mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4023 lines
128 KiB
4023 lines
128 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
////////////////////////////////////////////////////////////////////////////////////////// |
|
/////////////////// tests for matrix operations and math functions /////////////////////// |
|
////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
#include "test_precomp.hpp" |
|
#include <float.h> |
|
#include <math.h> |
|
#include "opencv2/core/softfloat.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
/// !!! NOTE !!! These tests happily avoid overflow cases & out-of-range arguments |
|
/// so that output arrays contain neigher Inf's nor Nan's. |
|
/// Handling such cases would require special modification of check function |
|
/// (validate_test_results) => TBD. |
|
/// Also, need some logarithmic-scale generation of input data. Right now it is done (in some tests) |
|
/// by generating min/max boundaries for random data in logarimithic scale, but |
|
/// within the same test case all the input array elements are of the same order. |
|
|
|
class Core_MathTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
typedef cvtest::ArrayTest Base; |
|
Core_MathTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, |
|
vector<vector<int> >& types); |
|
double get_success_error_level( int /*test_case_idx*/, int i, int j ); |
|
bool test_nd; |
|
}; |
|
|
|
|
|
Core_MathTest::Core_MathTest() |
|
{ |
|
optional_mask = false; |
|
|
|
test_array[INPUT].push_back(NULL); |
|
test_array[OUTPUT].push_back(NULL); |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
|
|
test_nd = false; |
|
} |
|
|
|
|
|
double Core_MathTest::get_success_error_level( int /*test_case_idx*/, int i, int j ) |
|
{ |
|
return test_mat[i][j].depth() == CV_32F ? FLT_EPSILON*128 : DBL_EPSILON*1024; |
|
} |
|
|
|
|
|
void Core_MathTest::get_test_array_types_and_sizes( int test_case_idx, |
|
vector<vector<Size> >& sizes, |
|
vector<vector<int> >& types) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int depth = cvtest::randInt(rng)%2 + CV_32F; |
|
int cn = cvtest::randInt(rng) % 4 + 1, type = CV_MAKETYPE(depth, cn); |
|
size_t i, j; |
|
Base::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
|
|
for( i = 0; i < test_array.size(); i++ ) |
|
{ |
|
size_t count = test_array[i].size(); |
|
for( j = 0; j < count; j++ ) |
|
types[i][j] = type; |
|
} |
|
test_nd = cvtest::randInt(rng)%3 == 0; |
|
} |
|
|
|
|
|
////////// pow ///////////// |
|
|
|
class Core_PowTest : public Core_MathTest |
|
{ |
|
public: |
|
typedef Core_MathTest Base; |
|
Core_PowTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, |
|
vector<vector<Size> >& sizes, |
|
vector<vector<int> >& types ); |
|
void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
double power; |
|
}; |
|
|
|
|
|
Core_PowTest::Core_PowTest() |
|
{ |
|
power = 0; |
|
} |
|
|
|
|
|
void Core_PowTest::get_test_array_types_and_sizes( int test_case_idx, |
|
vector<vector<Size> >& sizes, |
|
vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int depth = cvtest::randInt(rng) % (CV_64F+1); |
|
int cn = cvtest::randInt(rng) % 4 + 1; |
|
size_t i, j; |
|
Base::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
depth += depth == CV_8S; |
|
|
|
if( depth < CV_32F || cvtest::randInt(rng)%8 == 0 ) |
|
// integer power |
|
power = (int)(cvtest::randInt(rng)%21 - 10); |
|
else |
|
{ |
|
i = cvtest::randInt(rng)%17; |
|
power = i == 16 ? 1./3 : i == 15 ? 0.5 : i == 14 ? -0.5 : cvtest::randReal(rng)*10 - 5; |
|
} |
|
|
|
for( i = 0; i < test_array.size(); i++ ) |
|
{ |
|
size_t count = test_array[i].size(); |
|
int type = CV_MAKETYPE(depth, cn); |
|
for( j = 0; j < count; j++ ) |
|
types[i][j] = type; |
|
} |
|
test_nd = cvtest::randInt(rng)%3 == 0; |
|
} |
|
|
|
|
|
double Core_PowTest::get_success_error_level( int test_case_idx, int i, int j ) |
|
{ |
|
int depth = test_mat[i][j].depth(); |
|
if( depth < CV_32F ) |
|
return power == cvRound(power) && power >= 0 ? 0 : 1; |
|
else |
|
{ |
|
return depth != CV_64F ? Base::get_success_error_level( test_case_idx, i, j ) : DBL_EPSILON*1024*1.1; |
|
} |
|
} |
|
|
|
|
|
void Core_PowTest::get_minmax_bounds( int /*i*/, int /*j*/, int type, Scalar& low, Scalar& high ) |
|
{ |
|
double l, u = cvtest::randInt(ts->get_rng())%1000 + 1; |
|
if( power > 0 ) |
|
{ |
|
double mval = cvtest::getMaxVal(type); |
|
double u1 = pow(mval,1./power)*2; |
|
u = MIN(u,u1); |
|
} |
|
|
|
l = power == cvRound(power) ? -u : FLT_EPSILON; |
