Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

827 lines
21 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
int Subdiv2D::nextEdge(int edge) const
{
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
return qedges[edge >> 2].next[edge & 3];
}
int Subdiv2D::rotateEdge(int edge, int rotate) const
{
return (edge & ~3) + ((edge + rotate) & 3);
}
int Subdiv2D::symEdge(int edge) const
{
return edge ^ 2;
}
int Subdiv2D::getEdge(int edge, int nextEdgeType) const
{
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
edge = qedges[edge >> 2].next[(edge + nextEdgeType) & 3];
return (edge & ~3) + ((edge + (nextEdgeType >> 4)) & 3);
}
int Subdiv2D::edgeOrg(int edge, CV_OUT Point2f* orgpt) const
{
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
int vidx = qedges[edge >> 2].pt[edge & 3];
if( orgpt )
{
CV_DbgAssert((size_t)vidx < vtx.size());
*orgpt = vtx[vidx].pt;
}
return vidx;
}
int Subdiv2D::edgeDst(int edge, CV_OUT Point2f* dstpt) const
{
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
int vidx = qedges[edge >> 2].pt[(edge + 2) & 3];
if( dstpt )
{
CV_DbgAssert((size_t)vidx < vtx.size());
*dstpt = vtx[vidx].pt;
}
return vidx;
}
Point2f Subdiv2D::getVertex(int vertex, CV_OUT int* firstEdge) const
{
CV_DbgAssert((size_t)vertex < vtx.size());
if( firstEdge )
*firstEdge = vtx[vertex].firstEdge;
return vtx[vertex].pt;
}
Subdiv2D::Subdiv2D()
{
validGeometry = false;
freeQEdge = 0;
freePoint = 0;
recentEdge = 0;
}
Subdiv2D::Subdiv2D(Rect rect)
{
validGeometry = false;
freeQEdge = 0;
freePoint = 0;
recentEdge = 0;
initDelaunay(rect);
}
Subdiv2D::QuadEdge::QuadEdge()
{
next[0] = next[1] = next[2] = next[3] = 0;
pt[0] = pt[1] = pt[2] = pt[3] = 0;
}
Subdiv2D::QuadEdge::QuadEdge(int edgeidx)
{
CV_DbgAssert((edgeidx & 3) == 0);
next[0] = edgeidx;
next[1] = edgeidx+3;
next[2] = edgeidx+2;
next[3] = edgeidx+1;
pt[0] = pt[1] = pt[2] = pt[3] = 0;
}
bool Subdiv2D::QuadEdge::isfree() const
{
return next[0] <= 0;
}
Subdiv2D::Vertex::Vertex()
{
firstEdge = 0;
type = -1;
}
Subdiv2D::Vertex::Vertex(Point2f _pt, bool _isvirtual, int _firstEdge)
{
firstEdge = _firstEdge;
type = (int)_isvirtual;
pt = _pt;
}
bool Subdiv2D::Vertex::isvirtual() const
{
return type > 0;
}
bool Subdiv2D::Vertex::isfree() const
{
return type < 0;
}
void Subdiv2D::splice( int edgeA, int edgeB )
{
int& a_next = qedges[edgeA >> 2].next[edgeA & 3];
int& b_next = qedges[edgeB >> 2].next[edgeB & 3];
int a_rot = rotateEdge(a_next, 1);
int b_rot = rotateEdge(b_next, 1);
int& a_rot_next = qedges[a_rot >> 2].next[a_rot & 3];
int& b_rot_next = qedges[b_rot >> 2].next[b_rot & 3];
std::swap(a_next, b_next);
std::swap(a_rot_next, b_rot_next);
}
void Subdiv2D::setEdgePoints(int edge, int orgPt, int dstPt)
{
qedges[edge >> 2].pt[edge & 3] = orgPt;
qedges[edge >> 2].pt[(edge + 2) & 3] = dstPt;
vtx[orgPt].firstEdge = edge;
vtx[dstPt].firstEdge = edge ^ 2;
}
int Subdiv2D::connectEdges( int edgeA, int edgeB )
{
int edge = newEdge();
splice(edge, getEdge(edgeA, NEXT_AROUND_LEFT));
splice(symEdge(edge), edgeB);
setEdgePoints(edge, edgeDst(edgeA), edgeOrg(edgeB));
return edge;
}
void Subdiv2D::swapEdges( int edge )
{
int sedge = symEdge(edge);
