6381");
const cv::Mat& in_scores = onnx.at("6383");
GAPI_Assert(in_boxes.depth() == CV_32F);
GAPI_Assert(in_labels.depth() == CV_32S);
GAPI_Assert(in_scores.depth() == CV_32F);
cv::Mat& out_boxes = gapi.at("out1");
cv::Mat& out_labels = gapi.at("out2");
cv::Mat& out_scores = gapi.at("out3");
copyToOut<float>(in_boxes, -1.f, out_boxes);
copyToOut<int>(in_labels, -1, out_labels);
copyToOut<float>(in_scores, -1.f, out_scores);
}
void remapRCNNPortsDO(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Simple copy for outputs
const cv::Mat& in_boxes = onnx.at("6379");
const cv::Mat& in_scores = onnx.at("6383");
GAPI_Assert(in_boxes.depth() == CV_32F);
GAPI_Assert(in_scores.depth() == CV_32F);
cv::Mat& out_boxes = gapi.at("out1");
cv::Mat& out_scores = gapi.at("out2");
copyToOut<float>(in_boxes, -1.f, out_boxes);
copyToOut<float>(in_scores, -1.f, out_scores);
}
class ONNXtest : public ::testing::Test {
public:
std::string model_path;
size_t num_in, num_out;
std::vector<cv::Mat> out_gapi;
std::vector<cv::Mat> out_onnx;
cv::Mat in_mat1;
ONNXtest() {
initTestDataPath();
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "test");
memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
out_gapi.resize(1);
// FIXME: It should be an image from own (gapi) directory in opencv extra
in_mat1 = cv::imread(findDataFile("cv/dpm/cat.png"));
}
template<typename T>
void infer(const std::vector<cv::Mat>& ins,
std::vector<cv::Mat>& outs,
std::vector<std::string>&& custom_out_names = {}) {
// Prepare session
#ifndef _WIN32
session = Ort::Session(env, model_path.c_str(), session_options);
#else
std::wstring_convert<std::codecvt_utf8<wchar_t>, wchar_t> converter;
std::wstring w_model_path = converter.from_bytes(model_path.c_str());
session = Ort::Session(env, w_model_path.c_str(), session_options);
#endif
num_in = session.GetInputCount();
num_out = session.GetOutputCount();
GAPI_Assert(num_in == ins.size());
in_node_names.clear();
out_node_names.clear();
// Inputs Run params
std::vector<Ort::Value> in_tensors;
for(size_t i = 0; i < num_in; ++i) {
char* in_node_name_p = session.GetInputName(i, allocator);
in_node_names.emplace_back(in_node_name_p);
allocator.Free(in_node_name_p);
in_node_dims = toORT(ins[i].size);
in_tensors.emplace_back(Ort::Value::CreateTensor<T>(memory_info,
const_cast<T*>(ins[i].ptr<T>()),
ins[i].total(),
in_node_dims.data(),
in_node_dims.size()));
}
// Outputs Run params
if (custom_out_names.empty()) {
for(size_t i = 0; i < num_out; ++i) {
char* out_node_name_p = session.GetOutputName(i, allocator);
out_node_names.emplace_back(out_node_name_p);
allocator.Free(out_node_name_p);
}
} else {
out_node_names = std::move(custom_out_names);
}
// Input/output order by names
const auto in_run_names = getCharNames(in_node_names);
const auto out_run_names = getCharNames(out_node_names);
num_out = out_run_names.size();
// Run
auto result = session.Run(Ort::RunOptions{nullptr},
in_run_names.data(),
&in_tensors.front(),
num_in,