|
low = Scalar::all(l); |
|
high = Scalar::all(u); |
|
} |
|
|
|
|
|
void Core_PowTest::run_func() |
|
{ |
|
if(!test_nd) |
|
{ |
|
if( fabs(power-1./3) <= DBL_EPSILON && test_mat[INPUT][0].depth() == CV_32F ) |
|
{ |
|
Mat a = test_mat[INPUT][0], b = test_mat[OUTPUT][0]; |
|
|
|
a = a.reshape(1); |
|
b = b.reshape(1); |
|
for( int i = 0; i < a.rows; i++ ) |
|
{ |
|
b.at<float>(i,0) = (float)fabs(cvCbrt(a.at<float>(i,0))); |
|
for( int j = 1; j < a.cols; j++ ) |
|
b.at<float>(i,j) = (float)fabs(cv::cubeRoot(a.at<float>(i,j))); |
|
} |
|
} |
|
else |
|
cvPow( test_array[INPUT][0], test_array[OUTPUT][0], power ); |
|
} |
|
else |
|
{ |
|
Mat& a = test_mat[INPUT][0]; |
|
Mat& b = test_mat[OUTPUT][0]; |
|
if(power == 0.5) |
|
cv::sqrt(a, b); |
|
else |
|
cv::pow(a, power, b); |
|
} |
|
} |
|
|
|
|
|
inline static int ipow( int a, int power ) |
|
{ |
|
int b = 1; |
|
while( power > 0 ) |
|
{ |
|
if( power&1 ) |
|
b *= a, power--; |
|
else |
|
a *= a, power >>= 1; |
|
} |
|
return b; |
|
} |
|
|
|
|
|
inline static double ipow( double a, int power ) |
|
{ |
|
double b = 1.; |
|
while( power > 0 ) |
|
{ |
|
if( power&1 ) |
|
b *= a, power--; |
|
else |
|
a *= a, power >>= 1; |
|
} |
|
return b; |
|
} |
|
|
|
|
|
void Core_PowTest::prepare_to_validation( int /*test_case_idx*/ ) |
|
{ |
|
const Mat& a = test_mat[INPUT][0]; |
|
Mat& b = test_mat[REF_OUTPUT][0]; |
|
|
|
int depth = a.depth(); |
|
int ncols = a.cols*a.channels(); |
|
int ipower = cvRound(power), apower = abs(ipower); |
|
int i, j; |
|
|
|
for( i = 0; i < a.rows; i++ ) |
|
{ |
|
const uchar* a_data = a.ptr(i); |
|
uchar* b_data = b.ptr(i); |
|
|
|
switch( depth ) |
|
{ |
|
case CV_8U: |
|
if( ipower < 0 ) |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
int val = ((uchar*)a_data)[j]; |
|
((uchar*)b_data)[j] = (uchar)(val == 0 ? 255 : val == 1 ? 1 : |
|
val == 2 && ipower == -1 ? 1 : 0); |
|
} |
|
else |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
int val = ((uchar*)a_data)[j]; |
|
val = ipow( val, ipower ); |
|
((uchar*)b_data)[j] = saturate_cast<uchar>(val); |
|
} |
|
break; |
|
case CV_8S: |
|
if( ipower < 0 ) |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
int val = ((schar*)a_data)[j]; |
|
((schar*)b_data)[j] = (schar)(val == 0 ? 127 : val == 1 ? 1 : |
|
val ==-1 ? 1-2*(ipower&1) : |
|
val == 2 && ipower == -1 ? 1 : 0); |
|
} |
|
else |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
int val = ((schar*)a_data)[j]; |
|
val = ipow( val, ipower ); |
|
((schar*)b_data)[j] = saturate_cast<schar>(val); |
|
} |
|
break; |
|
case CV_16U: |
|
if( ipower < 0 ) |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
int val = ((ushort*)a_data)[j]; |
|
((ushort*)b_data)[j] = (ushort)(val == 0 ? 65535 : val == 1 ? 1 : |
|
val ==-1 ? 1-2*(ipower&1) : |
|
val == 2 && ipower == -1 ? 1 : 0); |
|
} |
|
else |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
int val = ((ushort*)a_data)[j]; |
|
val = ipow( val, ipower ); |
|
((ushort*)b_data)[j] = saturate_cast<ushort>(val); |
|
} |
|
break; |
|
case CV_16S: |
|
if( ipower < 0 ) |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
int val = ((short*)a_data)[j]; |
|
((short*)b_data)[j] = (short)(val == 0 ? 32767 : val == 1 ? 1 : |
|
val ==-1 ? 1-2*(ipower&1) : |
|
val == 2 && ipower == -1 ? 1 : 0); |
|
} |
|
else |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
int val = ((short*)a_data)[j]; |
|
val = ipow( val, ipower ); |
|
((short*)b_data)[j] = saturate_cast<short>(val); |
|
} |
|
break; |
|
case CV_32S: |
|
if( ipower < 0 ) |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
int val = ((int*)a_data)[j]; |
|
((int*)b_data)[j] = val == 0 ? INT_MAX : val == 1 ? 1 : |
|
val ==-1 ? 1-2*(ipower&1) : |
|
val == 2 && ipower == -1 ? 1 : 0; |
|
} |
|
else |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
int val = ((int*)a_data)[j]; |
|
val = ipow( val, ipower ); |
|
((int*)b_data)[j] = val; |
|
} |
|
break; |
|
case CV_32F: |
|
if( power != ipower ) |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
double val = ((float*)a_data)[j]; |
|
val = pow( fabs(val), power ); |
|
((float*)b_data)[j] = (float)val; |
|
} |
|
else |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
double val = ((float*)a_data)[j]; |
|
if( ipower < 0 ) |
|
val = 1./val; |
|
val = ipow( val, apower ); |
|
((float*)b_data)[j] = (float)val; |
|
} |
|
break; |
|
case CV_64F: |
|
if( power != ipower ) |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
double val = ((double*)a_data)[j]; |
