mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
698 lines
27 KiB
698 lines
27 KiB
#include <algorithm> |
|
#include <cctype> |
|
#include <cmath> |
|
#include <iostream> |
|
#include <limits> |
|
#include <numeric> |
|
#include <stdexcept> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include <opencv2/gapi.hpp> |
|
#include <opencv2/gapi/core.hpp> |
|
#include <opencv2/gapi/cpu/gcpukernel.hpp> |
|
#include <opencv2/gapi/infer.hpp> |
|
#include <opencv2/gapi/infer/ie.hpp> |
|
#include <opencv2/gapi/streaming/cap.hpp> |
|
|
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/core/utility.hpp> |
|
|
|
const std::string about = |
|
"This is an OpenCV-based version of OMZ Text Detection example"; |
|
const std::string keys = |
|
"{ h help | | Print this help message }" |
|
"{ input | | Path to the input video file }" |
|
"{ tdm | text-detection-0004.xml | Path to OpenVINO text detection model (.xml), versions 0003 and 0004 work }" |
|
"{ tdd | CPU | Target device for the text detector (e.g. CPU, GPU, VPU, ...) }" |
|
"{ trm | text-recognition-0012.xml | Path to OpenVINO text recognition model (.xml) }" |
|
"{ trd | CPU | Target device for the text recognition (e.g. CPU, GPU, VPU, ...) }" |
|
"{ bw | 0 | CTC beam search decoder bandwidth, if 0, a CTC greedy decoder is used}" |
|
"{ sset | 0123456789abcdefghijklmnopqrstuvwxyz | Symbol set to use with text recognition decoder. Shouldn't contain symbol #. }" |
|
"{ thr | 0.2 | Text recognition confidence threshold}" |
|
; |
|
|
|
namespace { |
|
std::string weights_path(const std::string &model_path) { |
|
const auto EXT_LEN = 4u; |
|
const auto sz = model_path.size(); |
|
CV_Assert(sz > EXT_LEN); |
|
|
|
const auto ext = model_path.substr(sz - EXT_LEN); |
|
CV_Assert(cv::toLowerCase(ext) == ".xml"); |
|
return model_path.substr(0u, sz - EXT_LEN) + ".bin"; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Taken from OMZ samples as-is |
|
template<typename Iter> |
|
void softmax_and_choose(Iter begin, Iter end, int *argmax, float *prob) { |
|
auto max_element = std::max_element(begin, end); |
|
*argmax = static_cast<int>(std::distance(begin, max_element)); |
|
float max_val = *max_element; |
|
double sum = 0; |
|
for (auto i = begin; i != end; i++) { |
|
sum += std::exp((*i) - max_val); |
|
} |
|
if (std::fabs(sum) < std::numeric_limits<double>::epsilon()) { |
|
throw std::logic_error("sum can't be equal to zero"); |
|
} |
|
*prob = 1.0f / static_cast<float>(sum); |
|
} |
|
|
|
template<typename Iter> |
|
std::vector<float> softmax(Iter begin, Iter end) { |
|
std::vector<float> prob(end - begin, 0.f); |
|
std::transform(begin, end, prob.begin(), [](float x) { return std::exp(x); }); |
|
float sum = std::accumulate(prob.begin(), prob.end(), 0.0f); |
|
for (int i = 0; i < static_cast<int>(prob.size()); i++) |
|
prob[i] /= sum; |
|
return prob; |
|
} |
|
|
|
struct BeamElement { |
|
std::vector<int> sentence; //!< The sequence of chars that will be a result of the beam element |
|
|
|
float prob_blank; //!< The probability that the last char in CTC sequence |
|
//!< for the beam element is the special blank char |
|
|
|
float prob_not_blank; //!< The probability that the last char in CTC sequence |
|
//!< for the beam element is NOT the special blank char |
|
|
|
float prob() const { //!< The probability of the beam element. |
|
