Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
553 lines
19 KiB
553 lines
19 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
static float CalcAverageMask(CvBlob* pBlob, IplImage* pImgFG ) |
|
{ /* Calculate sum of mask: */ |
|
double Area, Aver = 0; |
|
CvRect r; |
|
CvMat mat; |
|
|
|
if(pImgFG==NULL) return 0; |
|
|
|
r.x = cvRound(pBlob->x - pBlob->w*0.5); |
|
r.y = cvRound(pBlob->y - pBlob->h*0.5); |
|
r.width = cvRound(pBlob->w); |
|
r.height = cvRound(pBlob->h); |
|
Area = r.width*r.height; |
|
if(r.x<0){r.width += r.x;r.x = 0;} |
|
if(r.y<0){r.height += r.y;r.y = 0;} |
|
if((r.x+r.width)>=pImgFG->width){r.width=pImgFG->width-r.x-1;} |
|
if((r.y+r.height)>=pImgFG->height){r.height=pImgFG->height-r.y-1;} |
|
|
|
if(r.width>0 && r.height>0) |
|
{ |
|
double Sum = cvSum(cvGetSubRect(pImgFG,&mat,r)).val[0]/255.0; |
|
assert(Area>0); |
|
Aver = Sum/Area; |
|
} |
|
return (float)Aver; |
|
} /* Calculate sum of mask. */ |
|
|
|
|
|
/*============== BLOB TRACKERCC CLASS DECLARATION =============== */ |
|
typedef struct DefBlobTracker |
|
{ |
|
CvBlob blob; |
|
CvBlobTrackPredictor* pPredictor; |
|
CvBlob BlobPredict; |
|
int Collision; |
|
CvBlobSeq* pBlobHyp; |
|
float AverFG; |
|
} DefBlobTracker; |
|
|
|
void cvFindBlobsByCCClasters(IplImage* pFG, CvBlobSeq* pBlobs, CvMemStorage* storage); |
|
|
|
class CvBlobTrackerCC : public CvBlobTracker |
|
{ |
|
private: |
|
float m_AlphaSize; |
|
float m_AlphaPos; |
|
float m_Alpha; |
|
int m_Collision; |
|
int m_ConfidenceType; |
|
const char* m_ConfidenceTypeStr; |
|
CvBlobSeq m_BlobList; |
|
CvBlobSeq m_BlobListNew; |
|
// int m_LastID; |
|
CvMemStorage* m_pMem; |
|
int m_ClearHyp; |
|
IplImage* m_pImg; |
|
IplImage* m_pImgFG; |
|
public: |
|
CvBlobTrackerCC():m_BlobList(sizeof(DefBlobTracker)) |
|
{ |
|
// m_LastID = 0; |
|
m_ClearHyp = 0; |
|
m_pMem = cvCreateMemStorage(); |
|
m_Collision = 1; /* if 1 then collistion will be detected and processed */ |
|
AddParam("Collision",&m_Collision); |
|
CommentParam("Collision", "If 1 then collision cases are processed in special way"); |
|
|
|
m_AlphaSize = 0.02f; |
|
AddParam("AlphaSize",&m_AlphaSize); |
|
CommentParam("AlphaSize", "Size update speed (0..1)"); |
|
|
|
m_AlphaPos = 1.0f; |
|
AddParam("AlphaPos",&m_AlphaPos); |
|
CommentParam("AlphaPos", "Position update speed (0..1)"); |
|
|
|
m_Alpha = 0.001f; |
|
AddParam("Alpha", &m_Alpha); |
|
CommentParam("Alpha","Coefficient for model histogram updating (0 - hist is not updated)"); |