|
val = pow( fabs(val), power ); |
|
((double*)b_data)[j] = (double)val; |
|
} |
|
else |
|
for( j = 0; j < ncols; j++ ) |
|
{ |
|
double val = ((double*)a_data)[j]; |
|
if( ipower < 0 ) |
|
val = 1./val; |
|
val = ipow( val, apower ); |
|
((double*)b_data)[j] = (double)val; |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
|
|
///////////////////////////////////////// matrix tests //////////////////////////////////////////// |
|
|
|
class Core_MatrixTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
typedef cvtest::ArrayTest Base; |
|
Core_MatrixTest( int in_count, int out_count, |
|
bool allow_int, bool scalar_output, int max_cn ); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, |
|
vector<vector<Size> >& sizes, |
|
vector<vector<int> >& types ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
bool allow_int; |
|
bool scalar_output; |
|
int max_cn; |
|
}; |
|
|
|
|
|
Core_MatrixTest::Core_MatrixTest( int in_count, int out_count, |
|
bool _allow_int, bool _scalar_output, int _max_cn ) |
|
: allow_int(_allow_int), scalar_output(_scalar_output), max_cn(_max_cn) |
|
{ |
|
int i; |
|
for( i = 0; i < in_count; i++ ) |
|
test_array[INPUT].push_back(NULL); |
|
|
|
for( i = 0; i < out_count; i++ ) |
|
{ |
|
test_array[OUTPUT].push_back(NULL); |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
} |
|
|
|
element_wise_relative_error = false; |
|
} |
|
|
|
|
|
void Core_MatrixTest::get_test_array_types_and_sizes( int test_case_idx, |
|
vector<vector<Size> >& sizes, |
|
vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int depth = cvtest::randInt(rng) % (allow_int ? CV_64F+1 : 2); |
|
int cn = cvtest::randInt(rng) % max_cn + 1; |
|
size_t i, j; |
|
|
|
if( allow_int ) |
|
depth += depth == CV_8S; |
|
else |
|
depth += CV_32F; |
|
|
|
Base::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
|
|
for( i = 0; i < test_array.size(); i++ ) |
|
{ |
|
size_t count = test_array[i].size(); |
|
int flag = (i == OUTPUT || i == REF_OUTPUT) && scalar_output; |
|
int type = !flag ? CV_MAKETYPE(depth, cn) : CV_64FC1; |
|
|
|
for( j = 0; j < count; j++ ) |
|
{ |
|
types[i][j] = type; |
|
if( flag ) |
|
sizes[i][j] = Size( 4, 1 ); |
|
} |
|
} |
|
} |
|
|
|
|
|
double Core_MatrixTest::get_success_error_level( int test_case_idx, int i, int j ) |
|
{ |
|
int input_depth = test_mat[INPUT][0].depth(); |
|
double input_precision = input_depth < CV_32F ? 0 : input_depth == CV_32F ? 5e-5 : 5e-10; |
|
double output_precision = Base::get_success_error_level( test_case_idx, i, j ); |
|
return MAX(input_precision, output_precision); |
|
} |
|
|
|
|
|
///////////////// Trace ///////////////////// |
|
|
|
class Core_TraceTest : public Core_MatrixTest |
|
{ |
|
public: |
|
Core_TraceTest(); |
|
protected: |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
}; |
|
|
|
|
|
Core_TraceTest::Core_TraceTest() : Core_MatrixTest( 1, 1, true, true, 4 ) |
|
{ |
|
} |
|
|
|
|
|
void Core_TraceTest::run_func() |
|
{ |
|
test_mat[OUTPUT][0].at<Scalar>(0,0) = cvTrace(test_array[INPUT][0]); |
|
} |
|
|
|
|
|
void Core_TraceTest::prepare_to_validation( int ) |
|
{ |
|
Mat& mat = test_mat[INPUT][0]; |
|
int count = MIN( mat.rows, mat.cols ); |
|
Mat diag(count, 1, mat.type(), mat.ptr(), mat.step + mat.elemSize()); |
|
Scalar r = cvtest::mean(diag); |
|
r *= (double)count; |
|
|
|
test_mat[REF_OUTPUT][0].at<Scalar>(0,0) = r; |
|
} |
|
|
|
|
|
///////// dotproduct ////////// |
|
|
|
class Core_DotProductTest : public Core_MatrixTest |
|
{ |
|
public: |
|
Core_DotProductTest(); |
|
protected: |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
}; |
|
|
|
|
|
Core_DotProductTest::Core_DotProductTest() : Core_MatrixTest( 2, 1, true, true, 4 ) |
|
{ |
|
} |
|
|
|
|
|
void Core_DotProductTest::run_func() |
|
{ |
|
test_mat[OUTPUT][0].at<Scalar>(0,0) = Scalar(cvDotProduct( test_array[INPUT][0], test_array[INPUT][1] )); |
|
} |
|
|
|
|
|
void Core_DotProductTest::prepare_to_validation( int ) |
|
{ |
|
test_mat[REF_OUTPUT][0].at<Scalar>(0,0) = Scalar(cvtest::crossCorr( test_mat[INPUT][0], test_mat[INPUT][1] )); |
|
} |
|
|
|
|
|
///////// crossproduct ////////// |
|
|
|
class Core_CrossProductTest : public Core_MatrixTest |
|
{ |
|
public: |
|
Core_CrossProductTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, |
|
vector<vector<Size> >& sizes, |
|
vector<vector<int> >& types ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
}; |
|
|
|
|
|
Core_CrossProductTest::Core_CrossProductTest() : Core_MatrixTest( 2, 1, false, false, 1 ) |
