mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
5.8 KiB
217 lines
5.8 KiB
#ifndef CV2_NUMPY_HPP |
|
#define CV2_NUMPY_HPP |
|
|
|
#include "cv2.hpp" |
|
#include "opencv2/core.hpp" |
|
|
|
class NumpyAllocator : public cv::MatAllocator |
|
{ |
|
public: |
|
NumpyAllocator() { stdAllocator = cv::Mat::getStdAllocator(); } |
|
~NumpyAllocator() {} |
|
|
|
cv::UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const; |
|
cv::UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, cv::AccessFlag flags, cv::UMatUsageFlags usageFlags) const CV_OVERRIDE; |
|
bool allocate(cv::UMatData* u, cv::AccessFlag accessFlags, cv::UMatUsageFlags usageFlags) const CV_OVERRIDE; |
|
void deallocate(cv::UMatData* u) const CV_OVERRIDE; |
|
|
|
const cv::MatAllocator* stdAllocator; |
|
}; |
|
|
|
extern NumpyAllocator g_numpyAllocator; |
|
|
|
//====================================================================================================================== |
|
|
|
// HACK(?): function from cv2_util.hpp |
|
extern int failmsg(const char *fmt, ...); |
|
|
|
namespace { |
|
|
|
template<class T> |
|
NPY_TYPES asNumpyType() |
|
{ |
|
return NPY_OBJECT; |
|
} |
|
|
|
template<> |
|
NPY_TYPES asNumpyType<bool>() |
|
{ |
|
return NPY_BOOL; |
|
} |
|
|
|
#define CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(src, dst) \ |
|
template<> \ |
|
NPY_TYPES asNumpyType<src>() \ |
|
{ \ |
|
return NPY_##dst; \ |
|
} \ |
|
template<> \ |
|
NPY_TYPES asNumpyType<u##src>() \ |
|
{ \ |
|
return NPY_U##dst; \ |
|
} |
|
|
|
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int8_t, INT8) |
|
|
|
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int16_t, INT16) |
|
|
|
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int32_t, INT32) |
|
|
|
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int64_t, INT64) |
|
|
|
#undef CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION |
|
|
|
template<> |
|
NPY_TYPES asNumpyType<float>() |
|
{ |
|
return NPY_FLOAT; |
|
} |
|
|
|
template<> |
|
NPY_TYPES asNumpyType<double>() |
|
{ |
|
return NPY_DOUBLE; |
|
} |
|
|
|
template <class T> |
|
PyArray_Descr* getNumpyTypeDescriptor() |
|
{ |
|
return PyArray_DescrFromType(asNumpyType<T>()); |
|
} |
|
|
|
template <> |
|
PyArray_Descr* getNumpyTypeDescriptor<size_t>() |
|
{ |
|
#if SIZE_MAX == ULONG_MAX |
|
return PyArray_DescrFromType(NPY_ULONG); |
|
#elif SIZE_MAX == ULLONG_MAX |
|
return PyArray_DescrFromType(NPY_ULONGLONG); |
|
#else |
|
return PyArray_DescrFromType(NPY_UINT); |
|
#endif |
|
} |
|
|
|
template <class T, class U> |
|
bool isRepresentable(U value) { |
|
return (std::numeric_limits<T>::min() <= value) && (value <= std::numeric_limits<T>::max()); |
|
} |
|
|
|
template<class T> |
|
bool canBeSafelyCasted(PyObject* obj, PyArray_Descr* to) |
|
{ |
|
return PyArray_CanCastTo(PyArray_DescrFromScalar(obj), to) != 0; |
|
} |
|
|
|
|
|
template<> |
|
bool canBeSafelyCasted<size_t>(PyObject* obj, PyArray_Descr* to) |
|
{ |
|
PyArray_Descr* from = PyArray_DescrFromScalar(obj); |
|
if (PyArray_CanCastTo(from, to)) |
|
{ |
|
return true; |
|
} |
|
else |
|
{ |
|
// False negative scenarios: |
|
// - Signed input is positive so it can be safely cast to unsigned output |
|
// - Input has wider limits but value is representable within output limits |
|
// - All the above |
|
if (PyDataType_ISSIGNED(from)) |
|
{ |
|
int64_t input = 0; |
|
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<int64_t>()); |
|
return (input >= 0) && isRepresentable<size_t>(static_cast<uint64_t>(input)); |
|
} |
|
else |
|
{ |
|
uint64_t input = 0; |
|
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<uint64_t>()); |
|
return isRepresentable<size_t>(input); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
|
|
template<class T> |
|
bool parseNumpyScalar(PyObject* obj, T& value) |
|
{ |
|
if (PyArray_CheckScalar(obj)) |
|
{ |
|
// According to the numpy documentation: |
|
// There are 21 statically-defined PyArray_Descr objects for the built-in data-types |
|
// So descriptor pointer is not owning. |
|
PyArray_Descr* to = getNumpyTypeDescriptor<T>(); |
|
if (canBeSafelyCasted<T>(obj, to)) |
|
{ |
|
PyArray_CastScalarToCtype(obj, &value, to); |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
|
|
struct SafeSeqItem |
|
{ |
|
PyObject * item; |
|
SafeSeqItem(PyObject *obj, size_t idx) { item = PySequence_GetItem(obj, idx); } |
|
~SafeSeqItem() { Py_XDECREF(item); } |
|
|
|
private: |
|
SafeSeqItem(const SafeSeqItem&); // = delete |
|
SafeSeqItem& operator=(const SafeSeqItem&); // = delete |
|
}; |
|
|
|
template <class T> |
|
class RefWrapper |
|
{ |
|
public: |
|
RefWrapper(T& item) : item_(item) {} |
|
|
|
T& get() CV_NOEXCEPT { return item_; } |
|
|
|
private: |
|
T& item_; |
|
}; |
|
|
|
// In order to support this conversion on 3.x branch - use custom reference_wrapper |
|
// and C-style array instead of std::array<T, N> |
|
template <class T, std::size_t N> |
|
bool parseSequence(PyObject* obj, RefWrapper<T> (&value)[N], const ArgInfo& info) |
|
{ |
|
if (!obj || obj == Py_None) |
|
{ |
|
return true; |
|
} |
|
if (!PySequence_Check(obj)) |
|
{ |
|
failmsg("Can't parse '%s'. Input argument doesn't provide sequence " |
|
"protocol", info.name); |
|
return false; |
|
} |
|
const std::size_t sequenceSize = PySequence_Size(obj); |
|
if (sequenceSize != N) |
|
{ |
|
failmsg("Can't parse '%s'. Expected sequence length %lu, got %lu", |
|
info.name, N, sequenceSize); |
|
return false; |
|
} |
|
for (std::size_t i = 0; i < N; ++i) |
|
{ |
|
SafeSeqItem seqItem(obj, i); |
|
if (!pyopencv_to(seqItem.item, value[i].get(), info)) |
|
{ |
|
failmsg("Can't parse '%s'. Sequence item with index %lu has a " |
|
"wrong type", info.name, i); |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
} // namespace |
|
|
|
|
|
#endif // CV2_NUMPY_HPP
|
|
|