return prob_blank + prob_not_blank; |
|
} |
|
}; |
|
|
|
std::string CTCGreedyDecoder(const float *data, |
|
const std::size_t sz, |
|
const std::string &alphabet, |
|
const char pad_symbol, |
|
double *conf) { |
|
std::string res = ""; |
|
bool prev_pad = false; |
|
*conf = 1; |
|
|
|
const auto num_classes = alphabet.length(); |
|
for (auto it = data; it != (data+sz); it += num_classes) { |
|
int argmax = 0; |
|
float prob = 0.f; |
|
|
|
softmax_and_choose(it, it + num_classes, &argmax, &prob); |
|
(*conf) *= prob; |
|
|
|
auto symbol = alphabet[argmax]; |
|
if (symbol != pad_symbol) { |
|
if (res.empty() || prev_pad || (!res.empty() && symbol != res.back())) { |
|
prev_pad = false; |
|
res += symbol; |
|
} |
|
} else { |
|
prev_pad = true; |
|
} |
|
} |
|
return res; |
|
} |
|
|
|
std::string CTCBeamSearchDecoder(const float *data, |
|
const std::size_t sz, |
|
const std::string &alphabet, |
|
double *conf, |
|
int bandwidth) { |
|
const auto num_classes = alphabet.length(); |
|
|
|
std::vector<BeamElement> curr; |
|
std::vector<BeamElement> last; |
|
|
|
last.push_back(BeamElement{std::vector<int>(), 1.f, 0.f}); |
|
|
|
for (auto it = data; it != (data+sz); it += num_classes) { |
|
curr.clear(); |
|
|
|
std::vector<float> prob = softmax(it, it + num_classes); |
|
|
|
for(const auto& candidate: last) { |
|
float prob_not_blank = 0.f; |
|
const std::vector<int>& candidate_sentence = candidate.sentence; |
|
if (!candidate_sentence.empty()) { |
|
int n = candidate_sentence.back(); |
|
prob_not_blank = candidate.prob_not_blank * prob[n]; |
|
} |
|
float prob_blank = candidate.prob() * prob[num_classes - 1]; |
|
|
|
auto check_res = std::find_if(curr.begin(), |
|
curr.end(), |
|
[&candidate_sentence](const BeamElement& n) { |
|
return n.sentence == candidate_sentence; |
|
}); |
|
if (check_res == std::end(curr)) { |
|
curr.push_back(BeamElement{candidate.sentence, prob_blank, prob_not_blank}); |
|
} else { |
|
check_res->prob_not_blank += prob_not_blank; |
|
if (check_res->prob_blank != 0.f) { |
|
throw std::logic_error("Probability that the last char in CTC-sequence " |
|
"is the special blank char must be zero here"); |
|
} |
|
check_res->prob_blank = prob_blank; |
|
} |
|
|
|
for (int i = 0; i < static_cast<int>(num_classes) - 1; i++) { |
|
auto extend = candidate_sentence; |
|
extend.push_back(i); |
|
|
|
if (candidate_sentence.size() > 0 && candidate.sentence.back() == i) { |
|
prob_not_blank = prob[i] * candidate.prob_blank; |
|
} else { |
|
prob_not_blank = prob[i] * candidate.prob(); |
|
} |
|
|
|
auto check_res2 = std::find_if(curr.begin(), |
|
curr.end(), |
|
[&extend](const BeamElement &n) { |
|
return n.sentence == extend; |
|
}); |
|
if (check_res2 == std::end(curr)) { |
|
curr.push_back(BeamElement{extend, 0.f, prob_not_blank}); |
|
} else { |
|
check_res2->prob_not_blank += prob_not_blank; |
|
} |
|
} |
|
} |
|
|
|
sort(curr.begin(), curr.end(), [](const BeamElement &a, const BeamElement &b) -> bool { |
|
return a.prob() > b.prob(); |
|
}); |
|
|
|
last.clear(); |
|
int num_to_copy = std::min(bandwidth, static_cast<int>(curr.size())); |
|
for (int b = 0; b < num_to_copy; b++) { |
|
last.push_back(curr[b]); |
|
} |
|
} |
|
|
|
*conf = last[0].prob(); |
|
std::string res=""; |
|
for (const auto& idx: last[0].sentence) { |
|
res += alphabet[idx]; |
|
} |
|
|
|
return res; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