|
{ |
|
} |
|
|
|
|
|
void Core_CrossProductTest::get_test_array_types_and_sizes( int, |
|
vector<vector<Size> >& sizes, |
|
vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int depth = cvtest::randInt(rng) % 2 + CV_32F; |
|
int cn = cvtest::randInt(rng) & 1 ? 3 : 1, type = CV_MAKETYPE(depth, cn); |
|
Size sz; |
|
|
|
types[INPUT][0] = types[INPUT][1] = types[OUTPUT][0] = types[REF_OUTPUT][0] = type; |
|
|
|
if( cn == 3 ) |
|
sz = Size(1,1); |
|
else if( cvtest::randInt(rng) & 1 ) |
|
sz = Size(3,1); |
|
else |
|
sz = Size(1,3); |
|
|
|
sizes[INPUT][0] = sizes[INPUT][1] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = sz; |
|
} |
|
|
|
|
|
void Core_CrossProductTest::run_func() |
|
{ |
|
cvCrossProduct( test_array[INPUT][0], test_array[INPUT][1], test_array[OUTPUT][0] ); |
|
} |
|
|
|
|
|
void Core_CrossProductTest::prepare_to_validation( int ) |
|
{ |
|
cv::Scalar a, b, c; |
|
|
|
if( test_mat[INPUT][0].rows > 1 ) |
|
{ |
|
a.val[0] = cvGetReal2D( test_array[INPUT][0], 0, 0 ); |
|
a.val[1] = cvGetReal2D( test_array[INPUT][0], 1, 0 ); |
|
a.val[2] = cvGetReal2D( test_array[INPUT][0], 2, 0 ); |
|
|
|
b.val[0] = cvGetReal2D( test_array[INPUT][1], 0, 0 ); |
|
b.val[1] = cvGetReal2D( test_array[INPUT][1], 1, 0 ); |
|
b.val[2] = cvGetReal2D( test_array[INPUT][1], 2, 0 ); |
|
} |
|
else if( test_mat[INPUT][0].cols > 1 ) |
|
{ |
|
a.val[0] = cvGetReal1D( test_array[INPUT][0], 0 ); |
|
a.val[1] = cvGetReal1D( test_array[INPUT][0], 1 ); |
|
a.val[2] = cvGetReal1D( test_array[INPUT][0], 2 ); |
|
|
|
b.val[0] = cvGetReal1D( test_array[INPUT][1], 0 ); |
|
b.val[1] = cvGetReal1D( test_array[INPUT][1], 1 ); |
|
b.val[2] = cvGetReal1D( test_array[INPUT][1], 2 ); |
|
} |
|
else |
|
{ |
|
a = cvGet1D( test_array[INPUT][0], 0 ); |
|
b = cvGet1D( test_array[INPUT][1], 0 ); |
|
} |
|
|
|
c.val[2] = a.val[0]*b.val[1] - a.val[1]*b.val[0]; |
|
c.val[1] = -a.val[0]*b.val[2] + a.val[2]*b.val[0]; |
|
c.val[0] = a.val[1]*b.val[2] - a.val[2]*b.val[1]; |
|
|
|
if( test_mat[REF_OUTPUT][0].rows > 1 ) |
|
{ |
|
cvSetReal2D( test_array[REF_OUTPUT][0], 0, 0, c.val[0] ); |
|
cvSetReal2D( test_array[REF_OUTPUT][0], 1, 0, c.val[1] ); |
|
cvSetReal2D( test_array[REF_OUTPUT][0], 2, 0, c.val[2] ); |
|
} |
|
else if( test_mat[REF_OUTPUT][0].cols > 1 ) |
|
{ |
|
cvSetReal1D( test_array[REF_OUTPUT][0], 0, c.val[0] ); |
|
cvSetReal1D( test_array[REF_OUTPUT][0], 1, c.val[1] ); |
|
cvSetReal1D( test_array[REF_OUTPUT][0], 2, c.val[2] ); |
|
} |
|
else |
|
{ |
|
cvSet1D( test_array[REF_OUTPUT][0], 0, cvScalar(c) ); |
|
} |
|
} |
|
|
|
|
|
///////////////// gemm ///////////////////// |
|
|
|
class Core_GEMMTest : public Core_MatrixTest |
|
{ |
|
public: |
|
typedef Core_MatrixTest Base; |
|
Core_GEMMTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ); |
|
int prepare_test_case( int test_case_idx ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
int tabc_flag; |
|
double alpha, beta; |
|
}; |
|
|
|
Core_GEMMTest::Core_GEMMTest() : Core_MatrixTest( 5, 1, false, false, 2 ) |
|
{ |
|
test_case_count = 100; |
|
max_log_array_size = 10; |
|
tabc_flag = 0; |
|
alpha = beta = 0; |
|
} |
|
|
|
|
|
void Core_GEMMTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
Size sizeA; |
|
Base::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
sizeA = sizes[INPUT][0]; |
|
Base::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
sizes[INPUT][0] = sizeA; |
|
sizes[INPUT][2] = sizes[INPUT][3] = Size(1,1); |
|
types[INPUT][2] = types[INPUT][3] &= ~CV_MAT_CN_MASK; |
|
|
|
tabc_flag = cvtest::randInt(rng) & 7; |
|
|
|
switch( tabc_flag & (CV_GEMM_A_T|CV_GEMM_B_T) ) |
|
{ |
|
case 0: |
|
sizes[INPUT][1].height = sizes[INPUT][0].width; |
|
sizes[OUTPUT][0].height = sizes[INPUT][0].height; |
|
sizes[OUTPUT][0].width = sizes[INPUT][1].width; |
|
break; |
|
case CV_GEMM_B_T: |
|
sizes[INPUT][1].width = sizes[INPUT][0].width; |
|
sizes[OUTPUT][0].height = sizes[INPUT][0].height; |
|
sizes[OUTPUT][0].width = sizes[INPUT][1].height; |
|
break; |
|
case CV_GEMM_A_T: |
|
sizes[INPUT][1].height = sizes[INPUT][0].height; |
|
sizes[OUTPUT][0].height = sizes[INPUT][0].width; |
|
sizes[OUTPUT][0].width = sizes[INPUT][1].width; |
|
break; |
|
case CV_GEMM_A_T | CV_GEMM_B_T: |
|
sizes[INPUT][1].width = sizes[INPUT][0].height; |
|
sizes[OUTPUT][0].height = sizes[INPUT][0].width; |
|
sizes[OUTPUT][0].width = sizes[INPUT][1].height; |
|
break; |
|
} |
|
|
|
sizes[REF_OUTPUT][0] = sizes[OUTPUT][0]; |
|
|
|
if( cvtest::randInt(rng) & 1 ) |
