Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1090 lines
49 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// This file is modified from the ficus (https://github.com/vpisarev/ficus/blob/master/lib/NN/OpConv.fx).
// Here is the original license:
/*
This file is a part of ficus language project.
See ficus/LICENSE for the licensing terms
*/
#include "../../precomp.hpp"
#include "fast_convolution.hpp"
#include "fast_convolution.simd.hpp"
namespace cv { namespace dnn {
enum { VEC_ALIGN = 32, DFT_TYPE = CV_32F }; // Memory alignment.
Ptr<FastConv> initFastConv(
InputArray _weightsMat,
float* srcBias,
int ngroups,
int K, int C,
const std::vector<size_t>& kernel_size,
const std::vector<size_t>& strides,
const std::vector<size_t>& dilations,
const std::vector<size_t>& pads_begin,
const std::vector<size_t>& pads_end,
int conv_dim,
bool useWinograd)
{
Ptr<FastConv> conv = makePtr<FastConv>();
CV_Assert(ngroups > 0 && K > 0 && C > 0 && K % ngroups == 0);
// Weight shape, [K, C, Dk, Hk, Wk] for Conv3D, [K, C, Hk, Wk] for Conv2D, [K, C, Wk] for Conv1D.
int Dk = conv_dim == CONV_3D ? (int)kernel_size[0] : 1;
int Hk = conv_dim == CONV_1D ? 1 : (int)kernel_size[kernel_size.size() - 2];
int Wk = (int)kernel_size.back();
int karea = Wk*Hk*Dk;
conv->pad_front = conv_dim == CONV_3D ? (int)pads_begin[0] : 0;
conv->pad_top = conv_dim == CONV_1D ? 0 : (int)pads_begin[pads_begin.size() - 2];
conv->pad_left = (int)pads_begin.back();
conv->pad_behind = conv_dim == CONV_3D ? (int)pads_end[0] : 0;
conv->pad_bottom = conv_dim == CONV_1D ? 0 : (int)pads_end[pads_end.size() - 2];
conv->pad_right = (int)pads_end.back();
int stride_d = conv_dim == CONV_3D ? (int)strides[0] : 0;
int stride_h = conv_dim == CONV_1D ? 0 : (int)strides[strides.size() - 2];
int stride_w = (int)strides.back();
int dilation_d = conv_dim == CONV_3D ? (int)dilations[0] : 1;
int dilation_h = conv_dim == CONV_1D ? 1 : (int)dilations[dilations.size() - 2];
int dilation_w = (int)dilations.back();
CV_Assert(Dk > 0 && Hk > 0 && Wk > 0);
CV_Assert(stride_d >= 0 && stride_h >= 0 && stride_w > 0);
CV_Assert(dilation_d > 0 && dilation_h > 0 && dilation_w > 0);
conv->K = K; conv->C = C; conv->Hk = Hk; conv->Wk = Wk, conv->Dk = Dk;
conv->stride_d = stride_d;
conv->stride_h = stride_h;
conv->stride_w = stride_w;
conv->dilation_d = dilation_d;
conv->dilation_h = dilation_h;
conv->dilation_w = dilation_w;
conv->conv_dim = conv_dim;
conv->ngroups = ngroups;
bool ifRunDepthWise = ngroups > 1 && ngroups == K && ngroups == C;
bool ifRunDepthWiseRemain = false; // It's for big padding or big kernel or Conv3D depth-wise convolution.
if (ifRunDepthWise)
{
if (conv_dim == CONV_1D)
{
ifRunDepthWise &= Hk == 1 && Wk == 3 && (stride_w == 1 || (stride_w == 2 && dilation_w == 1))
&& max(stride_w, dilation_w) >= conv->pad_left && conv->pad_left <= 1;
}
else if (conv_dim == CONV_2D)
{
ifRunDepthWise &= Hk == 3 && Wk == 3 && ((stride_w == 1) || (stride_w == 2 && dilation_w == 1)) &&
max(stride_w, dilation_w) >= conv->pad_left && max(stride_h, dilation_h) >= conv->pad_top
&& conv->pad_left <= 1 && conv->pad_top <= 1;
}
if (!ifRunDepthWise || conv_dim == CONV_3D)
{
ifRunDepthWise = false;
ifRunDepthWiseRemain = true;
}
}
conv->conv_type = ifRunDepthWise && conv_dim != CONV_3D ? _FX_CONV_TYPE_DEPTHWISE :
useWinograd && (conv_dim == CONV_2D && (conv->useSIMD128 || conv->useAVX2 || conv->useNEON) &&
Hk == 3 && Wk == 3 && dilation_h == 1 && dilation_w == 1 && stride_h == 1 && stride_w == 1) ?
_FX_CONV_TYPE_WINOGRAD3X3 :
(ifRunDepthWiseRemain ? _FX_CONV_TYPE_DEPTHWISE_REMAIN : _FX_CONV_TYPE_GENERIC);
#if !(CV_NEON || CV_SIMD128 || CV_TRY_AVX2)
if (conv->conv_type == _FX_CONV_TYPE_WINOGRAD3X3) // Disabel Winograd when CV_NEON, CV_SIMD128 and CV_TRY_AVX2 are not available.
conv->conv_type = _FX_CONV_TYPE_GENERIC;
#endif
#if CV_TRY_AVX2
// Disabel Winograd when CV_TRY_AVX2 is true, but conv->useAVX2 is false.
if (conv->conv_type == _FX_CONV_TYPE_WINOGRAD3X3 && !conv->useAVX2)
conv->conv_type = _FX_CONV_TYPE_GENERIC;
#endif
Mat weightsMat = _weightsMat.getMat();
auto wShape = shape(weightsMat);
const size_t wstep = weightsMat.step1();
float *srcWeights = (float *)weightsMat.data;
if (conv->conv_type == _FX_CONV_TYPE_DEPTHWISE || conv->conv_type == _FX_CONV_TYPE_DEPTHWISE_REMAIN)
{
// Handle the Conv1D, Conv2D and Conv3D depth-wise.