int a = getEdge(edge, PREV_AROUND_ORG);
int b = getEdge(sedge, PREV_AROUND_ORG);
splice(edge, a);
splice(sedge, b);
setEdgePoints(edge, edgeDst(a), edgeDst(b));
splice(edge, getEdge(a, NEXT_AROUND_LEFT));
splice(sedge, getEdge(b, NEXT_AROUND_LEFT));
}
static double triangleArea( Point2f a, Point2f b, Point2f c )
{
return ((double)b.x - a.x) * ((double)c.y - a.y) - ((double)b.y - a.y) * ((double)c.x - a.x);
}
int Subdiv2D::isRightOf(Point2f pt, int edge) const
{
Point2f org, dst;
edgeOrg(edge, &org);
edgeDst(edge, &dst);
double cw_area = triangleArea( pt, dst, org );
return (cw_area > 0) - (cw_area < 0);
}
int Subdiv2D::newEdge()
{
if( freeQEdge <= 0 )
{
qedges.push_back(QuadEdge());
freeQEdge = (int)(qedges.size()-1);
}
int edge = freeQEdge*4;
freeQEdge = qedges[edge >> 2].next[1];
qedges[edge >> 2] = QuadEdge(edge);
return edge;
}
void Subdiv2D::deleteEdge(int edge)
{
CV_DbgAssert((size_t)(edge >> 2) < (size_t)qedges.size());
splice( edge, getEdge(edge, PREV_AROUND_ORG) );
int sedge = symEdge(edge);
splice(sedge, getEdge(sedge, PREV_AROUND_ORG) );
edge >>= 2;
qedges[edge].next[0] = 0;
qedges[edge].next[1] = freeQEdge;
freeQEdge = edge;
}
int Subdiv2D::newPoint(Point2f pt, bool isvirtual, int firstEdge)
{
if( freePoint == 0 )
{
vtx.push_back(Vertex());
freePoint = (int)(vtx.size()-1);
}
int vidx = freePoint;
freePoint = vtx[vidx].firstEdge;
vtx[vidx] = Vertex(pt, isvirtual, firstEdge);
return vidx;
}
void Subdiv2D::deletePoint(int vidx)
{
CV_DbgAssert( (size_t)vidx < vtx.size() );
vtx[vidx].firstEdge = freePoint;
vtx[vidx].type = -1;
freePoint = vidx;
}
int Subdiv2D::locate(Point2f pt, int& _edge, int& _vertex)
{
int vertex = 0;
int i, maxEdges = (int)(qedges.size() * 4);
if( qedges.size() < (size_t)4 )
CV_Error( CV_StsError, "Subdivision is empty" );
if( pt.x < topLeft.x || pt.y < topLeft.y || pt.x >= bottomRight.x || pt.y >= bottomRight.y )
CV_Error( CV_StsOutOfRange, "" );
int edge = recentEdge;
CV_Assert(edge > 0);
int location = PTLOC_ERROR;
int right_of_curr = isRightOf(pt, edge);
if( right_of_curr > 0 )
{
edge = symEdge(edge);
right_of_curr = -right_of_curr;
}
for( i = 0; i < maxEdges; i++ )
{
int onext_edge = nextEdge( edge );
int dprev_edge = getEdge( edge, PREV_AROUND_DST );
int right_of_onext = isRightOf( pt, onext_edge );
int right_of_dprev = isRightOf( pt, dprev_edge );
if( right_of_dprev > 0 )
{
if( right_of_onext > 0 || (right_of_onext == 0 && right_of_curr == 0) )
{
location = PTLOC_INSIDE;
break;
}
else
{
right_of_curr = right_of_onext;
edge = onext_edge;
}
}
else
{
if( right_of_onext > 0 )
{
if( right_of_dprev == 0 && right_of_curr == 0 )
{
location = PTLOC_INSIDE;
break;
}
else
{
right_of_curr = right_of_dprev;
edge = dprev_edge;
}
}
else if( right_of_curr == 0 &&
isRightOf( vtx[edgeDst(onext_edge)].pt, edge ) >= 0 )
{
edge = symEdge( edge );
}
else
{
right_of_curr = right_of_onext;
edge = onext_edge;
}
}
}
recentEdge = edge;
if( location == PTLOC_INSIDE )
{
Point2f org_pt, dst_pt;
edgeOrg(edge, &org_pt);
edgeDst(edge, &dst_pt);
double t1 = fabs( pt.x - org_pt.x );
t1 += fabs( pt.y - org_pt.y );
double t2 = fabs( pt.x - dst_pt.x );
t2 += fabs( pt.y - dst_pt.y );
double t3 = fabs( org_pt.x - dst_pt.x );