|
sizes[INPUT][4] = Size(0,0); |
|
else if( !(tabc_flag & CV_GEMM_C_T) ) |
|
sizes[INPUT][4] = sizes[OUTPUT][0]; |
|
else |
|
{ |
|
sizes[INPUT][4].width = sizes[OUTPUT][0].height; |
|
sizes[INPUT][4].height = sizes[OUTPUT][0].width; |
|
} |
|
} |
|
|
|
|
|
int Core_GEMMTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = Base::prepare_test_case( test_case_idx ); |
|
if( code > 0 ) |
|
{ |
|
alpha = cvGetReal2D( test_array[INPUT][2], 0, 0 ); |
|
beta = cvGetReal2D( test_array[INPUT][3], 0, 0 ); |
|
} |
|
return code; |
|
} |
|
|
|
|
|
void Core_GEMMTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ) |
|
{ |
|
low = Scalar::all(-10.); |
|
high = Scalar::all(10.); |
|
} |
|
|
|
|
|
void Core_GEMMTest::run_func() |
|
{ |
|
cvGEMM( test_array[INPUT][0], test_array[INPUT][1], alpha, |
|
test_array[INPUT][4], beta, test_array[OUTPUT][0], tabc_flag ); |
|
} |
|
|
|
|
|
void Core_GEMMTest::prepare_to_validation( int ) |
|
{ |
|
cvtest::gemm( test_mat[INPUT][0], test_mat[INPUT][1], alpha, |
|
test_array[INPUT][4] ? test_mat[INPUT][4] : Mat(), |
|
beta, test_mat[REF_OUTPUT][0], tabc_flag ); |
|
} |
|
|
|
|
|
///////////////// multransposed ///////////////////// |
|
|
|
class Core_MulTransposedTest : public Core_MatrixTest |
|
{ |
|
public: |
|
Core_MulTransposedTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
int order; |
|
}; |
|
|
|
|
|
Core_MulTransposedTest::Core_MulTransposedTest() : Core_MatrixTest( 2, 1, false, false, 1 ) |
|
{ |
|
test_case_count = 100; |
|
order = 0; |
|
test_array[TEMP].push_back(NULL); |
|
} |
|
|
|
|
|
void Core_MulTransposedTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int bits = cvtest::randInt(rng); |
|
int src_type = cvtest::randInt(rng) % 5; |
|
int dst_type = cvtest::randInt(rng) % 2; |
|
|
|
src_type = src_type == 0 ? CV_8U : src_type == 1 ? CV_16U : src_type == 2 ? CV_16S : |
|
src_type == 3 ? CV_32F : CV_64F; |
|
dst_type = dst_type == 0 ? CV_32F : CV_64F; |
|
dst_type = MAX( dst_type, src_type ); |
|
|
|
Core_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
|
|
if( bits & 1 ) |
|
sizes[INPUT][1] = Size(0,0); |
|
else |
|
{ |
|
sizes[INPUT][1] = sizes[INPUT][0]; |
|
if( bits & 2 ) |
|
sizes[INPUT][1].height = 1; |
|
if( bits & 4 ) |
|
sizes[INPUT][1].width = 1; |
|
} |
|
|
|
sizes[TEMP][0] = sizes[INPUT][0]; |
|
types[INPUT][0] = src_type; |
|
types[OUTPUT][0] = types[REF_OUTPUT][0] = types[INPUT][1] = types[TEMP][0] = dst_type; |
|
|
|
order = (bits & 8) != 0; |
|
sizes[OUTPUT][0].width = sizes[OUTPUT][0].height = order == 0 ? |
|
sizes[INPUT][0].height : sizes[INPUT][0].width; |
|
sizes[REF_OUTPUT][0] = sizes[OUTPUT][0]; |
|
} |
|
|
|
|
|
void Core_MulTransposedTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ) |
|
{ |
|
low = cvScalarAll(-10.); |
|
high = cvScalarAll(10.); |
|
} |
|
|
|
|
|
void Core_MulTransposedTest::run_func() |
|
{ |
|
cvMulTransposed( test_array[INPUT][0], test_array[OUTPUT][0], |
|
order, test_array[INPUT][1] ); |
|
} |
|
|
|
|
|
void Core_MulTransposedTest::prepare_to_validation( int ) |
|
{ |
|
const Mat& src = test_mat[INPUT][0]; |
|
Mat delta = test_mat[INPUT][1]; |
|
Mat& temp = test_mat[TEMP][0]; |
|
if( !delta.empty() ) |
|
{ |
|
if( delta.rows < src.rows || delta.cols < src.cols ) |
|
{ |
|
cv::repeat( delta, src.rows/delta.rows, src.cols/delta.cols, temp); |
|
delta = temp; |
|
} |
|
cvtest::add( src, 1, delta, -1, Scalar::all(0), temp, temp.type()); |
|
} |
|
else |
|
src.convertTo(temp, temp.type()); |
|
|
|
cvtest::gemm( temp, temp, 1., Mat(), 0, test_mat[REF_OUTPUT][0], order == 0 ? GEMM_2_T : GEMM_1_T ); |
|
} |
|
|
|
|
|
///////////////// Transform ///////////////////// |
|
|
|
class Core_TransformTest : public Core_MatrixTest |
|
{ |
|
public: |
|
typedef Core_MatrixTest Base; |
|
Core_TransformTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
int prepare_test_case( int test_case_idx ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
|
|
double scale; |
|
bool diagMtx; |
|
}; |
|
|
|
|
|
Core_TransformTest::Core_TransformTest() : Core_MatrixTest( 3, 1, true, false, 4 ) |
|
{ |
|
scale = 1; |
|
diagMtx = false; |
|
} |
|
|
|
|
|
void Core_TransformTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int bits = cvtest::randInt(rng); |
|
int depth, dst_cn, mat_cols, mattype; |
|
Base::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
|
|
mat_cols = CV_MAT_CN(types[INPUT][0]); |
|
depth = CV_MAT_DEPTH(types[INPUT][0]); |
|
dst_cn = cvtest::randInt(rng) % 4 + 1; |
|