} // anonymous namespace |
|
|
|
namespace custom { |
|
namespace { |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Define networks for this sample |
|
using GMat2 = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(TextDetection, |
|
<GMat2(cv::GMat)>, |
|
"sample.custom.text_detect"); |
|
|
|
G_API_NET(TextRecognition, |
|
<cv::GMat(cv::GMat)>, |
|
"sample.custom.text_recogn"); |
|
|
|
// Define custom operations |
|
using GSize = cv::GOpaque<cv::Size>; |
|
using GRRects = cv::GArray<cv::RotatedRect>; |
|
G_API_OP(PostProcess, |
|
<GRRects(cv::GMat,cv::GMat,GSize,float,float)>, |
|
"sample.custom.text.post_proc") { |
|
static cv::GArrayDesc outMeta(const cv::GMatDesc &, |
|
const cv::GMatDesc &, |
|
const cv::GOpaqueDesc &, |
|
float, |
|
float) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
using GMats = cv::GArray<cv::GMat>; |
|
G_API_OP(CropLabels, |
|
<GMats(cv::GMat,GRRects,GSize)>, |
|
"sample.custom.text.crop") { |
|
static cv::GArrayDesc outMeta(const cv::GMatDesc &, |
|
const cv::GArrayDesc &, |
|
const cv::GOpaqueDesc &) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Implement custom operations |
|
GAPI_OCV_KERNEL(OCVPostProcess, PostProcess) { |
|
static void run(const cv::Mat &link, |
|
const cv::Mat &segm, |
|
const cv::Size &img_size, |
|
const float link_threshold, |
|
const float segm_threshold, |
|
std::vector<cv::RotatedRect> &out) { |
|
// NOTE: Taken from the OMZ text detection sample almost as-is |
|
const int kMinArea = 300; |
|
const int kMinHeight = 10; |
|
|
|
const float *link_data_pointer = link.ptr<float>(); |
|
std::vector<float> link_data(link_data_pointer, link_data_pointer + link.total()); |
|
link_data = transpose4d(link_data, dimsToShape(link.size), {0, 2, 3, 1}); |
|
softmax(link_data); |
|
link_data = sliceAndGetSecondChannel(link_data); |
|
std::vector<int> new_link_data_shape = { |
|
link.size[0], |
|
link.size[2], |
|
link.size[3], |
|
link.size[1]/2, |
|
}; |
|
|
|
const float *cls_data_pointer = segm.ptr<float>(); |
|
std::vector<float> cls_data(cls_data_pointer, cls_data_pointer + segm.total()); |
|
cls_data = transpose4d(cls_data, dimsToShape(segm.size), {0, 2, 3, 1}); |
|
softmax(cls_data); |
|
cls_data = sliceAndGetSecondChannel(cls_data); |
|
std::vector<int> new_cls_data_shape = { |
|
segm.size[0], |
|
segm.size[2], |
|
segm.size[3], |
|
segm.size[1]/2, |
|
}; |
|
|
|
out = maskToBoxes(decodeImageByJoin(cls_data, new_cls_data_shape, |
|
link_data, new_link_data_shape, |
|
segm_threshold, link_threshold), |
|
static_cast<float>(kMinArea), |
|
static_cast<float>(kMinHeight), |
|
img_size); |
|
} |
|
|
|
static std::vector<std::size_t> dimsToShape(const cv::MatSize &sz) { |
|
const int n_dims = sz.dims(); |
|
std::vector<std::size_t> result; |
|
result.reserve(n_dims); |
|
|
|
// cv::MatSize is not iterable... |
|
for (int i = 0; i < n_dims; i++) { |
|
result.emplace_back(static_cast<std::size_t>(sz[i])); |
|
} |
|
return result; |
|
} |
|
|
|
static void softmax(std::vector<float> &rdata) { |
|
// NOTE: Taken from the OMZ text detection sample almost as-is |
|
const size_t last_dim = 2; |
|
for (size_t i = 0 ; i < rdata.size(); i+=last_dim) { |
|
float m = std::max(rdata[i], rdata[i+1]); |
|
rdata[i] = std::exp(rdata[i] - m); |
|
rdata[i + 1] = std::exp(rdata[i + 1] - m); |
|
float s = rdata[i] + rdata[i + 1]; |
|
