mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
4.9 KiB
133 lines
4.9 KiB
#/usr/bin/env python |
|
|
|
import unittest |
|
import random |
|
import time |
|
import math |
|
import sys |
|
import array |
|
import urllib |
|
import tarfile |
|
import hashlib |
|
import os |
|
import getopt |
|
import operator |
|
import functools |
|
import numpy as np |
|
import cv2 |
|
import cv2.cv as cv |
|
|
|
class NewOpenCVTests(unittest.TestCase): |
|
|
|
def get_sample(self, filename, iscolor = cv.CV_LOAD_IMAGE_COLOR): |
|
if not filename in self.image_cache: |
|
filedata = urllib.urlopen("https://raw.github.com/Itseez/opencv/master/" + filename).read() |
|
self.image_cache[filename] = cv2.imdecode(np.fromstring(filedata, dtype=np.uint8), iscolor) |
|
return self.image_cache[filename] |
|
|
|
def setUp(self): |
|
self.image_cache = {} |
|
|
|
def hashimg(self, im): |
|
""" Compute a hash for an image, useful for image comparisons """ |
|
return hashlib.md5(im.tostring()).digest() |
|
|
|
if sys.version_info[:2] == (2, 6): |
|
def assertLess(self, a, b, msg=None): |
|
if not a < b: |
|
self.fail('%s not less than %s' % (repr(a), repr(b))) |
|
|
|
def assertLessEqual(self, a, b, msg=None): |
|
if not a <= b: |
|
self.fail('%s not less than or equal to %s' % (repr(a), repr(b))) |
|
|
|
def assertGreater(self, a, b, msg=None): |
|
if not a > b: |
|
self.fail('%s not greater than %s' % (repr(a), repr(b))) |
|
|
|
# Tests to run first; check the handful of basic operations that the later tests rely on |
|
|
|
class Hackathon244Tests(NewOpenCVTests): |
|
|
|
def test_int_array(self): |
|
a = np.array([-1, 2, -3, 4, -5]) |
|
absa0 = np.abs(a) |
|
self.assert_(cv2.norm(a, cv2.NORM_L1) == 15) |
|
absa1 = cv2.absdiff(a, 0) |
|
self.assertEqual(cv2.norm(absa1, absa0, cv2.NORM_INF), 0) |
|
|
|
def test_imencode(self): |
|
a = np.zeros((480, 640), dtype=np.uint8) |
|
flag, ajpg = cv2.imencode("img_q90.jpg", a, [cv2.IMWRITE_JPEG_QUALITY, 90]) |
|
self.assertEqual(flag, True) |
|
self.assertEqual(ajpg.dtype, np.uint8) |
|
self.assertGreater(ajpg.shape[0], 1) |
|
self.assertEqual(ajpg.shape[1], 1) |
|
|
|
def test_projectPoints(self): |
|
objpt = np.float64([[1,2,3]]) |
|
imgpt0, jac0 = cv2.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), np.float64([])) |
|
imgpt1, jac1 = cv2.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), None) |
|
self.assertEqual(imgpt0.shape, (objpt.shape[0], 1, 2)) |
|
self.assertEqual(imgpt1.shape, imgpt0.shape) |
|
self.assertEqual(jac0.shape, jac1.shape) |
|
self.assertEqual(jac0.shape[0], 2*objpt.shape[0]) |
|
|
|
def test_estimateAffine3D(self): |
|
pattern_size = (11, 8) |
|
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32) |
|
pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2) |
|
pattern_points *= 10 |
|
(retval, out, inliers) = cv2.estimateAffine3D(pattern_points, pattern_points) |
|
self.assertEqual(retval, 1) |
|
if cv2.norm(out[2,:]) < 1e-3: |
|
out[2,2]=1 |
|
self.assertLess(cv2.norm(out, np.float64([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])), 1e-3) |
|
self.assertEqual(cv2.countNonZero(inliers), pattern_size[0]*pattern_size[1]) |
|
|
|
def test_fast(self): |
|
fd = cv2.FastFeatureDetector(30, True) |
|
img = self.get_sample("samples/cpp/right02.jpg", 0) |
|
img = cv2.medianBlur(img, 3) |
|
imgc = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
keypoints = fd.detect(img) |
|
self.assert_(600 <= len(keypoints) <= 700) |
|
for kpt in keypoints: |
|
self.assertNotEqual(kpt.response, 0) |
|
|
|
def check_close_angles(self, a, b, angle_delta): |
|
self.assert_(abs(a - b) <= angle_delta or |
|
abs(360 - abs(a - b)) <= angle_delta) |
|
|
|
def check_close_pairs(self, a, b, delta): |
|
self.assertLessEqual(abs(a[0] - b[0]), delta) |
|
self.assertLessEqual(abs(a[1] - b[1]), delta) |
|
|
|
def check_close_boxes(self, a, b, delta, angle_delta): |
|
self.check_close_pairs(a[0], b[0], delta) |
|
self.check_close_pairs(a[1], b[1], delta) |
|
self.check_close_angles(a[2], b[2], angle_delta) |
|
|
|
def test_geometry(self): |
|
npt = 100 |
|
np.random.seed(244) |
|
a = np.random.randn(npt,2).astype('float32')*50 + 150 |
|
|
|
img = np.zeros((300, 300, 3), dtype='uint8') |
|
be = cv2.fitEllipse(a) |
|
br = cv2.minAreaRect(a) |
|
mc, mr = cv2.minEnclosingCircle(a) |
|
|
|
be0 = ((150.2511749267578, 150.77322387695312), (158.024658203125, 197.57696533203125), 37.57804489135742) |
|
br0 = ((161.2974090576172, 154.41793823242188), (199.2301483154297, 207.7177734375), -9.164555549621582) |
|
mc0, mr0 = (160.41790771484375, 144.55152893066406), 136.713500977 |
|
|
|
self.check_close_boxes(be, be0, 5, 15) |
|
self.check_close_boxes(br, br0, 5, 15) |
|
self.check_close_pairs(mc, mc0, 5) |
|
self.assertLessEqual(abs(mr - mr0), 5) |
|
|
|
if __name__ == '__main__': |
|
print "testing", cv2.__version__ |
|
random.seed(0) |
|
unittest.main()
|
|
|