|
|
|
m_ConfidenceType=0; |
|
m_ConfidenceTypeStr = "NearestBlob"; |
|
AddParam("ConfidenceType", &m_ConfidenceTypeStr); |
|
CommentParam("ConfidenceType","Type of calculated Confidence (NearestBlob, AverFG, BC)"); |
|
|
|
SetModuleName("CC"); |
|
}; |
|
|
|
~CvBlobTrackerCC() |
|
{ |
|
if(m_pMem)cvReleaseMemStorage(&m_pMem); |
|
}; |
|
|
|
/* Blob functions: */ |
|
virtual int GetBlobNum() {return m_BlobList.GetBlobNum();}; |
|
virtual CvBlob* GetBlob(int BlobIndex){return m_BlobList.GetBlob(BlobIndex);}; |
|
virtual void SetBlob(int BlobIndex, CvBlob* pBlob) |
|
{ |
|
CvBlob* pB = m_BlobList.GetBlob(BlobIndex); |
|
if(pB) pB[0] = pBlob[0]; |
|
}; |
|
|
|
virtual CvBlob* GetBlobByID(int BlobID){return m_BlobList.GetBlobByID(BlobID);}; |
|
virtual void DelBlob(int BlobIndex) |
|
{ |
|
DefBlobTracker* pBT = (DefBlobTracker*)m_BlobList.GetBlob(BlobIndex); |
|
if(pBT==NULL) return; |
|
if(pBT->pPredictor) |
|
{ |
|
pBT->pPredictor->Release(); |
|
} |
|
else |
|
{ |
|
printf("WARNING!!! Invalid Predictor in CC tracker"); |
|
} |
|
delete pBT->pBlobHyp; |
|
m_BlobList.DelBlob(BlobIndex); |
|
}; |
|
#if 0 |
|
virtual void DelBlobByID(int BlobID) |
|
{ |
|
DefBlobTracker* pBT = (DefBlobTracker*)m_BlobList.GetBlobByID(BlobID); |
|
pBT->pPredictor->Release(); |
|
delete pBT->pBlobHyp; |
|
m_BlobList.DelBlobByID(BlobID); |
|
}; |
|
#endif |
|
virtual void Release(){delete this;}; |
|
|
|
/* Add new blob to track it and assign to this blob personal ID */ |
|
/* pBlob - pinter to structure with blob parameters (ID is ignored)*/ |
|
/* pImg - current image */ |
|
/* pImgFG - current foreground mask */ |
|
/* return pointer to new added blob */ |
|
virtual CvBlob* AddBlob(CvBlob* pB, IplImage* /*pImg*/, IplImage* pImgFG = NULL ) |
|
{ |
|
assert(pImgFG); /* This tracker uses only foreground mask. */ |
|
DefBlobTracker NewB; |
|
NewB.blob = pB[0]; |
|
// CV_BLOB_ID(&NewB) = m_LastID; |
|
NewB.pBlobHyp = new CvBlobSeq; |
|
NewB.pPredictor = cvCreateModuleBlobTrackPredictKalman(); /* Module for position prediction. */ |
|
NewB.pPredictor->Update(pB); |
|
NewB.AverFG = pImgFG?CalcAverageMask(pB,pImgFG):0; |
|
m_BlobList.AddBlob((CvBlob*)&NewB); |
|
return m_BlobList.GetBlob(m_BlobList.GetBlobNum()-1); |
|
}; |
|
|
|
virtual void Process(IplImage* pImg, IplImage* pImgFG = NULL) |
|
{ |
|
CvSeq* cnts; |
|
CvSeq* cnt; |
|
int i; |
|
|
|
m_pImg = pImg; |
|
m_pImgFG = pImgFG; |
|
|
|
if(m_BlobList.GetBlobNum() <= 0 ) return; |