// for depth-wise convolutions on NCHW data we just preserve the weights in KCHW layout,
// but add some padding to make the weights array layout more SIMD-friendly
int ksize = karea;
// TODO: simplify the following code with std::copy.
// this code aims to let memory fit with vector size.
int padded_ksize = ((ksize + VEC_ALIGN-1) / VEC_ALIGN) * VEC_ALIGN;
int nweights = C*padded_ksize;
conv->weightsBuf.reserve(nweights + VEC_ALIGN);
conv->weightsBufPtr = alignPtr(conv->weightsBuf.data(), VEC_ALIGN);
memset(conv->weightsBufPtr, 0, nweights*sizeof(conv->weightsBufPtr[0]));
auto weightsBufPtr = conv->weightsBufPtr;
parallel_for_(Range(0, C), [&](const Range& r0){
for(int c = r0.start; c < r0.end; c++)
{
for (int k = 0; k < ksize; k++)
weightsBufPtr[c*padded_ksize + k] = srcWeights[c*wstep + k];
}});
}
else if(conv->conv_type == _FX_CONV_TYPE_WINOGRAD3X3) // winograd
{
static const float ktm[8][3] = {
{1.0f, 0.0f, 0.0f},
{-2.0f / 9, -2.0f / 9, -2.0f / 9},
{-2.0f / 9, 2.0f / 9, -2.0f / 9},
{1.0f / 90, 1.0f / 45, 2.0f / 45},
{1.0f / 90, -1.0f / 45, 2.0f / 45},
{32.f/45, 16.f/45, 8.f/45},
{32.f/45, -16.f/45, 8.f/45},
{0.0f, 0.0f, 1.0f}
};
// the weights are packed as 6-dim tensor:
// ngroups * ceil((K/ngroups)/KBLOCK) * (W*W/ATOM_SIZE) * (C/ngroups) * KBLOCK * ATOM_SIZE,
// where W is the size of Winograd-transformed kernel (8x8),
// ATOM_SIZE is number of lanes in SIMD register (4 for NEON and FP32),
// KBLOCK is some platform-dependent constant dependent on the number of SIMD registers.
int ksize = _FX_WINO_KSIZE * _FX_WINO_KSIZE;
int Cg = C/ngroups;
int Kg = K/ngroups;
int Kg_nblocks = (Kg + _FX_WINO_KBLOCK - 1)/_FX_WINO_KBLOCK;
size_t nweights = ngroups*Kg_nblocks*Cg*_FX_WINO_KBLOCK*_FX_WINO_AREA;
conv->weightsWinoBuf.reserve(nweights + VEC_ALIGN);
conv->weightsWinoBufPtr = alignPtr(conv->weightsWinoBuf.data(), VEC_ALIGN);
float* wptrWino = conv->weightsWinoBufPtr;
memset(wptrWino, 0, nweights * sizeof(wptrWino[0]));
parallel_for_(Range(0, K), [&](const Range& r0){
float kernelTm[_FX_WINO_AREA];
for (int k = r0.start; k < r0.end; k++)
{
int g = k / Kg;
int k_ = k - g*Kg;
int ki = k_ / _FX_WINO_KBLOCK;
int dk = k_ - ki*_FX_WINO_KBLOCK;
for (int c = 0; c < Cg; c++)
{
// wstep = Hk*Wk*Cg
const float *kernel0 = srcWeights + k * wstep + c * ksize;
// transform kernel, transposed
const float *k0 = kernel0;
const float *k1 = kernel0 + 3;
const float *k2 = kernel0 + 6;
// h
float tmp[8][3];
for (int i = 0; i < 8; i++)
{
tmp[i][0] = k0[0] * ktm[i][0] + k0[1] * ktm[i][1] + k0[2] * ktm[i][2];
tmp[i][1] = k1[0] * ktm[i][0] + k1[1] * ktm[i][1] + k1[2] * ktm[i][2];
tmp[i][2] = k2[0] * ktm[i][0] + k2[1] * ktm[i][1] + k2[2] * ktm[i][2];
}
// v
for (int j = 0; j < 8; j++)
{
float *tmpp = &tmp[j][0];
for (int i = 0; i < 8; i++)
kernelTm[j * 8 + i] = tmpp[0] * ktm[i][0] + tmpp[1] * ktm[i][1] + tmpp[2] * ktm[i][2];
}
// repack the data.
float* wptr = wptrWino + (g*Kg_nblocks + ki) * Cg *_FX_WINO_KBLOCK*_FX_WINO_AREA +
(c*_FX_WINO_KBLOCK + dk)*_FX_WINO_ATOM_F32;
for (int i = 0; i < _FX_WINO_NATOMS_F32; i++,
wptr += Cg * _FX_WINO_KBLOCK * _FX_WINO_ATOM_F32)
{
CV_Assert(conv->weightsWinoBufPtr <= wptr && wptr + _FX_WINO_ATOM_F32 <= conv->weightsWinoBufPtr + nweights);
memcpy(wptr, kernelTm + i * _FX_WINO_ATOM_F32, _FX_WINO_ATOM_F32*sizeof (wptr[0]));
}
}
}});
}
else if (conv->conv_type == _FX_CONV_TYPE_GENERIC)
{
// The weights are packed as
// ngroups x (ceil((K/ngroups)/CONV_MR)*CONV_MR) x (Cg*Hk*Wk*Dk) x CONV_MR tensor
int Kg = K/ngroups, Cg = max(C/ngroups, 1);
int numStripsMR = (Kg + CONV_MR - 1) / CONV_MR;
int Kg_aligned = numStripsMR * CONV_MR;
int DkHkWkCg = Dk*Hk*Wk*Cg;
size_t nweights = ngroups*Kg_aligned*DkHkWkCg;
conv->weightsBuf.reserve(nweights + VEC_ALIGN);
conv->weightsBufPtr = alignPtr(conv->weightsBuf.data(), VEC_ALIGN);
float* weightsBufPtr = conv->weightsBufPtr;
memset(weightsBufPtr, 0, nweights*sizeof(weightsBufPtr[0]));
// Pack the weight.