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth, dst_cn); |
|
|
|
mattype = depth < CV_32S ? CV_32F : depth == CV_64F ? CV_64F : bits & 1 ? CV_32F : CV_64F; |
|
types[INPUT][1] = mattype; |
|
types[INPUT][2] = CV_MAKETYPE(mattype, dst_cn); |
|
|
|
scale = 1./((cvtest::randInt(rng)%4)*50+1); |
|
|
|
if( bits & 2 ) |
|
{ |
|
sizes[INPUT][2] = Size(0,0); |
|
mat_cols += (bits & 4) != 0; |
|
} |
|
else if( bits & 4 ) |
|
sizes[INPUT][2] = Size(1,1); |
|
else |
|
{ |
|
if( bits & 8 ) |
|
sizes[INPUT][2] = Size(dst_cn,1); |
|
else |
|
sizes[INPUT][2] = Size(1,dst_cn); |
|
types[INPUT][2] &= ~CV_MAT_CN_MASK; |
|
} |
|
diagMtx = (bits & 16) != 0; |
|
|
|
sizes[INPUT][1] = Size(mat_cols,dst_cn); |
|
} |
|
|
|
|
|
int Core_TransformTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = Base::prepare_test_case( test_case_idx ); |
|
if( code > 0 ) |
|
{ |
|
Mat& m = test_mat[INPUT][1]; |
|
cvtest::add(m, scale, m, 0, Scalar::all(0), m, m.type() ); |
|
if(diagMtx) |
|
{ |
|
Mat mask = Mat::eye(m.rows, m.cols, CV_8U)*255; |
|
mask = ~mask; |
|
m.setTo(Scalar::all(0), mask); |
|
} |
|
} |
|
return code; |
|
} |
|
|
|
|
|
double Core_TransformTest::get_success_error_level( int test_case_idx, int i, int j ) |
|
{ |
|
int depth = test_mat[INPUT][0].depth(); |
|
return depth <= CV_8S ? 1 : depth <= CV_32S ? 9 : Base::get_success_error_level( test_case_idx, i, j ); |
|
} |
|
|
|
void Core_TransformTest::run_func() |
|
{ |
|
CvMat _m = cvMat(test_mat[INPUT][1]), _shift = cvMat(test_mat[INPUT][2]); |
|
cvTransform( test_array[INPUT][0], test_array[OUTPUT][0], &_m, _shift.data.ptr ? &_shift : 0); |
|
} |
|
|
|
|
|
void Core_TransformTest::prepare_to_validation( int ) |
|
{ |
|
Mat transmat = test_mat[INPUT][1]; |
|
Mat shift = test_mat[INPUT][2]; |
|
|
|
cvtest::transform( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], transmat, shift ); |
|
} |
|
|
|
class Core_TransformLargeTest : public Core_TransformTest |
|
{ |
|
public: |
|
typedef Core_MatrixTest Base; |
|
protected: |
|
void get_test_array_types_and_sizes(int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types); |
|
}; |
|
|
|
void Core_TransformLargeTest::get_test_array_types_and_sizes(int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int bits = cvtest::randInt(rng); |
|
int depth, dst_cn, mat_cols, mattype; |
|
Base::get_test_array_types_and_sizes(test_case_idx, sizes, types); |
|
for (unsigned int j = 0; j < sizes.size(); j++) |
|
{ |
|
for (unsigned int i = 0; i < sizes[j].size(); i++) |
|
{ |
|
sizes[j][i].width *= 4; |
|
} |
|
} |
|
|
|
mat_cols = CV_MAT_CN(types[INPUT][0]); |
|
depth = CV_MAT_DEPTH(types[INPUT][0]); |
|
dst_cn = cvtest::randInt(rng) % 4 + 1; |
|
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth, dst_cn); |
|
|
|
mattype = depth < CV_32S ? CV_32F : depth == CV_64F ? CV_64F : bits & 1 ? CV_32F : CV_64F; |
|
types[INPUT][1] = mattype; |
|
types[INPUT][2] = CV_MAKETYPE(mattype, dst_cn); |
|
|
|
scale = 1. / ((cvtest::randInt(rng) % 4) * 50 + 1); |
|
|
|
if (bits & 2) |
|
{ |
|
sizes[INPUT][2] = Size(0, 0); |
|
mat_cols += (bits & 4) != 0; |
|
} |
|
else if (bits & 4) |
|
sizes[INPUT][2] = Size(1, 1); |
|
else |
|
{ |
|
if (bits & 8) |
|
sizes[INPUT][2] = Size(dst_cn, 1); |
|
else |
|
sizes[INPUT][2] = Size(1, dst_cn); |
|
types[INPUT][2] &= ~CV_MAT_CN_MASK; |
|
} |
|
diagMtx = (bits & 16) != 0; |
|
|
|
sizes[INPUT][1] = Size(mat_cols, dst_cn); |
|
} |
|
|
|
|
|
|
|
///////////////// PerspectiveTransform ///////////////////// |
|
|
|
class Core_PerspectiveTransformTest : public Core_MatrixTest |
|
{ |
|
public: |
|
Core_PerspectiveTransformTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
}; |
|
|
|
|
|
Core_PerspectiveTransformTest::Core_PerspectiveTransformTest() : Core_MatrixTest( 2, 1, false, false, 2 ) |
|
{ |
|
} |
|
|
|
|
|
void Core_PerspectiveTransformTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int bits = cvtest::randInt(rng); |
|
int depth, cn, mattype; |
|
Core_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
|
|
cn = CV_MAT_CN(types[INPUT][0]) + 1; |
|
depth = CV_MAT_DEPTH(types[INPUT][0]); |
|
types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth, cn); |
|
|
|
mattype = depth == CV_64F ? CV_64F : bits & 1 ? CV_32F : CV_64F; |
|
types[INPUT][1] = mattype; |
|
sizes[INPUT][1] = Size(cn + 1, cn + 1); |
|
} |
|
|
|
|
|
double Core_PerspectiveTransformTest::get_success_error_level( int test_case_idx, int i, int j ) |
|
{ |
|
int depth = test_mat[INPUT][0].depth(); |
|