|
|
|
/* Clear bloblist for new blobs: */ |
|
m_BlobListNew.Clear(); |
|
|
|
assert(m_pMem); |
|
cvClearMemStorage(m_pMem); |
|
assert(pImgFG); |
|
|
|
|
|
/* Find CC: */ |
|
#if 0 |
|
{ // By contour clustering: |
|
cvFindBlobsByCCClasters(pImgFG, &m_BlobListNew, m_pMem); |
|
} |
|
#else |
|
{ /* One contour - one blob: */ |
|
IplImage* pBin = cvCloneImage(pImgFG); |
|
assert(pBin); |
|
cvThreshold(pBin,pBin,128,255,CV_THRESH_BINARY); |
|
cvFindContours(pBin, m_pMem, &cnts, sizeof(CvContour), CV_RETR_EXTERNAL); |
|
|
|
/* Process each contour: */ |
|
for(cnt = cnts; cnt; cnt=cnt->h_next) |
|
{ |
|
CvBlob NewBlob; |
|
|
|
/* Image moments: */ |
|
double M00,X,Y,XX,YY; |
|
CvMoments m; |
|
CvRect r = ((CvContour*)cnt)->rect; |
|
CvMat mat; |
|
if(r.height < 3 || r.width < 3) continue; |
|
cvMoments( cvGetSubRect(pImgFG,&mat,r), &m, 0 ); |
|
M00 = cvGetSpatialMoment( &m, 0, 0 ); |
|
if(M00 <= 0 ) continue; |
|
X = cvGetSpatialMoment( &m, 1, 0 )/M00; |
|
Y = cvGetSpatialMoment( &m, 0, 1 )/M00; |
|
XX = (cvGetSpatialMoment( &m, 2, 0 )/M00) - X*X; |
|
YY = (cvGetSpatialMoment( &m, 0, 2 )/M00) - Y*Y; |
|
NewBlob = cvBlob(r.x+(float)X,r.y+(float)Y,(float)(4*sqrt(XX)),(float)(4*sqrt(YY))); |
|
m_BlobListNew.AddBlob(&NewBlob); |
|
} /* Next contour. */ |
|
|
|
cvReleaseImage(&pBin); |
|
} |
|
#endif |
|
for(i=m_BlobList.GetBlobNum(); i>0; --i) |
|
{ /* Predict new blob position: */ |
|
CvBlob* pB=NULL; |
|
DefBlobTracker* pBT = (DefBlobTracker*)m_BlobList.GetBlob(i-1); |
|
|
|
/* Update predictor by previous value of blob: */ |
|
pBT->pPredictor->Update(&(pBT->blob)); |
|
|
|
/* Predict current position: */ |
|
pB = pBT->pPredictor->Predict(); |
|
|
|
if(pB) |
|
{ |
|
pBT->BlobPredict = pB[0]; |
|
} |
|
else |
|
{ |
|
pBT->BlobPredict = pBT->blob; |
|
} |
|
} /* Predict new blob position. */ |
|
|
|
if(m_Collision) |
|
for(i=m_BlobList.GetBlobNum(); i>0; --i) |
|
{ /* Predict collision. */ |
|
int Collision = 0; |
|
int j; |
|
DefBlobTracker* pF = (DefBlobTracker*)m_BlobList.GetBlob(i-1); |
|
|
|
for(j=m_BlobList.GetBlobNum(); j>0; --j) |
|
{ /* Predict collision: */ |
|
CvBlob* pB1; |
|
CvBlob* pB2; |
|
DefBlobTracker* pF2 = (DefBlobTracker*)m_BlobList.GetBlob(j-1); |
|
if(i==j) continue; |
|
pB1 = &pF->BlobPredict; |
|
pB2 = &pF2->BlobPredict; |
|
|
|
if( fabs(pB1->x-pB2->x)<0.6*(pB1->w+pB2->w) && |
|
fabs(pB1->y-pB2->y)<0.6*(pB1->h+pB2->h) ) Collision = 1; |
|
|
|
pB1 = &pF->blob; |
|
pB2 = &pF2->blob; |
|
|
|