parallel_for_(Range(0, ngroups * numStripsMR), [&](const Range& r0){
for (int gsi = r0.start; gsi < r0.end; gsi++)
{
int g = gsi / numStripsMR;
int si = gsi - g * numStripsMR;
int startK = si * CONV_MR;
CV_Assert(startK < Kg_aligned);
float* packed_wptr = weightsBufPtr + DkHkWkCg * (startK + g * Kg_aligned);
int dk = Kg - startK < CONV_MR ? Kg - startK : CONV_MR; // check if we need zero padding.
int k_idx = g*Kg + startK;
for(int hwd = 0; hwd < Hk*Wk*Dk; hwd++) {
for(int c = 0; c < Cg; c++, packed_wptr += CONV_MR)
{
const float* wptr = srcWeights + wstep * k_idx + c*Hk*Wk*Dk + hwd;
int k = 0;
for(; k < dk; k++, wptr += wstep)
packed_wptr[k] = *wptr;
for(; k < CONV_MR; k++)
packed_wptr[k] = 0.f;
}
}
}});
}
else
CV_Error(CV_StsUnsupportedFormat, "Unknown convolution type.");
// store bias; append some zero's to make sure that
// we can always read MR elements starting from any valid index
{
int k = 0, nbias = K + VEC_ALIGN;
conv->biasBuf.resize(nbias);
float* biasBufPtr = conv->biasBuf.data();
for(; k < K; k++)
biasBufPtr[k] = srcBias ? srcBias[k] : 0.f;
for(; k < nbias; k++)
biasBufPtr[k] = 0.f;
}
return conv;
}
static inline void packData8(float*& inpbuf, float*& inptrIn, int& in_w, int& x0, int& s0, const int* ofstab,
const int stride_w, const int ksize)
{
float* inpbufC = inpbuf + s0;
float* inptrInC = inptrIn;
if (stride_w == 1)
for (int k = 0; k < ksize; k++)
{
int k1 = ofstab[k];
float v0 = inptrInC[k1];
float v1 = inptrInC[k1 + 1];
float v2 = inptrInC[k1 + 2];
float v3 = inptrInC[k1 + 3];
float v4 = inptrInC[k1 + 4];
float v5 = inptrInC[k1 + 5];
float v6 = inptrInC[k1 + 6];
float v7 = inptrInC[k1 + 7];
inpbufC[k*CONV_NR] = v0;
inpbufC[k*CONV_NR+1] = v1;
inpbufC[k*CONV_NR+2] = v2;
inpbufC[k*CONV_NR+3] = v3;
inpbufC[k*CONV_NR+4] = v4;
inpbufC[k*CONV_NR+5] = v5;
inpbufC[k*CONV_NR+6] = v6;
inpbufC[k*CONV_NR+7] = v7;
}
else
for (int k = 0; k < ksize; k++)
{
int k1 = ofstab[k];
float v0 = inptrInC[k1];
float v1 = inptrInC[k1 + stride_w];
float v2 = inptrInC[k1 + 2*stride_w];
float v3 = inptrInC[k1 + 3*stride_w];
float v4 = inptrInC[k1 + 4*stride_w];
float v5 = inptrInC[k1 + 5*stride_w];
float v6 = inptrInC[k1 + 6*stride_w];
float v7 = inptrInC[k1 + 7*stride_w];
inpbufC[k*CONV_NR] = v0;
inpbufC[k*CONV_NR+1] = v1;
inpbufC[k*CONV_NR+2] = v2;
inpbufC[k*CONV_NR+3] = v3;
inpbufC[k*CONV_NR+4] = v4;
inpbufC[k*CONV_NR+5] = v5;
inpbufC[k*CONV_NR+6] = v6;
inpbufC[k*CONV_NR+7] = v7;
}
x0+=7;
s0+=7;
inptrIn += 7*stride_w;
in_w += 7*stride_w;
}
static inline void packData2(float*& inpbuf, float*& inptrIn, int& in_w, int& x0, int& s0, const int* ofstab,
const int stride_w, const int ksize)
{
float* inpbufC = inpbuf + s0;
float* inptrInC = inptrIn;
for (int k = 0; k < ksize; k++)
{
int k1 = ofstab[k];
float v0 = inptrInC[k1];
float v1 = inptrInC[k1 + stride_w];
inpbufC[k*CONV_NR] = v0;
inpbufC[k*CONV_NR+1] = v1;
}
x0++;
s0++;
inptrIn += stride_w;
in_w += stride_w;
}
void runFastConv(InputArray _input, OutputArray _output, const Ptr<FastConv>& conv, int ntasks,
const Ptr<ActivationLayer>& actLayer, const std::vector<float>& reluslope, bool fusedAdd)
{
Mat input = _input.getMat();
Mat output = _output.getMat();
int conv_dim = conv->conv_dim;
CV_Assert_N(input.dims == output.dims,
input.size[0] == output.size[0],
conv->C == input.size[1],
conv->K == output.size[1],
input.type() == output.type(),
input.isContinuous(),
output.isContinuous());
Mat fusedAddMat;
if (fusedAdd)
{
CV_Assert(conv->conv_dim != CONV_3D && "Conv3D does not support Conv+Add fusion optimization!");
fusedAddMat = _output.getMat();
}
if (conv->conv_type == _FX_CONV_TYPE_DEPTHWISE)
{
// Depthwise-Convolution layer should not be followed by Add layer.