rdata[i] /= s; |
|
rdata[i + 1] /= s; |
|
} |
|
} |
|
|
|
static std::vector<float> transpose4d(const std::vector<float> &data, |
|
const std::vector<size_t> &shape, |
|
const std::vector<size_t> &axes) { |
|
// NOTE: Taken from the OMZ text detection sample almost as-is |
|
if (shape.size() != axes.size()) |
|
throw std::runtime_error("Shape and axes must have the same dimension."); |
|
|
|
for (size_t a : axes) { |
|
if (a >= shape.size()) |
|
throw std::runtime_error("Axis must be less than dimension of shape."); |
|
} |
|
size_t total_size = shape[0]*shape[1]*shape[2]*shape[3]; |
|
std::vector<size_t> steps { |
|
shape[axes[1]]*shape[axes[2]]*shape[axes[3]], |
|
shape[axes[2]]*shape[axes[3]], |
|
shape[axes[3]], |
|
1 |
|
}; |
|
|
|
size_t source_data_idx = 0; |
|
std::vector<float> new_data(total_size, 0); |
|
std::vector<size_t> ids(shape.size()); |
|
for (ids[0] = 0; ids[0] < shape[0]; ids[0]++) { |
|
for (ids[1] = 0; ids[1] < shape[1]; ids[1]++) { |
|
for (ids[2] = 0; ids[2] < shape[2]; ids[2]++) { |
|
for (ids[3]= 0; ids[3] < shape[3]; ids[3]++) { |
|
size_t new_data_idx = ids[axes[0]]*steps[0] + ids[axes[1]]*steps[1] + |
|
ids[axes[2]]*steps[2] + ids[axes[3]]*steps[3]; |
|
new_data[new_data_idx] = data[source_data_idx++]; |
|
} |
|
} |
|
} |
|
} |
|
return new_data; |
|
} |
|
|
|
static std::vector<float> sliceAndGetSecondChannel(const std::vector<float> &data) { |
|
// NOTE: Taken from the OMZ text detection sample almost as-is |
|
std::vector<float> new_data(data.size() / 2, 0); |
|
for (size_t i = 0; i < data.size() / 2; i++) { |
|
new_data[i] = data[2 * i + 1]; |
|
} |
|
return new_data; |
|
} |
|
|
|
static void join(const int p1, |
|
const int p2, |
|
std::unordered_map<int, int> &group_mask) { |
|
// NOTE: Taken from the OMZ text detection sample almost as-is |
|
const int root1 = findRoot(p1, group_mask); |
|
const int root2 = findRoot(p2, group_mask); |
|
if (root1 != root2) { |
|
group_mask[root1] = root2; |
|
} |
|
} |
|
|
|
static cv::Mat decodeImageByJoin(const std::vector<float> &cls_data, |
|
const std::vector<int> &cls_data_shape, |
|
const std::vector<float> &link_data, |
|
const std::vector<int> &link_data_shape, |
|
float cls_conf_threshold, |
|
float link_conf_threshold) { |
|
// NOTE: Taken from the OMZ text detection sample almost as-is |
|
const int h = cls_data_shape[1]; |
|
const int w = cls_data_shape[2]; |
|
|
|
std::vector<uchar> pixel_mask(h * w, 0); |
|
std::unordered_map<int, int> group_mask; |
|
std::vector<cv::Point> points; |
|
for (int i = 0; i < static_cast<int>(pixel_mask.size()); i++) { |
|
pixel_mask[i] = cls_data[i] >= cls_conf_threshold; |
|
if (pixel_mask[i]) { |
|
points.emplace_back(i % w, i / w); |
|
group_mask[i] = -1; |
|
} |
|
} |
|
std::vector<uchar> link_mask(link_data.size(), 0); |
|
for (size_t i = 0; i < link_mask.size(); i++) { |
|
link_mask[i] = link_data[i] >= link_conf_threshold; |
|
} |
|
size_t neighbours = size_t(link_data_shape[3]); |
|
for (const auto &point : points) { |
|
size_t neighbour = 0; |
|
for (int ny = point.y - 1; ny <= point.y + 1; ny++) { |
|
for (int nx = point.x - 1; nx <= point.x + 1; nx++) { |
|
if (nx == point.x && ny == point.y) |
|
continue; |
|
if (nx >= 0 && nx < w && ny >= 0 && ny < h) { |
|
uchar pixel_value = pixel_mask[size_t(ny) * size_t(w) + size_t(nx)]; |
|
uchar link_value = link_mask[(size_t(point.y) * size_t(w) + size_t(point.x)) |