if( fabs(pB1->x-pB2->x)<0.6*(pB1->w+pB2->w) && |
|
fabs(pB1->y-pB2->y)<0.6*(pB1->h+pB2->h) ) Collision = 1; |
|
|
|
if(Collision) break; |
|
|
|
} /* Check next blob to cross current. */ |
|
|
|
pF->Collision = Collision; |
|
|
|
} /* Predict collision. */ |
|
|
|
for(i=m_BlobList.GetBlobNum(); i>0; --i) |
|
{ /* Find a neighbour on current frame |
|
* for each blob from previous frame: |
|
*/ |
|
CvBlob* pB = m_BlobList.GetBlob(i-1); |
|
DefBlobTracker* pBT = (DefBlobTracker*)pB; |
|
//int BlobID = CV_BLOB_ID(pB); |
|
//CvBlob* pBBest = NULL; |
|
//double DistBest = -1; |
|
//int j; |
|
|
|
if(pBT->pBlobHyp->GetBlobNum()>0) |
|
{ /* Track all hypotheses: */ |
|
int h,hN = pBT->pBlobHyp->GetBlobNum(); |
|
for(h=0; h<hN; ++h) |
|
{ |
|
int j, jN = m_BlobListNew.GetBlobNum(); |
|
CvBlob* pB = pBT->pBlobHyp->GetBlob(h); |
|
int BlobID = CV_BLOB_ID(pB); |
|
CvBlob* pBBest = NULL; |
|
double DistBest = -1; |
|
for(j=0; j<jN; j++) |
|
{ /* Find best CC: */ |
|
double Dist = -1; |
|
CvBlob* pBNew = m_BlobListNew.GetBlob(j); |
|
double dx = fabs(CV_BLOB_X(pB)-CV_BLOB_X(pBNew)); |
|
double dy = fabs(CV_BLOB_Y(pB)-CV_BLOB_Y(pBNew)); |
|
if(dx > 2*CV_BLOB_WX(pB) || dy > 2*CV_BLOB_WY(pB)) continue; |
|
|
|
Dist = sqrt(dx*dx+dy*dy); |
|
if(Dist < DistBest || pBBest == NULL) |
|
{ |
|
DistBest = Dist; |
|
pBBest = pBNew; |
|
} |
|
} /* Find best CC. */ |
|
|
|
if(pBBest) |
|
{ |
|
pB[0] = pBBest[0]; |
|
CV_BLOB_ID(pB) = BlobID; |
|
} |
|
else |
|
{ /* Delete this hypothesis. */ |
|
pBT->pBlobHyp->DelBlob(h); |
|
h--; |
|
hN--; |
|
} |
|
} /* Next hypothysis. */ |
|
} /* Track all hypotheses. */ |
|
} /* Track next blob. */ |
|
|
|
m_ClearHyp = 1; |
|
|
|
} /* Process. */ |
|
|
|
virtual void ProcessBlob(int BlobIndex, CvBlob* pBlob, IplImage* /*pImg*/, IplImage* /*pImgFG*/ = NULL) |
|
{ |
|
int ID = pBlob->ID; |
|
CvBlob* pB = m_BlobList.GetBlob(BlobIndex); |
|
DefBlobTracker* pBT = (DefBlobTracker*)pB; |
|
//CvBlob* pBBest = NULL; |
|
//double DistBest = -1; |
|
int BlobID; |
|
|
|
if(pB==NULL) return; |
|
|
|
BlobID = pB->ID; |
|
|
|
if(m_Collision && pBT->Collision) |
|
{ /* Tracking in collision: */ |
|
pB[0]=pBT->BlobPredict; |
|
CV_BLOB_ID(pB)=BlobID; |
|
} /* Tracking in collision. */ |
|
else |
|
{ /* Non-collision tracking: */ |
|
CvBlob* pBBest = GetNearestBlob(pB); |
|
if(pBBest) |
|
{ |
|
float w = pBlob->w*(1-m_AlphaSize)+m_AlphaSize*pBBest->w; |
|
float h = pBlob->h*(1-m_AlphaSize)+m_AlphaSize*pBBest->h; |
|