CV_Assert((conv_dim == CONV_1D || conv_dim == CONV_2D));
return runDepthwise(input, output, conv, actLayer.get(), reluslope, fusedAdd);
}
MatShape inputShape = shape(input);
MatShape outputShape = shape(output);
CV_Assert(inputShape.size() == outputShape.size());
ActivationLayer* activ = nullptr;
float minval = -FLT_MAX, maxval = FLT_MAX;
bool ifMinMaxAct = false;
if (actLayer)
{
Ptr<ReLULayer> activ_relu = actLayer.dynamicCast<ReLULayer>();
Ptr<ReLU6Layer> activ_relu6 = actLayer.dynamicCast<ReLU6Layer>();
if (!activ_relu.empty())
{
if (activ_relu->negativeSlope == 0.0f)
{
minval = 0.0f;
ifMinMaxAct = true;
activ = nullptr;
}
else // Leaky ReLU
{
activ = actLayer.get();
}
}
else if (!activ_relu6.empty())
{
minval = activ_relu6->minValue;
maxval = activ_relu6->maxValue;
ifMinMaxAct = true;
activ = nullptr;
}
else
activ = actLayer.get();
}
else
activ = nullptr;
if (conv->conv_type == _FX_CONV_TYPE_WINOGRAD3X3) // winograd
{
CV_Assert(conv->weightsWinoBufPtr && input.dims == 4 && conv_dim == CONV_2D);
if (runWinograd63(input, fusedAddMat, output, conv, ntasks, minval, maxval, activ, ifMinMaxAct))
return;
}
int N = inputShape[0], C = inputShape[1];
// input shape: [N, C, D, H, W] for Conv3D, [N, C, H, W] for Conv2D, [N, C, W] for Conv1D.
int Di = conv_dim == CONV_3D ? inputShape[2] : 1;
int Hi = conv_dim == CONV_1D ? 1 : inputShape[inputShape.size() - 2];
int Wi = inputShape[inputShape.size() - 1];
int ngroups = conv->ngroups;
int K = conv->K, Dk = conv->Dk, Hk = conv->Hk, Wk = conv->Wk;
int D0 = conv_dim == CONV_3D ? outputShape[2] : 1;
int H0 = conv_dim == CONV_1D ? 1 : outputShape[outputShape.size() - 2];
int W0 = outputShape[outputShape.size() - 1];
int Cg = C/ngroups, Kg = K/ngroups;
const size_t inp_planesize = (size_t)Di*Hi*Wi;
const size_t out_planesize = (size_t)D0*H0*W0;
int pad_front = conv->pad_front;
int pad_top = conv->pad_top;
int pad_left = conv->pad_left;
int stride_d = conv->stride_d, stride_h = conv->stride_h, stride_w = conv->stride_w;
int dilation_d = conv->dilation_d, dilation_h = conv->dilation_h, dilation_w = conv->dilation_w;
int ksize = Dk*Hk*Wk;
bool fast_1x1 = ksize == 1 && stride_d == 1 && stride_w == 1 && stride_h == 1 &&
pad_front == 0 && pad_top == 0 && pad_left == 0;
int DkHkWkCg = Dk*Hk*Wk*Cg;
std::vector<int> ofstab_(Hk*Wk*Dk*4, 0);
int* ofstab = ofstab_.data();
int* dhwTab = ofstab + Hk*Wk*Dk;
int padded_ksize = ((ksize + VEC_ALIGN-1) / VEC_ALIGN) * VEC_ALIGN;
if (conv_dim == CONV_1D)
{
for( int w = 0; w < Wk; w++)
{
int dw = w*dilation_w;
dhwTab[w*3+2] = dw;
ofstab[w] = dw;
}
}
else if (conv_dim == CONV_2D)
{
for (int h = 0; h < Hk; h++)
for( int w = 0; w < Wk; w++)
{
int k = h*Wk + w;
int dh = h*dilation_h, dw = w*dilation_w;
dhwTab[k*3+1] = dh;
dhwTab[k*3+2] = dw;
ofstab[k] = dh*Wi + dw;
}
}
else
{
for (int d = 0; d < Dk; d++)
for (int h = 0; h < Hk; h++)
{
for (int w = 0; w < Wk; w++)
{
int k = d*Hk*Wk + h*Wk + w;
int dd = d*dilation_d, dh = h*dilation_h, dw = w*dilation_w;
dhwTab[k*3] = dd;
dhwTab[k*3+1] = dh;
dhwTab[k*3+2] = dw;
ofstab[k] = dd*Hi*Wi + dh*Wi + dw;
}
}
}
int MAX_STRIPES = (56 + CONV_NR - 1)/CONV_NR;
// Friendly to L1 cache
const int K_BLOCK_SIZE = conv->conv_type == _FX_CONV_TYPE_DEPTHWISE_REMAIN ? 1 : 32;
const int C_BLOCK_SIZE = 256;
int Kg_nblocks = (Kg + CONV_MR-1)/CONV_MR, Kg_aligned = Kg_nblocks * CONV_MR;
int stripes_per_sample = ((int)out_planesize + CONV_NR - 1) / CONV_NR;
if (stripes_per_sample < ntasks * 4 && conv->conv_type != _FX_CONV_TYPE_DEPTHWISE_REMAIN)
{
MAX_STRIPES = 1;
stripes_per_sample = 1;
}
else
Kg_nblocks = 1;
int Kstripes = Kg_nblocks*stripes_per_sample;