|
*neighbours + neighbour]; |
|
if (pixel_value && link_value) { |
|
join(point.x + point.y * w, nx + ny * w, group_mask); |
|
} |
|
} |
|
neighbour++; |
|
} |
|
} |
|
} |
|
return get_all(points, w, h, group_mask); |
|
} |
|
|
|
static cv::Mat get_all(const std::vector<cv::Point> &points, |
|
const int w, |
|
const int h, |
|
std::unordered_map<int, int> &group_mask) { |
|
// NOTE: Taken from the OMZ text detection sample almost as-is |
|
std::unordered_map<int, int> root_map; |
|
cv::Mat mask(h, w, CV_32S, cv::Scalar(0)); |
|
for (const auto &point : points) { |
|
int point_root = findRoot(point.x + point.y * w, group_mask); |
|
if (root_map.find(point_root) == root_map.end()) { |
|
root_map.emplace(point_root, static_cast<int>(root_map.size() + 1)); |
|
} |
|
mask.at<int>(point.x + point.y * w) = root_map[point_root]; |
|
} |
|
return mask; |
|
} |
|
|
|
static int findRoot(const int point, |
|
std::unordered_map<int, int> &group_mask) { |
|
// NOTE: Taken from the OMZ text detection sample almost as-is |
|
int root = point; |
|
bool update_parent = false; |
|
while (group_mask.at(root) != -1) { |
|
root = group_mask.at(root); |
|
update_parent = true; |
|
} |
|
if (update_parent) { |
|
group_mask[point] = root; |
|
} |
|
return root; |
|
} |
|
|
|
static std::vector<cv::RotatedRect> maskToBoxes(const cv::Mat &mask, |
|
const float min_area, |
|
const float min_height, |
|
const cv::Size &image_size) { |
|
// NOTE: Taken from the OMZ text detection sample almost as-is |
|
std::vector<cv::RotatedRect> bboxes; |
|
double min_val = 0.; |
|
double max_val = 0.; |
|
cv::minMaxLoc(mask, &min_val, &max_val); |
|
int max_bbox_idx = static_cast<int>(max_val); |
|
cv::Mat resized_mask; |
|
cv::resize(mask, resized_mask, image_size, 0, 0, cv::INTER_NEAREST); |
|
|
|
for (int i = 1; i <= max_bbox_idx; i++) { |
|
cv::Mat bbox_mask = resized_mask == i; |
|
std::vector<std::vector<cv::Point>> contours; |
|
|
|
cv::findContours(bbox_mask, contours, cv::RETR_CCOMP, cv::CHAIN_APPROX_SIMPLE); |
|
if (contours.empty()) |
|
continue; |
|
cv::RotatedRect r = cv::minAreaRect(contours[0]); |
|
if (std::min(r.size.width, r.size.height) < min_height) |
|
continue; |
|
if (r.size.area() < min_area) |
|
continue; |
|
bboxes.emplace_back(r); |
|
} |
|
return bboxes; |
|
} |
|
}; // GAPI_OCV_KERNEL(PostProcess) |
|
|
|
GAPI_OCV_KERNEL(OCVCropLabels, CropLabels) { |
|
static void run(const cv::Mat &image, |
|
const std::vector<cv::RotatedRect> &detections, |
|
const cv::Size &outSize, |
|
std::vector<cv::Mat> &out) { |
|
out.clear(); |
|
out.reserve(detections.size()); |
|
cv::Mat crop(outSize, CV_8UC3, cv::Scalar(0)); |
|
cv::Mat gray(outSize, CV_8UC1, cv::Scalar(0)); |
|
std::vector<int> blob_shape = {1,1,outSize.height,outSize.width}; |
|
|
|
for (auto &&rr : detections) { |
|
std::vector<cv::Point2f> points(4); |
|
rr.points(points.data()); |
|
|
|
const auto top_left_point_idx = topLeftPointIdx(points); |
|
cv::Point2f point0 = points[static_cast<size_t>(top_left_point_idx)]; |
|
cv::Point2f point1 = points[(top_left_point_idx + 1) % 4]; |
|
cv::Point2f point2 = points[(top_left_point_idx + 2) % 4]; |
|
|
|
std::vector<cv::Point2f> from{point0, point1, point2}; |
|
std::vector<cv::Point2f> to{ |
|
cv::Point2f(0.0f, 0.0f), |
|
cv::Point2f(static_cast<float>(outSize.width-1), 0.0f), |
|