float x = pBlob->x*(1-m_AlphaPos)+m_AlphaPos*pBBest->x; |
|
float y = pBlob->y*(1-m_AlphaPos)+m_AlphaPos*pBBest->y; |
|
pB->w = w; |
|
pB->h = h; |
|
pB->x = x; |
|
pB->y = y; |
|
CV_BLOB_ID(pB) = BlobID; |
|
} |
|
} /* Non-collision tracking. */ |
|
|
|
pBlob[0] = pB[0]; |
|
pBlob->ID = ID; |
|
}; |
|
|
|
virtual double GetConfidence(int BlobIndex, CvBlob* pBlob, IplImage* /*pImg*/, IplImage* pImgFG = NULL) |
|
{ |
|
/* Define coefficients in exp by exp(-XT*K)=VT: */ |
|
static double _KS = -log(0.1)/pow(0.5,2); /* XT = 1, VT = 0.1 - when size is Larger in 2 times Confidence is smoller in 10 times */ |
|
static double _KP = -log(0.1)/pow(m_pImg->width*0.02,2); /* XT = 0.02*ImgWidth, VT = 0.1*/ |
|
DefBlobTracker* pBT = (DefBlobTracker*)m_BlobList.GetBlob(BlobIndex); |
|
float dx,dy,dw,dh; |
|
float dp2,ds2; |
|
double W = 1; |
|
CvBlob* pBC = GetNearestBlob(pBlob); |
|
if(pBC == NULL ) return 0; |
|
|
|
dx = pBC->x-pBlob->x; |
|
dy = pBC->y-pBlob->y; |
|
dw = (pBC->w-pBlob->w)/pBC->w; |
|
dh = (pBC->h-pBlob->h)/pBC->h; |
|
|
|
dp2 = dx*dx+dy*dy; |
|
ds2 = dw*dw+dh*dh; |
|
|
|
if(!pBT->Collision) |
|
{ /* Confidence for size by nearest blob: */ |
|
W*=exp(-_KS*ds2); |
|
} |
|
|
|
if(m_ConfidenceType==0 && !pBT->Collision) |
|
{ /* Confidence by nearest blob: */ |
|
W*=exp(-_KP*dp2); |
|
} |
|
|
|
if(m_ConfidenceType==1 && pBT->AverFG>0) |
|
{ /* Calculate sum of mask: */ |
|
float Aver = CalcAverageMask(pBlob, pImgFG ); |
|
if(Aver < pBT->AverFG) |
|
{ |
|
float diff = 1+0.9f*(Aver-pBT->AverFG)/pBT->AverFG; |
|
if(diff < 0.1f) diff = 0.1f; |
|
W *= diff; |
|
} |
|
} /* Calculate sum of mask. */ |
|
|
|
if(m_ConfidenceType==2) |
|
{ /* Calculate BCoeff: */ |
|
float S = 0.2f; |
|
float Aver = CalcAverageMask(pBlob, pImgFG ); |
|
double B = sqrt(Aver*pBT->AverFG)+sqrt((1-Aver)*(1-pBT->AverFG)); |
|
|
|
W *= exp((B-1)/(2*S)); |
|
} /* Calculate sum of mask. */ |
|
|
|
return W; |
|
}; |
|
|
|
virtual void UpdateBlob(int BlobIndex, CvBlob* /*pBlob*/, IplImage* /*pImg*/, IplImage* pImgFG = NULL) |
|
{ |
|
DefBlobTracker* pBT = (DefBlobTracker*)m_BlobList.GetBlob(BlobIndex); |
|
|
|
if(pImgFG==NULL || pBT==NULL) return; |
|
|
|
if(!pBT->Collision) |
|
{ |
|
//pBT->AverFG = pBT->AverFG * (1-m_Alpha) + m_Alpha * CalcAverageMask(pBlob,pImgFG); |
|
} |
|
}; |
|
|
|
virtual void ParamUpdate() |
|
{ |
|
const char* pCT[3] = {"NearestBlob","AverFG","BC"}; |
|
int i; |
|
|
|
CvBlobTracker::ParamUpdate(); |
|
|
|
for(i=0; i<3; ++i) |
|
{ |
|
