mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
89 lines
2.9 KiB
89 lines
2.9 KiB
#ifndef _OPENCV_HAARFEATURES_H_ |
|
#define _OPENCV_HAARFEATURES_H_ |
|
|
|
#include "traincascade_features.h" |
|
|
|
#define CV_HAAR_FEATURE_MAX 3 |
|
|
|
#define HFP_NAME "haarFeatureParams" |
|
class CvHaarFeatureParams : public CvFeatureParams |
|
{ |
|
public: |
|
enum { BASIC = 0, CORE = 1, ALL = 2 }; |
|
/* 0 - BASIC = Viola |
|
* 1 - CORE = All upright |
|
* 2 - ALL = All features */ |
|
|
|
CvHaarFeatureParams(); |
|
CvHaarFeatureParams( int _mode ); |
|
|
|
virtual void init( const CvFeatureParams& fp ); |
|
virtual void write( FileStorage &fs ) const; |
|
virtual bool read( const FileNode &node ); |
|
|
|
virtual void printDefaults() const; |
|
virtual void printAttrs() const; |
|
virtual bool scanAttr( const String prm, const String val); |
|
|
|
int mode; |
|
}; |
|
|
|
class CvHaarEvaluator : public CvFeatureEvaluator |
|
{ |
|
public: |
|
virtual void init(const CvFeatureParams *_featureParams, |
|
int _maxSampleCount, Size _winSize ); |
|
virtual void setImage(const Mat& img, uchar clsLabel, int idx); |
|
virtual float operator()(int featureIdx, int sampleIdx) const; |
|
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const; |
|
void writeFeature( FileStorage &fs, int fi ) const; // for old file fornat |
|
protected: |
|
virtual void generateFeatures(); |
|
|
|
class Feature |
|
{ |
|
public: |
|
Feature(); |
|
Feature( int offset, bool _tilted, |
|
int x0, int y0, int w0, int h0, float wt0, |
|
int x1, int y1, int w1, int h1, float wt1, |
|
int x2 = 0, int y2 = 0, int w2 = 0, int h2 = 0, float wt2 = 0.0F ); |
|
float calc( const Mat &sum, const Mat &tilted, size_t y) const; |
|
void write( FileStorage &fs ) const; |
|
|
|
bool tilted; |
|
struct |
|
{ |
|
Rect r; |
|
float weight; |
|
} rect[CV_HAAR_FEATURE_MAX]; |
|
|
|
struct |
|
{ |
|
int p0, p1, p2, p3; |
|
} fastRect[CV_HAAR_FEATURE_MAX]; |
|
}; |
|
|
|
vector<Feature> features; |
|
Mat sum; /* sum images (each row represents image) */ |
|
Mat tilted; /* tilted sum images (each row represents image) */ |
|
Mat normfactor; /* normalization factor */ |
|
}; |
|
|
|
inline float CvHaarEvaluator::operator()(int featureIdx, int sampleIdx) const |
|
{ |
|
float nf = normfactor.at<float>(0, sampleIdx); |
|
return !nf ? 0.0f : (features[featureIdx].calc( sum, tilted, sampleIdx)/nf); |
|
} |
|
|
|
inline float CvHaarEvaluator::Feature::calc( const Mat &_sum, const Mat &_tilted, size_t y) const |
|
{ |
|
const int* img = tilted ? _tilted.ptr<int>((int)y) : _sum.ptr<int>((int)y); |
|
float ret = rect[0].weight * (img[fastRect[0].p0] - img[fastRect[0].p1] - img[fastRect[0].p2] + img[fastRect[0].p3] ) + |
|
rect[1].weight * (img[fastRect[1].p0] - img[fastRect[1].p1] - img[fastRect[1].p2] + img[fastRect[1].p3] ); |
|
if( rect[2].weight != 0.0f ) |
|
ret += rect[2].weight * (img[fastRect[2].p0] - img[fastRect[2].p1] - img[fastRect[2].p2] + img[fastRect[2].p3] ); |
|
return ret; |
|
} |
|
|
|
#endif
|
|
|