cv::Point2f(static_cast<float>(outSize.width-1), |
|
static_cast<float>(outSize.height-1)) |
|
}; |
|
cv::Mat M = cv::getAffineTransform(from, to); |
|
cv::warpAffine(image, crop, M, outSize); |
|
cv::cvtColor(crop, gray, cv::COLOR_BGR2GRAY); |
|
|
|
cv::Mat blob; |
|
gray.convertTo(blob, CV_32F); |
|
out.push_back(blob.reshape(1, blob_shape)); // pass as 1,1,H,W instead of H,W |
|
} |
|
} |
|
|
|
static int topLeftPointIdx(const std::vector<cv::Point2f> &points) { |
|
// NOTE: Taken from the OMZ text detection sample almost as-is |
|
cv::Point2f most_left(std::numeric_limits<float>::max(), |
|
std::numeric_limits<float>::max()); |
|
cv::Point2f almost_most_left(std::numeric_limits<float>::max(), |
|
std::numeric_limits<float>::max()); |
|
int most_left_idx = -1; |
|
int almost_most_left_idx = -1; |
|
|
|
for (size_t i = 0; i < points.size() ; i++) { |
|
if (most_left.x > points[i].x) { |
|
if (most_left.x < std::numeric_limits<float>::max()) { |
|
almost_most_left = most_left; |
|
almost_most_left_idx = most_left_idx; |
|
} |
|
most_left = points[i]; |
|
most_left_idx = static_cast<int>(i); |
|
} |
|
if (almost_most_left.x > points[i].x && points[i] != most_left) { |
|
almost_most_left = points[i]; |
|
almost_most_left_idx = static_cast<int>(i); |
|
} |
|
} |
|
|
|
if (almost_most_left.y < most_left.y) { |
|
most_left = almost_most_left; |
|
most_left_idx = almost_most_left_idx; |
|
} |
|
return most_left_idx; |
|
} |
|
|
|
}; // GAPI_OCV_KERNEL(CropLabels) |
|
|
|
} // anonymous namespace |
|
} // namespace custom |
|
|
|
namespace vis { |
|
namespace { |
|
|
|
void drawRotatedRect(cv::Mat &m, const cv::RotatedRect &rc) { |
|
std::vector<cv::Point2f> tmp_points(5); |
|
rc.points(tmp_points.data()); |
|
tmp_points[4] = tmp_points[0]; |
|
auto prev = tmp_points.begin(), it = prev+1; |
|
for (; it != tmp_points.end(); ++it) { |
|
cv::line(m, *prev, *it, cv::Scalar(50, 205, 50), 2); |
|
prev = it; |
|
} |
|
} |
|
|
|
void drawText(cv::Mat &m, const cv::RotatedRect &rc, const std::string &str) { |
|
const int fface = cv::FONT_HERSHEY_SIMPLEX; |
|
const double scale = 0.7; |
|
const int thick = 1; |
|
int base = 0; |
|
const auto text_size = cv::getTextSize(str, fface, scale, thick, &base); |
|
|
|
std::vector<cv::Point2f> tmp_points(4); |
|
rc.points(tmp_points.data()); |
|
const auto tl_point_idx = custom::OCVCropLabels::topLeftPointIdx(tmp_points); |
|
cv::Point text_pos = tmp_points[tl_point_idx]; |
|
text_pos.x = std::max(0, text_pos.x); |
|
text_pos.y = std::max(text_size.height, text_pos.y); |
|
|
|
cv::rectangle(m, |
|
text_pos + cv::Point{0, base}, |
|
text_pos + cv::Point{text_size.width, -text_size.height}, |
|
CV_RGB(50, 205, 50), |
|
cv::FILLED); |
|
const auto white = CV_RGB(255, 255, 255); |
|
cv::putText(m, str, text_pos, fface, scale, white, thick, 8); |
|
} |
|
|
|
} // anonymous namespace |
|
} // namespace vis |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
cv::CommandLineParser cmd(argc, argv, keys); |
|
cmd.about(about); |
|
if (cmd.has("help")) { |
|
cmd.printMessage(); |
|
return 0; |
|
} |
|
const auto input_file_name = cmd.get<std::string>("input"); |
|
const auto tdet_model_path = cmd.get<std::string>("tdm"); |
|
const auto trec_model_path = cmd.get<std::string>("trm"); |
|
const auto tdet_target_dev = cmd.get<std::string>("tdd"); |
|
const auto trec_target_dev = cmd.get<std::string>("trd"); |