t3 += fabs( org_pt.y - dst_pt.y );
if( t1 < FLT_EPSILON )
{
location = PTLOC_VERTEX;
vertex = edgeOrg( edge );
edge = 0;
}
else if( t2 < FLT_EPSILON )
{
location = PTLOC_VERTEX;
vertex = edgeDst( edge );
edge = 0;
}
else if( (t1 < t3 || t2 < t3) &&
fabs( triangleArea( pt, org_pt, dst_pt )) < FLT_EPSILON )
{
location = PTLOC_ON_EDGE;
vertex = 0;
}
}
if( location == PTLOC_ERROR )
{
edge = 0;
vertex = 0;
}
_edge = edge;
_vertex = vertex;
return location;
}
inline int
isPtInCircle3( Point2f pt, Point2f a, Point2f b, Point2f c)
{
const double eps = FLT_EPSILON*0.125;
double val = ((double)a.x * a.x + (double)a.y * a.y) * triangleArea( b, c, pt );
val -= ((double)b.x * b.x + (double)b.y * b.y) * triangleArea( a, c, pt );
val += ((double)c.x * c.x + (double)c.y * c.y) * triangleArea( a, b, pt );
val -= ((double)pt.x * pt.x + (double)pt.y * pt.y) * triangleArea( a, b, c );
return val > eps ? 1 : val < -eps ? -1 : 0;
}
int Subdiv2D::insert(Point2f pt)
{
int curr_point = 0, curr_edge = 0, deleted_edge = 0;
int location = locate( pt, curr_edge, curr_point );
if( location == PTLOC_ERROR )
CV_Error( CV_StsBadSize, "" );
if( location == PTLOC_OUTSIDE_RECT )
CV_Error( CV_StsOutOfRange, "" );
if( location == PTLOC_VERTEX )
return curr_point;
if( location == PTLOC_ON_EDGE )
{
deleted_edge = curr_edge;
recentEdge = curr_edge = getEdge( curr_edge, PREV_AROUND_ORG );
deleteEdge(deleted_edge);
}
else if( location == PTLOC_INSIDE )
;
else
CV_Error_(CV_StsError, ("Subdiv2D::locate returned invalid location = %d", location) );
assert( curr_edge != 0 );
validGeometry = false;
curr_point = newPoint(pt, false);
int base_edge = newEdge();
int first_point = edgeOrg(curr_edge);
setEdgePoints(base_edge, first_point, curr_point);
splice(base_edge, curr_edge);
do
{
base_edge = connectEdges( curr_edge, symEdge(base_edge) );
curr_edge = getEdge(base_edge, PREV_AROUND_ORG);
}
while( edgeDst(curr_edge) != first_point );
curr_edge = getEdge( base_edge, PREV_AROUND_ORG );
int i, max_edges = (int)(qedges.size()*4);
for( i = 0; i < max_edges; i++ )
{
int temp_dst = 0, curr_org = 0, curr_dst = 0;
int temp_edge = getEdge( curr_edge, PREV_AROUND_ORG );
temp_dst = edgeDst( temp_edge );
curr_org = edgeOrg( curr_edge );
curr_dst = edgeDst( curr_edge );
if( isRightOf( vtx[temp_dst].pt, curr_edge ) > 0 &&
isPtInCircle3( vtx[curr_org].pt, vtx[temp_dst].pt,
vtx[curr_dst].pt, vtx[curr_point].pt ) < 0 )
{
swapEdges( curr_edge );
curr_edge = getEdge( curr_edge, PREV_AROUND_ORG );
}
else if( curr_org == first_point )
break;
else
curr_edge = getEdge( nextEdge( curr_edge ), PREV_AROUND_LEFT );
}
return curr_point;
}
void Subdiv2D::insert(const std::vector<Point2f>& ptvec)
{
for( size_t i = 0; i < ptvec.size(); i++ )
insert(ptvec[i]);
}
void Subdiv2D::initDelaunay( Rect rect )
{
float big_coord = 3.f * MAX( rect.width, rect.height );
float rx = (float)rect.x;
float ry = (float)rect.y;
vtx.clear();
qedges.clear();
recentEdge = 0;
validGeometry = false;
topLeft = Point2f( rx, ry );
bottomRight = Point2f( rx + rect.width, ry + rect.height );
Point2f ppA( rx + big_coord, ry );
Point2f ppB( rx, ry + big_coord );
Point2f ppC( rx - big_coord, ry - big_coord );
vtx.push_back(Vertex());