return depth == CV_32F ? 1e-4 : depth == CV_64F ? 1e-8 : |
|
Core_MatrixTest::get_success_error_level(test_case_idx, i, j); |
|
} |
|
|
|
|
|
void Core_PerspectiveTransformTest::run_func() |
|
{ |
|
CvMat _m = cvMat(test_mat[INPUT][1]); |
|
cvPerspectiveTransform( test_array[INPUT][0], test_array[OUTPUT][0], &_m ); |
|
} |
|
|
|
|
|
static void cvTsPerspectiveTransform( const CvArr* _src, CvArr* _dst, const CvMat* transmat ) |
|
{ |
|
int i, j, cols; |
|
int cn, depth, mat_depth; |
|
CvMat astub, bstub, *a, *b; |
|
double mat[16] = {0.0}; |
|
|
|
a = cvGetMat( _src, &astub, 0, 0 ); |
|
b = cvGetMat( _dst, &bstub, 0, 0 ); |
|
|
|
cn = CV_MAT_CN(a->type); |
|
depth = CV_MAT_DEPTH(a->type); |
|
mat_depth = CV_MAT_DEPTH(transmat->type); |
|
cols = transmat->cols; |
|
|
|
// prepare cn x (cn + 1) transform matrix |
|
if( mat_depth == CV_32F ) |
|
{ |
|
for( i = 0; i < transmat->rows; i++ ) |
|
for( j = 0; j < cols; j++ ) |
|
mat[i*cols + j] = ((float*)(transmat->data.ptr + transmat->step*i))[j]; |
|
} |
|
else |
|
{ |
|
CV_Assert( mat_depth == CV_64F ); |
|
for( i = 0; i < transmat->rows; i++ ) |
|
for( j = 0; j < cols; j++ ) |
|
mat[i*cols + j] = ((double*)(transmat->data.ptr + transmat->step*i))[j]; |
|
} |
|
|
|
// transform data |
|
cols = a->cols * cn; |
|
vector<double> buf(cols); |
|
|
|
for( i = 0; i < a->rows; i++ ) |
|
{ |
|
uchar* src = a->data.ptr + i*a->step; |
|
uchar* dst = b->data.ptr + i*b->step; |
|
|
|
switch( depth ) |
|
{ |
|
case CV_32F: |
|
for( j = 0; j < cols; j++ ) |
|
buf[j] = ((float*)src)[j]; |
|
break; |
|
case CV_64F: |
|
for( j = 0; j < cols; j++ ) |
|
buf[j] = ((double*)src)[j]; |
|
break; |
|
default: |
|
CV_Assert(0); |
|
} |
|
|
|
switch( cn ) |
|
{ |
|
case 2: |
|
for( j = 0; j < cols; j += 2 ) |
|
{ |
|
double t0 = buf[j]*mat[0] + buf[j+1]*mat[1] + mat[2]; |
|
double t1 = buf[j]*mat[3] + buf[j+1]*mat[4] + mat[5]; |
|
double w = buf[j]*mat[6] + buf[j+1]*mat[7] + mat[8]; |
|
w = w ? 1./w : 0; |
|
buf[j] = t0*w; |
|
buf[j+1] = t1*w; |
|
} |
|
break; |
|
case 3: |
|
for( j = 0; j < cols; j += 3 ) |
|
{ |
|
double t0 = buf[j]*mat[0] + buf[j+1]*mat[1] + buf[j+2]*mat[2] + mat[3]; |
|
double t1 = buf[j]*mat[4] + buf[j+1]*mat[5] + buf[j+2]*mat[6] + mat[7]; |
|
double t2 = buf[j]*mat[8] + buf[j+1]*mat[9] + buf[j+2]*mat[10] + mat[11]; |
|
double w = buf[j]*mat[12] + buf[j+1]*mat[13] + buf[j+2]*mat[14] + mat[15]; |
|
w = w ? 1./w : 0; |
|
buf[j] = t0*w; |
|
buf[j+1] = t1*w; |
|
buf[j+2] = t2*w; |
|
} |
|
break; |
|
default: |
|
CV_Assert(0); |
|
} |
|
|
|
switch( depth ) |
|
{ |
|
case CV_32F: |
|
for( j = 0; j < cols; j++ ) |
|
((float*)dst)[j] = (float)buf[j]; |
|
break; |
|
case CV_64F: |
|
for( j = 0; j < cols; j++ ) |
|
((double*)dst)[j] = buf[j]; |
|
break; |
|
default: |
|
CV_Assert(0); |
|
} |
|
} |
|
} |
|
|
|
|
|
void Core_PerspectiveTransformTest::prepare_to_validation( int ) |
|
{ |
|
CvMat transmat = cvMat(test_mat[INPUT][1]); |
|
cvTsPerspectiveTransform( test_array[INPUT][0], test_array[REF_OUTPUT][0], &transmat ); |
|
} |
|
|
|
///////////////// Mahalanobis ///////////////////// |
|
|
|
class Core_MahalanobisTest : public Core_MatrixTest |
|
{ |
|
public: |
|
typedef Core_MatrixTest Base; |
|
Core_MahalanobisTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
int prepare_test_case( int test_case_idx ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
}; |
|
|
|
|
|
Core_MahalanobisTest::Core_MahalanobisTest() : Core_MatrixTest( 3, 1, false, true, 1 ) |
|
{ |
|
test_case_count = 100; |
|
test_array[TEMP].push_back(NULL); |
|
test_array[TEMP].push_back(NULL); |
|
test_array[TEMP].push_back(NULL); |
|
} |
|
|
|
|
|
void Core_MahalanobisTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
Core_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
|
|
if( cvtest::randInt(rng) & 1 ) |
|
sizes[INPUT][0].width = sizes[INPUT][1].width = 1; |
|
else |
|
sizes[INPUT][0].height = sizes[INPUT][1].height = 1; |
|
|
|
sizes[TEMP][0] = sizes[TEMP][1] = sizes[INPUT][0]; |
|
sizes[INPUT][2].width = sizes[INPUT][2].height = sizes[INPUT][0].width + sizes[INPUT][0].height - 1; |
|
sizes[TEMP][2] = sizes[INPUT][2]; |
|
types[TEMP][0] = types[TEMP][1] = types[TEMP][2] = types[INPUT][0]; |
|
} |
|
|
|
int Core_MahalanobisTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = Base::prepare_test_case( test_case_idx ); |
|
if( code > 0 ) |
|
{ |
|
// make sure that the inverted "covariation" matrix is symmetrix and positively defined. |
|