|
const auto ctc_beam_dec_bw = cmd.get<int>("bw"); |
|
const auto dec_conf_thresh = cmd.get<double>("thr"); |
|
|
|
const auto pad_symbol = '#'; |
|
const auto symbol_set = cmd.get<std::string>("sset") + pad_symbol; |
|
|
|
cv::GMat in; |
|
cv::GOpaque<cv::Size> in_rec_sz; |
|
cv::GMat link, segm; |
|
std::tie(link, segm) = cv::gapi::infer<custom::TextDetection>(in); |
|
cv::GOpaque<cv::Size> size = cv::gapi::streaming::size(in); |
|
cv::GArray<cv::RotatedRect> rrs = custom::PostProcess::on(link, segm, size, 0.8f, 0.8f); |
|
cv::GArray<cv::GMat> labels = custom::CropLabels::on(in, rrs, in_rec_sz); |
|
cv::GArray<cv::GMat> text = cv::gapi::infer2<custom::TextRecognition>(in, labels); |
|
|
|
cv::GComputation graph(cv::GIn(in, in_rec_sz), |
|
cv::GOut(cv::gapi::copy(in), rrs, text)); |
|
|
|
// Text detection network |
|
auto tdet_net = cv::gapi::ie::Params<custom::TextDetection> { |
|
tdet_model_path, // path to topology IR |
|
weights_path(tdet_model_path), // path to weights |
|
tdet_target_dev, // device specifier |
|
}.cfgOutputLayers({"model/link_logits_/add", "model/segm_logits/add"}); |
|
|
|
auto trec_net = cv::gapi::ie::Params<custom::TextRecognition> { |
|
trec_model_path, // path to topology IR |
|
weights_path(trec_model_path), // path to weights |
|
trec_target_dev, // device specifier |
|
}; |
|
auto networks = cv::gapi::networks(tdet_net, trec_net); |
|
|
|
auto kernels = cv::gapi::kernels< custom::OCVPostProcess |
|
, custom::OCVCropLabels |
|
>(); |
|
auto pipeline = graph.compileStreaming(cv::compile_args(kernels, networks)); |
|
|
|
std::cout << "Reading " << input_file_name << std::endl; |
|
|
|
// Input stream |
|
auto in_src = cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name); |
|
|
|
// Text recognition input size (also an input parameter to the graph) |
|
auto in_rsz = cv::Size{ 120, 32 }; |
|
|
|
// Set the pipeline source & start the pipeline |
|
pipeline.setSource(cv::gin(in_src, in_rsz)); |
|
pipeline.start(); |
|
|
|
// Declare the output data & run the processing loop |
|
cv::TickMeter tm; |
|
cv::Mat image; |
|
std::vector<cv::RotatedRect> out_rcs; |
|
std::vector<cv::Mat> out_text; |
|
|
|
tm.start(); |
|
int frames = 0; |
|
while (pipeline.pull(cv::gout(image, out_rcs, out_text))) { |
|
frames++; |
|
|
|
CV_Assert(out_rcs.size() == out_text.size()); |
|
const auto num_labels = out_rcs.size(); |
|
|
|
std::vector<cv::Point2f> tmp_points(4); |
|
for (std::size_t l = 0; l < num_labels; l++) { |
|
// Decode the recognized text in the rectangle |
|
const auto &blob = out_text[l]; |
|
const float *data = blob.ptr<float>(); |
|
const auto sz = blob.total(); |
|
double conf = 1.0; |
|
const std::string res = ctc_beam_dec_bw == 0 |
|
? CTCGreedyDecoder(data, sz, symbol_set, pad_symbol, &conf) |
|
: CTCBeamSearchDecoder(data, sz, symbol_set, &conf, ctc_beam_dec_bw); |
|
|
|
// Draw a bounding box for this rotated rectangle |
|
const auto &rc = out_rcs[l]; |
|
vis::drawRotatedRect(image, rc); |
|
|
|
// Draw text, if decoded |
|
if (conf >= dec_conf_thresh) { |
|
vis::drawText(image, rc, res); |
|
} |
|
} |
|
tm.stop(); |
|
cv::imshow("Out", image); |
|
cv::waitKey(1); |
|
tm.start(); |
|
} |
|
tm.stop(); |
|
std::cout << "Processed " << frames << " frames" |
|
<< " (" << frames / tm.getTimeSec() << " FPS)" << std::endl; |
|
return 0; |
|
}
|
|
|