out_run_names.data(),
num_out);
// Copy outputs
GAPI_Assert(result.size() == num_out);
for (size_t i = 0; i < num_out; ++i) {
const auto info = result[i].GetTensorTypeAndShapeInfo();
const auto shape = info.GetShape();
const auto type = toCV(info.GetElementType());
const std::vector<int> dims(shape.begin(), shape.end());
outs.emplace_back(dims, type);
copyFromONNX(result[i], outs.back());
}
}
// One input/output overload
template<typename T>
void infer(const cv::Mat& in, cv::Mat& out) {
std::vector<cv::Mat> result;
infer<T>(std::vector<cv::Mat>{in}, result);
GAPI_Assert(result.size() == 1u);
out = result.front();
}
// One input overload
template<typename T>
void infer(const cv::Mat& in,
std::vector<cv::Mat>& outs,
std::vector<std::string>&& custom_out_names = {}) {
infer<T>(std::vector<cv::Mat>{in}, outs, std::move(custom_out_names));
}
void validate() {
GAPI_Assert(!out_gapi.empty() && !out_onnx.empty());
ASSERT_EQ(out_gapi.size(), out_onnx.size());
const auto size = out_gapi.size();
for (size_t i = 0; i < size; ++i) {
normAssert(out_onnx[i], out_gapi[i], "Test outputs");
}
}
void useModel(const std::string& model_name) {
model_path = findModel(model_name);
}
private:
Ort::Env env{nullptr};
Ort::MemoryInfo memory_info{nullptr};
Ort::AllocatorWithDefaultOptions allocator;
Ort::SessionOptions session_options;
Ort::Session session{nullptr};
std::vector<int64_t> in_node_dims;
std::vector<std::string> in_node_names;
std::vector<std::string> out_node_names;
};
class ONNXClassification : public ONNXtest {
public:
const cv::Scalar mean = { 0.485, 0.456, 0.406 };
const cv::Scalar std = { 0.229, 0.224, 0.225 };
// Rois for InferList, InferList2
const std::vector<cv::Rect> rois = {
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360})
};
void preprocess(const cv::Mat& src, cv::Mat& dst) {
const int new_h = 224;
const int new_w = 224;
cv::Mat tmp, cvt, rsz;
cv::resize(src, rsz, cv::Size(new_w, new_h));
rsz.convertTo(cvt, CV_32F, 1.f / 255);
tmp = (cvt - mean) / std;
toCHW(tmp, dst);
dst = dst.reshape(1, {1, 3, new_h, new_w});
}
};
class ONNXMediaFrame : public ONNXClassification {
public:
const std::vector<cv::Rect> rois = {
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
cv::Rect(cv::Point{70, 10}, cv::Size{20, 260}),
cv::Rect(cv::Point{5, 15}, cv::Size{200, 160}),
};
cv::Mat m_in_y;
cv::Mat m_in_uv;
virtual void SetUp() {
cv::Size sz{640, 480};
m_in_y = initMatrixRandU(CV_8UC1, sz);
m_in_uv = initMatrixRandU(CV_8UC2, sz / 2);
}
};
class ONNXGRayScale : public ONNXtest {
public:
void preprocess(const cv::Mat& src, cv::Mat& dst) {
const int new_h = 64;
const int new_w = 64;
cv::Mat cvc, rsz, cvt;
cv::cvtColor(src, cvc, cv::COLOR_BGR2GRAY);
cv::resize(cvc, rsz, cv::Size(new_w, new_h));
rsz.convertTo(cvt, CV_32F);
toCHW(cvt, dst);
dst = dst.reshape(1, {1, 1, new_h, new_w});
}
};
class ONNXWithRemap : public ONNXtest {
private:
size_t step_by_outs = 0;
public:
// This function checks each next cv::Mat in out_gapi vector for next call.