if(cv_stricmp(m_ConfidenceTypeStr,pCT[i])==0) |
|
{ |
|
m_ConfidenceType = i; |
|
} |
|
} |
|
SetParamStr("ConfidenceType",pCT[m_ConfidenceType]); |
|
} |
|
|
|
/* =============== MULTI HYPOTHESIS INTERFACE ================== */ |
|
/* Return number of position hypotheses of currently tracked blob: */ |
|
virtual int GetBlobHypNum(int BlobIdx) |
|
{ |
|
DefBlobTracker* pBT = (DefBlobTracker*)m_BlobList.GetBlob(BlobIdx); |
|
assert(pBT->pBlobHyp); |
|
return pBT->pBlobHyp->GetBlobNum(); |
|
}; /* CvBlobtrackerList::GetBlobHypNum() */ |
|
|
|
/* Return pointer to specified blob hypothesis by index blob: */ |
|
virtual CvBlob* GetBlobHyp(int BlobIndex, int hypothesis) |
|
{ |
|
DefBlobTracker* pBT = (DefBlobTracker*)m_BlobList.GetBlob(BlobIndex); |
|
assert(pBT->pBlobHyp); |
|
return pBT->pBlobHyp->GetBlob(hypothesis); |
|
}; /* CvBlobtrackerList::GetBlobHyp() */ |
|
|
|
/* Set new parameters for specified (by index) blob hypothesis |
|
* (can be called several times for each hypothesis): |
|
*/ |
|
virtual void SetBlobHyp(int BlobIndex, CvBlob* pBlob) |
|
{ |
|
if(m_ClearHyp) |
|
{ /* Clear all hypotheses: */ |
|
int b, bN = m_BlobList.GetBlobNum(); |
|
for(b=0; b<bN; ++b) |
|
{ |
|
DefBlobTracker* pBT = (DefBlobTracker*)m_BlobList.GetBlob(b); |
|
assert(pBT->pBlobHyp); |
|
pBT->pBlobHyp->Clear(); |
|
} |
|
m_ClearHyp = 0; |
|
} |
|
{ /* Add hypothesis: */ |
|
DefBlobTracker* pBT = (DefBlobTracker*)m_BlobList.GetBlob(BlobIndex); |
|
assert(pBT->pBlobHyp); |
|
pBT->pBlobHyp->AddBlob(pBlob); |
|
} |
|
}; |
|
|
|
private: |
|
CvBlob* GetNearestBlob(CvBlob* pB) |
|
{ |
|
//DefBlobTracker* pBT = (DefBlobTracker*)pB; |
|
CvBlob* pBBest = NULL; |
|
double DistBest = -1; |
|
|
|
if(pB==NULL) return NULL; |
|
|
|
for(int j=m_BlobListNew.GetBlobNum(); j>0; --j) |
|
{ /* Find best CC: */ |
|
double Dist = -1; |
|
CvBlob* pBNew = m_BlobListNew.GetBlob(j-1); |
|
double dx = fabs(CV_BLOB_X(pB)-CV_BLOB_X(pBNew)); |
|
double dy = fabs(CV_BLOB_Y(pB)-CV_BLOB_Y(pBNew)); |
|
if(dx > 2*CV_BLOB_WX(pB) || dy > 2*CV_BLOB_WY(pB)) continue; |
|
|
|
Dist = sqrt(dx*dx+dy*dy); |
|
if(Dist < DistBest || pBBest == NULL) |
|
{ |
|
DistBest = Dist; |
|
pBBest = pBNew; |
|
} |
|
|
|
} /* Find best CC. */ |
|
|
|
return pBBest; |
|
|
|
}; /* GetNearestBlob */ |
|
|
|
}; |
|
|
|
CvBlobTracker* cvCreateBlobTrackerCC() |
|
{ |
|
return (CvBlobTracker*) new CvBlobTrackerCC; |
|
} |
|
/*============== BLOB TRACKERCC CLASS DECLARATION =============== */
|
|
|