qedges.push_back(QuadEdge());
freeQEdge = 0;
freePoint = 0;
int pA = newPoint(ppA, false);
int pB = newPoint(ppB, false);
int pC = newPoint(ppC, false);
int edge_AB = newEdge();
int edge_BC = newEdge();
int edge_CA = newEdge();
setEdgePoints( edge_AB, pA, pB );
setEdgePoints( edge_BC, pB, pC );
setEdgePoints( edge_CA, pC, pA );
splice( edge_AB, symEdge( edge_CA ));
splice( edge_BC, symEdge( edge_AB ));
splice( edge_CA, symEdge( edge_BC ));
recentEdge = edge_AB;
}
void Subdiv2D::clearVoronoi()
{
size_t i, total = qedges.size();
for( i = 0; i < total; i++ )
qedges[i].pt[1] = qedges[i].pt[3] = 0;
total = vtx.size();
for( i = 0; i < total; i++ )
{
if( vtx[i].isvirtual() )
deletePoint((int)i);
}
validGeometry = false;
}
static Point2f computeVoronoiPoint(Point2f org0, Point2f dst0, Point2f org1, Point2f dst1)
{
double a0 = dst0.x - org0.x;
double b0 = dst0.y - org0.y;
double c0 = -0.5*(a0 * (dst0.x + org0.x) + b0 * (dst0.y + org0.y));
double a1 = dst1.x - org1.x;
double b1 = dst1.y - org1.y;
double c1 = -0.5*(a1 * (dst1.x + org1.x) + b1 * (dst1.y + org1.y));
double det = a0 * b1 - a1 * b0;
if( det != 0 )
{
det = 1. / det;
return Point2f((float) ((b0 * c1 - b1 * c0) * det),
(float) ((a1 * c0 - a0 * c1) * det));
}
return Point2f(FLT_MAX, FLT_MAX);
}
void Subdiv2D::calcVoronoi()
{
// check if it is already calculated
if( validGeometry )
return;
clearVoronoi();
int i, total = (int)qedges.size();
// loop through all quad-edges, except for the first 3 (#1, #2, #3 - 0 is reserved for "NULL" pointer)
for( i = 4; i < total; i++ )
{
QuadEdge& quadedge = qedges[i];
if( quadedge.isfree() )
continue;
int edge0 = (int)(i*4);
Point2f org0, dst0, org1, dst1;
if( !quadedge.pt[3] )
{
int edge1 = getEdge( edge0, NEXT_AROUND_LEFT );
int edge2 = getEdge( edge1, NEXT_AROUND_LEFT );
edgeOrg(edge0, &org0);
edgeDst(edge0, &dst0);
edgeOrg(edge1, &org1);
edgeDst(edge1, &dst1);
Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1);
if( fabs( virt_point.x ) < FLT_MAX * 0.5 &&
fabs( virt_point.y ) < FLT_MAX * 0.5 )
{
quadedge.pt[3] = qedges[edge1 >> 2].pt[3 - (edge1 & 2)] =
qedges[edge2 >> 2].pt[3 - (edge2 & 2)] = newPoint(virt_point, true);
}
}
if( !quadedge.pt[1] )
{
int edge1 = getEdge( edge0, NEXT_AROUND_RIGHT );
int edge2 = getEdge( edge1, NEXT_AROUND_RIGHT );
edgeOrg(edge0, &org0);
edgeDst(edge0, &dst0);
edgeOrg(edge1, &org1);
edgeDst(edge1, &dst1);
Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1);
if( fabs( virt_point.x ) < FLT_MAX * 0.5 &&
fabs( virt_point.y ) < FLT_MAX * 0.5 )
{
quadedge.pt[1] = qedges[edge1 >> 2].pt[1 + (edge1 & 2)] =
qedges[edge2 >> 2].pt[1 + (edge2 & 2)] = newPoint(virt_point, true);
}
}
}
validGeometry = true;
}
static int
isRightOf2( const Point2f& pt, const Point2f& org, const Point2f& diff )
{
double cw_area = ((double)org.x - pt.x)*diff.y - ((double)org.y - pt.y)*diff.x;
return (cw_area > 0) - (cw_area < 0);
}
int Subdiv2D::findNearest(Point2f pt, Point2f* nearestPt)
{
if( !validGeometry )
calcVoronoi();
int vertex = 0, edge = 0;
int loc = locate( pt, edge, vertex );
if( loc != PTLOC_ON_EDGE && loc != PTLOC_INSIDE )
return vertex;
vertex = 0;
Point2f start;
edgeOrg(edge, &start);