// end_mark is edge of correct data
template <typename T>
void validate(const T end_mark) {
GAPI_Assert(!out_gapi.empty() && !out_onnx.empty());
ASSERT_EQ(out_gapi.size(), out_onnx.size());
GAPI_Assert(step_by_outs < out_gapi.size());
const T* op = out_onnx.at(step_by_outs).ptr<T>();
const T* gp = out_gapi.at(step_by_outs).ptr<T>();
// Checking that graph output larger than onnx output
const auto out_size = std::min(out_onnx.at(step_by_outs).total(), out_gapi.at(step_by_outs).total());
GAPI_Assert(out_size != 0u);
for (size_t d_idx = 0; d_idx < out_size; ++d_idx) {
if (gp[d_idx] == end_mark) break;
ASSERT_EQ(op[d_idx], gp[d_idx]);
}
++step_by_outs;
}
};
class ONNXRCNN : public ONNXWithRemap {
private:
const cv::Scalar rcnn_mean = { 102.9801, 115.9465, 122.7717 };
const float range_max = 1333;
const float range_min = 800;
public:
void preprocess(const cv::Mat& src, cv::Mat& dst) {
cv::Mat rsz, cvt, chw, mn;
const auto get_ratio = [&](const int dim) -> float {
return ((dim > range_max) || (dim < range_min))
? dim > range_max
? range_max / dim
: range_min / dim
: 1.f;
};
const auto ratio_h = get_ratio(src.rows);
const auto ratio_w = get_ratio(src.cols);
const auto new_h = static_cast<int>(ratio_h * src.rows);
const auto new_w = static_cast<int>(ratio_w * src.cols);
cv::resize(src, rsz, cv::Size(new_w, new_h));
rsz.convertTo(cvt, CV_32F, 1.f);
toCHW(cvt, chw);
mn = chw - rcnn_mean;
const int padded_h = std::ceil(new_h / 32.f) * 32;
const int padded_w = std::ceil(new_w / 32.f) * 32;
cv::Mat pad_im(cv::Size(padded_w, 3 * padded_h), CV_32F, 0.f);
pad_im(cv::Rect(0, 0, mn.cols, mn.rows)) += mn;
dst = pad_im.reshape(1, {3, padded_h, padded_w});
}
};
class ONNXYoloV3 : public ONNXWithRemap {
public:
std::vector<cv::Mat> ins;
private:
virtual void SetUp() {
const int yolo_in_h = 416;
const int yolo_in_w = 416;
cv::Mat yolov3_input, shape, prep_mat;
cv::resize(in_mat1, yolov3_input, cv::Size(yolo_in_w, yolo_in_h));
shape.create(cv::Size(2, 1), CV_32F);
float* ptr = shape.ptr<float>();
ptr[0] = in_mat1.cols;
ptr[1] = in_mat1.rows;
preprocess(yolov3_input, prep_mat);
ins = {prep_mat, shape};
}
void preprocess(const cv::Mat& src, cv::Mat& dst) {
cv::Mat cvt;
src.convertTo(cvt, CV_32F, 1.f / 255.f);
toCHW(cvt, dst);
dst = dst.reshape(1, {1, 3, 416, 416});
}
};
} // anonymous namespace
TEST_F(ONNXClassification, Infer)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
// ONNX_API code
cv::Mat processed_mat;
preprocess(in_mat1, processed_mat);
infer<float>(processed_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(in_mat1),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXClassification, InferTensor)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
// Create tensor
cv::Mat tensor;
preprocess(in_mat1, tensor);
// ONNX_API code
infer<float>(tensor, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path };
comp.apply(cv::gin(tensor),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXClassification, InferROI)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
const auto ROI = rois.at(0);
// ONNX_API code
cv::Mat roi_mat;
preprocess(in_mat1(ROI), roi_mat);
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GOpaque<cv::Rect> rect;
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(in_mat1, ROI),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXClassification, InferROIList)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat1(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(in_mat1, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXClassification, Infer2ROIList)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat1(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(in_mat1, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXWithRemap, InferDynamicInputTensor)
{
useModel("object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8");
// Create tensor
cv::Mat cvt, rsz, tensor;
cv::resize(in_mat1, rsz, cv::Size{416, 416});
rsz.convertTo(cvt, CV_32F, 1.f / 255.f);
toCHW(cvt, tensor);
tensor = tensor.reshape(1, {1, 3, 416, 416});
// ONNX_API code
infer<float>(tensor, out_onnx);
// G_API code
G_API_NET(YoloNet, <cv::GMat(cv::GMat)>, "YoloNet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<YoloNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<YoloNet>{ model_path }
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 125, 13, 13}}}, remapYolo)
.cfgOutputLayers({"out"});
comp.apply(cv::gin(tensor),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
}
TEST_F(ONNXGRayScale, InferImage)
{
useModel("body_analysis/emotion_ferplus/model/emotion-ferplus-8");
// ONNX_API code
cv::Mat prep_mat;
preprocess(in_mat1, prep_mat);
infer<float>(prep_mat, out_onnx);
// G_API code
G_API_NET(EmotionNet, <cv::GMat(cv::GMat)>, "emotion-ferplus");
cv::GMat in;
cv::GMat out = cv::gapi::infer<EmotionNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<EmotionNet> { model_path }
.cfgNormalize({ false }); // model accepts 0..255 range in FP32;
comp.apply(cv::gin(in_mat1),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXWithRemap, InferMultiOutput)
{