int nsubtasks = N*ngroups*Kstripes;
size_t stripesize = CONV_NR * ksize * Cg;
size_t taskbufsize = (stripesize + CONV_NR * K_BLOCK_SIZE) * MAX_STRIPES;
size_t totalbufsize = taskbufsize * ntasks;
AutoBuffer<float> inpbuf_all_;
totalbufsize = alignSize(totalbufsize, VEC_ALIGN);
inpbuf_all_.allocate(totalbufsize + VEC_ALIGN);
float* inpbuf_all = alignPtr(inpbuf_all_.data(), (int)(VEC_ALIGN*sizeof(inpbuf_all_[0])));
float* inp = input.ptr<float>();
float* out = output.ptr<float>();
float* fusedAddPtr0 = fusedAddMat.empty() ? 0 : fusedAddMat.ptr<float>();
parallel_for_(Range(0, ntasks), [&](const Range& r0) {
for (int task_id = r0.start; task_id < r0.end; task_id++)
{
float* inpbuf_task = &inpbuf_all[taskbufsize * task_id];
float* cbuf_task = inpbuf_task + stripesize * MAX_STRIPES;
int ngs0 = (int)((size_t)nsubtasks * task_id / ntasks);
int ngs1 = (int)((size_t)nsubtasks * (task_id+1) / ntasks);
for (int subtask = ngs0; subtask < ngs1; )
{
int ng = subtask / Kstripes;
int kzyx0 = subtask - ng * Kstripes;
int kzyx1 = kzyx0 + (ngs1 - subtask);
int n = ng / ngroups, g = ng % ngroups; // ng - n * ngroups;
size_t inp_plane_ofs = (size_t)(n * ngroups + g) * Cg * inp_planesize;
kzyx1 = kzyx1 <= Kstripes ? kzyx1 : Kstripes;
subtask += kzyx1 - kzyx0;
int k0, k1;
int zyx0, zyx_limit, zyx_block_limit = 0;
if (stripes_per_sample == 1 && conv->conv_type != _FX_CONV_TYPE_DEPTHWISE_REMAIN)
{
k0 = kzyx0 * CONV_MR;
k1 = kzyx1 * CONV_MR;
k1 = k1 <= Kg ? k1 : Kg;
zyx0 = 0;
zyx_limit = (int)out_planesize;
}
else
{
k0 = 0;
k1 = Kg;
zyx0 = kzyx0 * CONV_NR;
zyx_limit = kzyx1 * CONV_NR;
zyx_limit = zyx_limit < out_planesize ? zyx_limit : (int)out_planesize;
}
for (; zyx0 < zyx_limit; zyx0 = zyx_block_limit)
{
// step 1. extract part of input tensor and represent it in zigzag form
zyx_block_limit = zyx0 + CONV_NR * MAX_STRIPES;
zyx_block_limit = zyx_block_limit < zyx_limit ? zyx_block_limit : zyx_limit;
int nstripes = (zyx_block_limit - zyx0 + CONV_NR - 1) / CONV_NR;
int zyx0_saved = zyx0;
CV_Assert(nstripes <= MAX_STRIPES);
for (int stripe = 0; zyx0 < zyx_block_limit; stripe++, zyx0 += CONV_NR)
{
float *inpbuf = inpbuf_task + stripe * stripesize;
float *inptr = inp + inp_plane_ofs;
/*
1. pack the data. Copy the HkxWk CONV_NR-wide slices from
each feature plane of the input tensor to the input buffer.
*/
if (fast_1x1)
{
int slice_len = zyx_block_limit - zyx0;
bool partial = slice_len < CONV_NR;
// Superfast branch for 1x1 convolutions with sy=sx=1.
// in this case each feature plane can be safely treated
// as 1D array, and we just extract next portion
// of CONV_NR elements from each feature plane and
// put it together.
inptr += zyx0;
if (!partial)
{
// Make special branch where memcpy() is called with a constant buffer size.
// Compilers will likely unroll this loop properly.
for (int c = 0; c < Cg; c++, inptr += inp_planesize, inpbuf += CONV_NR)
memcpy(inpbuf, inptr, CONV_NR * sizeof(inpbuf[0]));
}
else
{
for (int c = 0; c < Cg; c++, inptr += inp_planesize, inpbuf += CONV_NR)
{
memcpy(inpbuf, inptr, slice_len * sizeof(inpbuf[0]));
memset(inpbuf + slice_len, 0, (CONV_NR - slice_len) * sizeof(inpbuf[0]));
}
}
}
else if (conv->conv_type == _FX_CONV_TYPE_DEPTHWISE_REMAIN)
{
CV_Assert(Cg == 1);
const int HW0 = H0 * W0;
const int HWi = Hi * Wi;
int slice_len = std::min(zyx_block_limit - zyx0, CONV_NR);
// here some non-continuous sub-row of the row will not be
// filled from the tensor; we need to make sure that the uncovered
// elements are explicitly set to 0's. the easiest way is to
// set all the elements to 0's before the loop.