Point2f diff = pt - start;
edge = rotateEdge(edge, 1);
int i, total = (int)vtx.size();
for( i = 0; i < total; i++ )
{
Point2f t;
for(;;)
{
CV_Assert( edgeDst(edge, &t) > 0 );
if( isRightOf2( t, start, diff ) >= 0 )
break;
edge = getEdge( edge, NEXT_AROUND_LEFT );
}
for(;;)
{
CV_Assert( edgeOrg( edge, &t ) > 0 );
if( isRightOf2( t, start, diff ) < 0 )
break;
edge = getEdge( edge, PREV_AROUND_LEFT );
}
Point2f tempDiff;
edgeDst(edge, &tempDiff);
edgeOrg(edge, &t);
tempDiff -= t;
if( isRightOf2( pt, t, tempDiff ) >= 0 )
{
vertex = edgeOrg(rotateEdge( edge, 3 ));
break;
}
edge = symEdge( edge );
}
if( nearestPt && vertex > 0 )
*nearestPt = vtx[vertex].pt;
return vertex;
}
void Subdiv2D::getEdgeList(std::vector<Vec4f>& edgeList) const
{
edgeList.clear();
for( size_t i = 4; i < qedges.size(); i++ )
{
if( qedges[i].isfree() )
continue;
if( qedges[i].pt[0] > 0 && qedges[i].pt[2] > 0 )
{
Point2f org = vtx[qedges[i].pt[0]].pt;
Point2f dst = vtx[qedges[i].pt[2]].pt;
edgeList.push_back(Vec4f(org.x, org.y, dst.x, dst.y));
}
}
}
void Subdiv2D::getTriangleList(std::vector<Vec6f>& triangleList) const
{
triangleList.clear();
int i, total = (int)(qedges.size()*4);
std::vector<bool> edgemask(total, false);
for( i = 4; i < total; i += 2 )
{
if( edgemask[i] )
continue;
Point2f a, b, c;
int edge = i;
edgeOrg(edge, &a);
edgemask[edge] = true;
edge = getEdge(edge, NEXT_AROUND_LEFT);
edgeOrg(edge, &b);
edgemask[edge] = true;
edge = getEdge(edge, NEXT_AROUND_LEFT);
edgeOrg(edge, &c);
edgemask[edge] = true;
triangleList.push_back(Vec6f(a.x, a.y, b.x, b.y, c.x, c.y));
}
}
void Subdiv2D::getVoronoiFacetList(const std::vector<int>& idx,
CV_OUT std::vector<std::vector<Point2f> >& facetList,
CV_OUT std::vector<Point2f>& facetCenters)
{
calcVoronoi();
facetList.clear();
facetCenters.clear();
std::vector<Point2f> buf;
size_t i, total;
if( idx.empty() )
i = 4, total = vtx.size();
else
i = 0, total = idx.size();
for( ; i < total; i++ )
{
int k = idx.empty() ? (int)i : idx[i];
if( vtx[k].isfree() || vtx[k].isvirtual() )
continue;
int edge = rotateEdge(vtx[k].firstEdge, 1), t = edge;
// gather points
buf.clear();
do
{
buf.push_back(vtx[edgeOrg(t)].pt);
t = getEdge( t, NEXT_AROUND_LEFT );
}
while( t != edge );
facetList.push_back(buf);
facetCenters.push_back(vtx[k].pt);
}
}
void Subdiv2D::checkSubdiv() const
{
int i, j, total = (int)qedges.size();
for( i = 0; i < total; i++ )
{
const QuadEdge& qe = qedges[i];
if( qe.isfree() )
continue;
for( j = 0; j < 4; j++ )
{
int e = (int)(i*4 + j);
int o_next = nextEdge(e);
int o_prev = getEdge(e, PREV_AROUND_ORG );
int d_prev = getEdge(e, PREV_AROUND_DST );
int d_next = getEdge(e, NEXT_AROUND_DST );
// check points
CV_Assert( edgeOrg(e) == edgeOrg(o_next));
CV_Assert( edgeOrg(e) == edgeOrg(o_prev));
CV_Assert( edgeDst(e) == edgeDst(d_next));
CV_Assert( edgeDst(e) == edgeDst(d_prev));
if( j % 2 == 0 )
{
CV_Assert( edgeDst(o_next) == edgeOrg(d_prev));
CV_Assert( edgeDst(o_prev) == edgeOrg(d_next));
CV_Assert( getEdge(getEdge(getEdge(e,NEXT_AROUND_LEFT),NEXT_AROUND_LEFT),NEXT_AROUND_LEFT) == e );
CV_Assert( getEdge(getEdge(getEdge(e,NEXT_AROUND_RIGHT),NEXT_AROUND_RIGHT),NEXT_AROUND_RIGHT) == e);
}
}
}
}
}
/* End of file. */