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
// ONNX_API code
const auto prep_mat = in_mat1.reshape(1, {1, in_mat1.rows, in_mat1.cols, in_mat1.channels()});
infer<uint8_t>(prep_mat, out_onnx);
cv::Mat onnx_conv_out({1, 1, 200, 7}, CV_32F);
remapToIESSDOut({out_onnx[3], out_onnx[0], out_onnx[2], out_onnx[1]}, onnx_conv_out);
out_onnx.clear();
out_onnx.push_back(onnx_conv_out);
// G_API code
G_API_NET(MobileNet, <cv::GMat(cv::GMat)>, "ssd_mobilenet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<MobileNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<MobileNet>{ model_path }
.cfgOutputLayers({"detection_output"})
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 1, 200, 7}}}, remapSSDPorts);
comp.apply(cv::gin(in_mat1),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
}
TEST_F(ONNXMediaFrame, InferBGR)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
// ONNX_API code
cv::Mat processed_mat;
preprocess(in_mat1, processed_mat);
infer<float>(processed_mat, out_onnx);
// G_API code
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(frame),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferYUV)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
// ONNX_API code
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
cv::Mat processed_mat;
preprocess(pp, processed_mat);
infer<float>(processed_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(frame),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferROIBGR)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
// ONNX_API code
cv::Mat roi_mat;
preprocess(in_mat1(rois.front()), roi_mat);
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GOpaque<cv::Rect> rect;
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(frame, rois.front()),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferROIYUV)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
// ONNX_API code
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
cv::Mat roi_mat;
preprocess(pp(rois.front()), roi_mat);
infer<float>(roi_mat, out_onnx);
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GOpaque<cv::Rect> rect;
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(frame, rois.front()),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferListBGR)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat1(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(frame, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferListYUV)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
// ONNX_API code
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(pp(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(frame, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXRCNN, InferWithDisabledOut)
{
useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10");
cv::Mat pp;
preprocess(in_mat1, pp);
// ONNX_API code
infer<float>(pp, out_onnx, {"6379", "6383"});
// G_API code
using FRCNNOUT = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(FasterRCNN, <FRCNNOUT(cv::GMat)>, "FasterRCNN");
auto net = cv::gapi::onnx::Params<FasterRCNN>{model_path}
.cfgOutputLayers({"out1", "out2"})
.cfgPostProc({cv::GMatDesc{CV_32F, {7,4}},
cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsDO, {"6383", "6379"});
cv::GMat in, out1, out2;
std::tie(out1, out2) = cv::gapi::infer<FasterRCNN>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2));
out_gapi.resize(num_out);
comp.apply(cv::gin(pp),
cv::gout(out_gapi[0], out_gapi[1]),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
validate<float>(-1.f);
}
TEST_F(ONNXMediaFrame, InferList2BGR)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat1);
// ONNX_API code
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat1(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(frame, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXMediaFrame, InferList2YUV)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
// ONNX_API code
cv::Mat pp;
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(pp(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(frame, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXYoloV3, InferConstInput)
{
useModel("object_detection_segmentation/yolov3/model/yolov3-10");
// ONNX_API code
infer<float>(ins, out_onnx);
// G_API code
using OUT = std::tuple<cv::GMat, cv::GMat, cv::GMat>;
G_API_NET(YoloNet, <OUT(cv::GMat)>, "yolov3");
auto net = cv::gapi::onnx::Params<YoloNet>{model_path}
.constInput("image_shape", ins[1])
.cfgInputLayers({"input_1"})
.cfgOutputLayers({"out1", "out2", "out3"})
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}},
cv::GMatDesc{CV_32F, {1, 80, 10000}},
cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3);
cv::GMat in, out1, out2, out3;
std::tie(out1, out2, out3) = cv::gapi::infer<YoloNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3));
out_gapi.resize(num_out);
comp.apply(cv::gin(ins[0]),
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
validate<float>(-1.f);
validate<int>(-1);
}
TEST_F(ONNXYoloV3, InferBSConstInput)
{
// This test checks the case when a const input is used
// and all input layer names are specified.