memset(inpbuf, 0, stripesize*sizeof(inpbuf[0]));
int z0 = zyx0 / HW0, yx0 = zyx0 - z0 * HW0;
int y0 = yx0 / W0, x0 = yx0 - y0 * W0;
if (conv_dim == CONV_1D)
{
for (int slice_i = 0; slice_i < slice_len; y0++, x0=0)
{
int delta = std::min(slice_len - slice_i, W0 - x0);
int x1 = x0 + delta;
int in_w = x0 * stride_w - pad_left;
float* inptrIn = inptr + in_w;
int s0 = slice_i;
for (; x0 < x1; x0++, s0++, inptrIn += stride_w, in_w += stride_w)
{
// Pack 8
if (x0 + 8 <= x1 && 0 <= in_w &&
in_w + stride_w*8 <= Wi - (Wk-1)*dilation_w)
{
packData8(inpbuf, inptrIn, in_w, x0, s0, ofstab, stride_w, ksize);
}
else if (x0 + 2 <= x1 && 0 <= in_w &&
in_w + stride_w*2 <= Wi - (Wk-1)*dilation_w)
{
packData2(inpbuf, inptrIn, in_w, x0, s0, ofstab, stride_w, ksize);
}
else
{
int w0 = std::max(0, (-in_w + dilation_w-1)/dilation_w);
int w1 = std::min(Wk, (Wi - in_w + dilation_w-1)/dilation_w);
float* inpbufC = inpbuf + s0;
float* inptrInC = inptrIn;
for (int w = w0; w < w1; w++)
{
int imgofs = w*dilation_w;
inpbufC[w*CONV_NR] = inptrInC[imgofs];
}
}
}
slice_i += delta;
}
}
else if (conv_dim == CONV_2D)
{
for (int slice_i = 0; slice_i < slice_len; y0++, x0=0)
{
int delta = std::min(slice_len - slice_i, W0 - x0);
int x1 = x0 + delta;
int in_h = y0 * stride_h - pad_top;
int in_w = x0 * stride_w - pad_left;
float* inptrIn = inptr + in_h*Wi + in_w;
bool ok_i = 0 <= in_h && in_h < Hi - (Hk-1)*dilation_h;
int h0 = std::max(0, (-in_h + dilation_h-1)/dilation_h);
int h1 = std::min(Hk, (Hi - in_h + dilation_h-1)/dilation_h);
int s0 = slice_i;
for (; x0 < x1; x0++, s0++, inptrIn += stride_w, in_w += stride_w)
{
// Pack 8
if (ok_i && x0 + 8 <= x1 && 0 <= in_w &&
in_w + stride_w*8 <= Wi - (Wk-1)*dilation_w)
{
packData8(inpbuf, inptrIn, in_w, x0, s0, ofstab, stride_w, ksize);
}
else if (ok_i && x0 + 2 <= x1 && 0 <= in_w &&
in_w + stride_w*2 <= Wi - (Wk-1)*dilation_w)
{
packData2(inpbuf, inptrIn, in_w, x0, s0, ofstab, stride_w, ksize);
}
else
{
int w0 = std::max(0, (-in_w + dilation_w-1)/dilation_w);
int w1 = std::min(Wk, (Wi - in_w + dilation_w-1)/dilation_w);
float* inpbufC = inpbuf + s0;
float* inptrInC = inptrIn;
for (int h = h0; h < h1; h++)
{
for (int w = w0; w < w1; w++)
{
int imgofs = h*(dilation_h*Wi) + w*dilation_w;
inpbufC[(h*Wk + w)*CONV_NR] = inptrInC[imgofs];
}
}
}
}
slice_i += delta;
}
}
else if (conv_dim == CONV_3D)
{
for (int slice_i = 0; slice_i < slice_len; z0 += (y0+1)/H0, y0 = (y0+1)%H0, x0=0)
{
int delta = std::min(slice_len - slice_i, W0 - x0);
int x1 = x0 + delta;
int in_d = z0 * stride_d - pad_front;
int in_h = y0 * stride_h - pad_top;
int in_w = x0 * stride_w - pad_left;
float* inptrIn = inptr + in_d*HWi + in_h*Wi + in_w;
int d0 = std::max(0, (-in_d + dilation_d - 1) / dilation_d);
int d1 = std::min(Dk, (Di - in_d + dilation_d - 1) / dilation_d);
bool ok_i = 0 <= in_d && in_d < Di - (Dk-1)*dilation_d &&
0 <= in_h && in_h < Hi - (Hk-1)*dilation_h;
int h0 = std::max(0, (-in_h + dilation_h-1)/dilation_h);
int h1 = std::min(Hk, (Hi - in_h + dilation_h-1)/dilation_h);
int s0 = slice_i;
for (; x0 < x1; x0++, s0++, inptrIn += stride_w, in_w += stride_w)
{
// Pack 8
if (ok_i && x0 + 8 <= x1 && 0 <= in_w &&
in_w + stride_w*8 <= Wi - (Wk-1)*dilation_w)
{
packData8(inpbuf, inptrIn, in_w, x0, s0, ofstab, stride_w, ksize);
}
else if (ok_i && x0 + 2 <= x1 && 0 <= in_w &&
in_w + stride_w*2 <= Wi - (Wk-1)*dilation_w)
{
packData2(inpbuf, inptrIn, in_w, x0, s0, ofstab, stride_w, ksize);
}
else
{
int w0 = std::max(0, (-in_w + dilation_w-1)/dilation_w);