// Const input has the advantage. It is expected behavior.
useModel("object_detection_segmentation/yolov3/model/yolov3-10");
// Tensor with incorrect image size
// is used for check case when InputLayers and constInput have same names
cv::Mat bad_shape;
bad_shape.create(cv::Size(2, 1), CV_32F);
float* ptr = bad_shape.ptr<float>();
ptr[0] = 590;
ptr[1] = 12;
// ONNX_API code
infer<float>(ins, out_onnx);
// G_API code
using OUT = std::tuple<cv::GMat, cv::GMat, cv::GMat>;
G_API_NET(YoloNet, <OUT(cv::GMat, cv::GMat)>, "yolov3");
auto net = cv::gapi::onnx::Params<YoloNet>{model_path}
// Data from const input will be used to infer
.constInput("image_shape", ins[1])
// image_shape - const_input has same name
.cfgInputLayers({"input_1", "image_shape"})
.cfgOutputLayers({"out1", "out2", "out3"})
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}},
cv::GMatDesc{CV_32F, {1, 80, 10000}},
cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3);
cv::GMat in1, in2, out1, out2, out3;
std::tie(out1, out2, out3) = cv::gapi::infer<YoloNet>(in1, in2);
cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out1, out2, out3));
out_gapi.resize(num_out);
comp.apply(cv::gin(ins[0], bad_shape),
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
validate<float>(-1.f);
validate<int>(-1);
}
TEST_F(ONNXRCNN, ConversionInt64to32)
{
useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10");
cv::Mat dst;
preprocess(in_mat1, dst);
// ONNX_API code
infer<float>(dst, out_onnx);
// G_API code
using FRCNNOUT = std::tuple<cv::GMat,cv::GMat,cv::GMat>;
G_API_NET(FasterRCNN, <FRCNNOUT(cv::GMat)>, "FasterRCNN");
auto net = cv::gapi::onnx::Params<FasterRCNN>{model_path}
.cfgOutputLayers({"out1", "out2", "out3"})
.cfgPostProc({cv::GMatDesc{CV_32F, {7,4}},
cv::GMatDesc{CV_32S, {7}},
cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsC);
cv::GMat in, out1, out2, out3;
std::tie(out1, out2, out3) = cv::gapi::infer<FasterRCNN>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3));
out_gapi.resize(num_out);
comp.apply(cv::gin(dst),
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate<float>(-1.f);
validate<int>(-1);
validate<float>(-1.f);
}
TEST_F(ONNXWithRemap, InferOutReallocation)
{
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
// G_API code
G_API_NET(MobileNet, <cv::GMat(cv::GMat)>, "ssd_mobilenet");
auto net = cv::gapi::onnx::Params<MobileNet>{model_path}
.cfgOutputLayers({"detection_boxes"})
.cfgPostProc({cv::GMatDesc{CV_32F, {1,100,4}}}, reallocSSDPort);
cv::GMat in;
cv::GMat out1;
out1 = cv::gapi::infer<MobileNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out1));
EXPECT_THROW(comp.apply(cv::gin(in_mat1),
cv::gout(out_gapi[0]),
cv::compile_args(cv::gapi::networks(net))), std::exception);
}
} // namespace opencv_test
#endif // HAVE_ONNX