int w1 = std::min(Wk, (Wi - in_w + dilation_w-1)/dilation_w);
float* inpbufC = inpbuf + s0;
float* inptrInC = inptrIn;
for ( int d = d0; d < d1; d++)
{
for (int h = h0; h < h1; h++)
{
for (int w = w0; w < w1; w++)
{
int imgofs = d*dilation_d*HWi + h*(dilation_h*Wi) + w*dilation_w;
inpbufC[((d*Hk + h)*Wk + w)*CONV_NR] = inptrInC[imgofs];
}
}
}
}
}
slice_i += delta;
}
}
}
else
{
const int HW0 = H0 * W0;
const int HWi = Hi * Wi;
int z0_ = zyx0 / HW0, yx0 = zyx0 - z0_ * HW0;
int y0_ = yx0 / W0, x0_ = yx0 - y0_ * W0;
for (int k = 0; k < ksize; k++)
{
int dz = dhwTab[k * 3], dy = dhwTab[k * 3 + 1], dx = dhwTab[k * 3 + 2];
int i = 0, z0 = z0_, y0 = y0_, x0 = x0_;
for (; i < CONV_NR;)
{
float *inpbuf_ki = inpbuf + k * CONV_NR * Cg + i;
int zi = z0 * stride_d + dz - pad_front;
int yi = y0 * stride_h + dy - pad_top;
int xi = x0 * stride_w + dx - pad_left;
if ((unsigned) zi < (unsigned) Di && (unsigned) yi < (unsigned) Hi &&
(unsigned) xi < (unsigned) Wi)
{
const float *inptr_ki = inptr + zi * HWi + yi * Wi + xi;
if (i + 8 <= CONV_NR && x0 + 8 <= W0 && xi + stride_w * 8 <= Wi)
{
if (stride_w == 1)
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR, inptr_ki += inp_planesize)
{
float t0 = inptr_ki[0], t1 = inptr_ki[1];
float t2 = inptr_ki[2], t3 = inptr_ki[3];
float t4 = inptr_ki[4], t5 = inptr_ki[5];
float t6 = inptr_ki[6], t7 = inptr_ki[7];
inpbuf_ki[0] = t0;
inpbuf_ki[1] = t1;
inpbuf_ki[2] = t2;
inpbuf_ki[3] = t3;
inpbuf_ki[4] = t4;
inpbuf_ki[5] = t5;
inpbuf_ki[6] = t6;
inpbuf_ki[7] = t7;
}
}
else if (stride_w == 2)
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR, inptr_ki += inp_planesize)
{
float t0 = inptr_ki[0], t1 = inptr_ki[2];
float t2 = inptr_ki[4], t3 = inptr_ki[6];
float t4 = inptr_ki[8], t5 = inptr_ki[10];
float t6 = inptr_ki[12], t7 = inptr_ki[14];
inpbuf_ki[0] = t0;
inpbuf_ki[1] = t1;
inpbuf_ki[2] = t2;
inpbuf_ki[3] = t3;
inpbuf_ki[4] = t4;
inpbuf_ki[5] = t5;
inpbuf_ki[6] = t6;
inpbuf_ki[7] = t7;
}
}
else
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR, inptr_ki += inp_planesize)
{
float t0 = inptr_ki[0], t1 = inptr_ki[stride_w];
float t2 = inptr_ki[stride_w * 2], t3 = inptr_ki[stride_w * 3];
float t4 = inptr_ki[stride_w * 4], t5 = inptr_ki[stride_w * 5];
float t6 = inptr_ki[stride_w * 6], t7 = inptr_ki[stride_w * 7];
inpbuf_ki[0] = t0;
inpbuf_ki[1] = t1;
inpbuf_ki[2] = t2;
inpbuf_ki[3] = t3;
inpbuf_ki[4] = t4;
inpbuf_ki[5] = t5;
inpbuf_ki[6] = t6;
inpbuf_ki[7] = t7;
}
}
i += 8;
x0 += 8;
}
else if (i + 4 <= CONV_NR && x0 + 4 <= W0 && xi + stride_w * 4 <= Wi)
{
if (stride_w == 1)
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR, inptr_ki += inp_planesize)
{
float t0 = inptr_ki[0], t1 = inptr_ki[1];
float t2 = inptr_ki[2], t3 = inptr_ki[3];
inpbuf_ki[0] = t0;
inpbuf_ki[1] = t1;
inpbuf_ki[2] = t2;
inpbuf_ki[3] = t3;
}
}
else
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR, inptr_ki += inp_planesize)
{
float t0 = inptr_ki[0], t1 = inptr_ki[stride_w];
float t2 = inptr_ki[stride_w * 2], t3 = inptr_ki[stride_w * 3];
inpbuf_ki[0] = t0;
inpbuf_ki[1] = t1;
inpbuf_ki[2] = t2;
inpbuf_ki[3] = t3;
}
}
i += 4;
x0 += 4;
}
else
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR, inptr_ki += inp_planesize)
*inpbuf_ki = *inptr_ki;
i++;
x0++;
}
}
else
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR)
inpbuf_ki[0] = 0.f;
i++;
x0++;
}
int mask = x0 >= W0;
y0 += mask;
x0 &= mask - 1;
mask = y0 >= H0;
z0 += mask;
y0 &= mask - 1;
}
}
}
}
zyx0 = zyx0_saved;
// spacial branch for depth-wise convolution implemented using generic convolution.
// In this case, CONV_MR is 1, and CONV_NR is the same.
if (conv->conv_type == _FX_CONV_TYPE_DEPTHWISE_REMAIN)
{
size_t outofs = (n * ngroups + g) * out_planesize + zyx0;
float *cptr0 = cbuf_task;
float *weights = conv->weightsBufPtr + g * padded_ksize;
int out_width = zyx_block_limit - zyx0;
float *outptr = out + outofs;
const float biasVal = *(conv->biasBuf.data() + g);
for (int stripe = 0; stripe < nstripes; stripe++)
{
const float *inptr = inpbuf_task + stripe * stripesize;
const int outLen = std::min(out_width - stripe * CONV_NR, CONV_NR);
bool ifBuffer = outLen < CONV_NR;
float *cptr = outptr + stripe * CONV_NR;
if (ifBuffer)
{
memcpy(cptr0, cptr, outLen * sizeof(cptr[0]));
cptr = cptr0;
}
#if CV_TRY_AVX2
if (conv->useAVX2 && outLen > CONV_NR/3)
opt_AVX2::convBlockMR1(DkHkWkCg, weights, inptr, cptr, biasVal, fusedAdd, minval, maxval, ifMinMaxAct);
else
#endif
convBlockMR1(DkHkWkCg, weights, inptr, cptr, biasVal, fusedAdd, minval, maxval, ifMinMaxAct, outLen);
if (ifBuffer)
{
memcpy(outptr + stripe * CONV_NR, cptr, outLen * sizeof(cptr[0]));
}
}
if (activ)
activ->forwardSlice(outptr, outptr, out_width, out_planesize, g, g + 1);
continue;
}
float *weights = conv->weightsBufPtr + g * Kg_aligned * DkHkWkCg;
const float *biasptr = conv->biasBuf.data() + Kg * g;
int ldc = nstripes * CONV_NR;
// 2. do convolution, compute Kg x (zyx_block_limit - zyx0) part of the output tensor
int out_width = zyx_block_limit - zyx0;
for (int k0_block = k0; k0_block < k1; k0_block += K_BLOCK_SIZE)
{
int k1_block = k0_block + K_BLOCK_SIZE < k1 ? k0_block + K_BLOCK_SIZE : k1;
for (int c0 = 0; c0 < DkHkWkCg; c0 += C_BLOCK_SIZE)
{
int c1 = c0 + C_BLOCK_SIZE < DkHkWkCg ? c0 + C_BLOCK_SIZE : DkHkWkCg;
for (int stripe = 0; stripe < nstripes; stripe++)
{
const int outLen = std::min(out_width - stripe * CONV_NR, CONV_NR);
#if CV_TRY_AVX2 || CV_TRY_NEON
// The possible CONV_NR is 28, 24, 12, so the possible CONV_NR/3 is 9, 8, 4.
bool runOpt = outLen > std::min(8, CONV_NR/3);
#endif
float *wptr = weights + k0_block * DkHkWkCg + c0 * CONV_MR;
const float *inptr = inpbuf_task + stripe * stripesize + c0 * CONV_NR;
float *cptr = cbuf_task + stripe * CONV_NR;
for (int k = k0_block; k < k1_block; k += CONV_MR,
wptr += DkHkWkCg * CONV_MR, cptr += CONV_MR * ldc)
{
#if CV_TRY_AVX2
if (conv->useAVX2 && runOpt)
opt_AVX2::convBlock_AVX2(c1 - c0, wptr, inptr, cptr, ldc, c0 == 0);
else
#endif
#if CV_TRY_NEON
if (conv->useNEON && runOpt)
opt_NEON::convBlock_NEON(c1 - c0, wptr, inptr, cptr, ldc, c0 == 0);
else
#endif
// The possible outLen range is 24 or 8~1.
convBlock(c1 - c0, wptr, inptr, cptr, ldc, c0 == 0, outLen);
}
}
}
size_t outofs = ((n * ngroups + g) * Kg + k0_block) * out_planesize + zyx0;
const float *cptr = cbuf_task;
float *outptr = out + outofs;
const float *pbptr = fusedAddPtr0 ? fusedAddPtr0 + outofs : 0;
for (int k = k0_block; k < k1_block; k++,
cptr += ldc, outptr += out_planesize,
pbptr += (pbptr ? out_planesize : 0)) {
float biasval = biasptr[k];
int j = 0;
#if CV_SIMD128
v_float32x4 vbias = v_setall_f32(biasval);
v_float32x4 vmax = v_setall_f32(maxval);
v_float32x4 vmin = v_setall_f32(minval);
if (pbptr)
{
for (; j + 7 < out_width; j += 8)
{
v_float32x4 v0 = v_load(cptr + j) + vbias;
v_float32x4 v1 = v_load(cptr + j + 4) + vbias;
v0 += v_load(pbptr + j);
v1 += v_load(pbptr + j + 4);
if (ifMinMaxAct)
{
v0 = v_min(v_max(v0, vmin), vmax);
v1 = v_min(v_max(v1, vmin), vmax);
}
v_store(outptr + j, v0);
v_store(outptr + j + 4, v1);
}
}
else
{
for (; j + 7 < out_width; j += 8)
{
v_float32x4 v0 = v_load(cptr + j) + vbias;
v_float32x4 v1 = v_load(cptr + j + 4) + vbias;
if (ifMinMaxAct)
{
v0 = v_min(v_max(v0, vmin), vmax);
v1 = v_min(v_max(v1, vmin), vmax);
}
v_store(outptr + j, v0);
v_store(outptr + j + 4, v1);
}
}
#endif
if (pbptr) {
for (; j < out_width; j++) {
float v = cptr[j] + biasval;
v += pbptr[j];
if (ifMinMaxAct)
v = std::min(std::max(v, minval), maxval);
outptr[j] = v;
}
} else {
for (; j < out_width; j++) {
float v = cptr[j] + biasval;
if (ifMinMaxAct)
v = std::min(std::max(v, minval), maxval);
outptr[j] = v;
}
}
if (activ)
activ->forwardSlice(outptr, outptr, out_width, out_planesize, Kg * g + k, Kg * g + k + 1);
}
}
}
}
}
});
}
}} // namespace cv::dnn