cvtest::gemm( test_mat[INPUT][2], test_mat[INPUT][2], 1., Mat(), 0., test_mat[TEMP][2], GEMM_2_T ); |
|
cvtest::copy( test_mat[TEMP][2], test_mat[INPUT][2] ); |
|
} |
|
|
|
return code; |
|
} |
|
|
|
|
|
void Core_MahalanobisTest::run_func() |
|
{ |
|
test_mat[OUTPUT][0].at<Scalar>(0,0) = |
|
cvRealScalar(cvMahalanobis(test_array[INPUT][0], test_array[INPUT][1], test_array[INPUT][2])); |
|
} |
|
|
|
void Core_MahalanobisTest::prepare_to_validation( int ) |
|
{ |
|
cvtest::add( test_mat[INPUT][0], 1., test_mat[INPUT][1], -1., |
|
Scalar::all(0), test_mat[TEMP][0], test_mat[TEMP][0].type() ); |
|
if( test_mat[INPUT][0].rows == 1 ) |
|
cvtest::gemm( test_mat[TEMP][0], test_mat[INPUT][2], 1., |
|
Mat(), 0., test_mat[TEMP][1], 0 ); |
|
else |
|
cvtest::gemm( test_mat[INPUT][2], test_mat[TEMP][0], 1., |
|
Mat(), 0., test_mat[TEMP][1], 0 ); |
|
|
|
test_mat[REF_OUTPUT][0].at<Scalar>(0,0) = cvRealScalar(sqrt(cvtest::crossCorr(test_mat[TEMP][0], test_mat[TEMP][1]))); |
|
} |
|
|
|
|
|
///////////////// covarmatrix ///////////////////// |
|
|
|
class Core_CovarMatrixTest : public Core_MatrixTest |
|
{ |
|
public: |
|
Core_CovarMatrixTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
int prepare_test_case( int test_case_idx ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
vector<void*> temp_hdrs; |
|
vector<uchar> hdr_data; |
|
int flags, t_flag, len, count; |
|
bool are_images; |
|
}; |
|
|
|
|
|
Core_CovarMatrixTest::Core_CovarMatrixTest() : Core_MatrixTest( 1, 1, true, false, 1 ), |
|
flags(0), t_flag(0), len(0), count(0), are_images(false) |
|
{ |
|
test_case_count = 100; |
|
test_array[INPUT_OUTPUT].push_back(NULL); |
|
test_array[REF_INPUT_OUTPUT].push_back(NULL); |
|
test_array[TEMP].push_back(NULL); |
|
test_array[TEMP].push_back(NULL); |
|
} |
|
|
|
|
|
void Core_CovarMatrixTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int bits = cvtest::randInt(rng); |
|
int i, single_matrix; |
|
Core_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
|
|
flags = bits & (CV_COVAR_NORMAL | CV_COVAR_USE_AVG | CV_COVAR_SCALE | CV_COVAR_ROWS ); |
|
single_matrix = flags & CV_COVAR_ROWS; |
|
t_flag = (bits & 256) != 0; |
|
|
|
const int min_count = 2; |
|
|
|
if( !t_flag ) |
|
{ |
|
len = sizes[INPUT][0].width; |
|
count = sizes[INPUT][0].height; |
|
count = MAX(count, min_count); |
|
sizes[INPUT][0] = Size(len, count); |
|
} |
|
else |
|
{ |
|
len = sizes[INPUT][0].height; |
|
count = sizes[INPUT][0].width; |
|
count = MAX(count, min_count); |
|
sizes[INPUT][0] = Size(count, len); |
|
} |
|
|
|
if( single_matrix && t_flag ) |
|
flags = (flags & ~CV_COVAR_ROWS) | CV_COVAR_COLS; |
|
|
|
if( CV_MAT_DEPTH(types[INPUT][0]) == CV_32S ) |
|
types[INPUT][0] = (types[INPUT][0] & ~CV_MAT_DEPTH_MASK) | CV_32F; |
|
|
|
sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = flags & CV_COVAR_NORMAL ? Size(len,len) : Size(count,count); |
|
sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = !t_flag ? Size(len,1) : Size(1,len); |
|
sizes[TEMP][0] = sizes[INPUT][0]; |
|
|
|
types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = |
|
types[OUTPUT][0] = types[REF_OUTPUT][0] = types[TEMP][0] = |
|
CV_MAT_DEPTH(types[INPUT][0]) == CV_64F || (bits & 512) ? CV_64F : CV_32F; |
|
|
|
are_images = (bits & 1024) != 0; |
|
for( i = 0; i < (single_matrix ? 1 : count); i++ ) |
|
temp_hdrs.push_back(NULL); |
|
} |
|
|
|
|
|
int Core_CovarMatrixTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = Core_MatrixTest::prepare_test_case( test_case_idx ); |
|
if( code > 0 ) |
|
{ |
|
int i; |
|
int single_matrix = flags & (CV_COVAR_ROWS|CV_COVAR_COLS); |
|
int hdr_size = are_images ? sizeof(IplImage) : sizeof(CvMat); |
|
|
|
hdr_data.resize(count*hdr_size); |
|
uchar* _hdr_data = &hdr_data[0]; |
|
if( single_matrix ) |
|
{ |
|
if( !are_images ) |
|
*((CvMat*)_hdr_data) = cvMat(test_mat[INPUT][0]); |
|
else |
|
*((IplImage*)_hdr_data) = cvIplImage(test_mat[INPUT][0]); |
|
temp_hdrs[0] = _hdr_data; |
|
} |
|
else |
|
for( i = 0; i < count; i++ ) |
|
{ |
|
Mat part; |
|
void* ptr = _hdr_data + i*hdr_size; |
|
|
|
if( !t_flag ) |
|
part = test_mat[INPUT][0].row(i); |
|
else |
|
part = test_mat[INPUT][0].col(i); |
|
|
|
if( !are_images ) |
|
*((CvMat*)ptr) = cvMat(part); |
|
else |
|
*((IplImage*)ptr) = cvIplImage(part); |
|
|
|
temp_hdrs[i] = ptr; |
|
} |
|
} |
|
|
|
return code; |
|
} |
|
|
|
|
|
void Core_CovarMatrixTest::run_func() |
|
{ |
|
cvCalcCovarMatrix( (const void**)&temp_hdrs[0], count, |
|
test_array[OUTPUT][0], test_array[INPUT_OUTPUT][0], flags ); |
|
} |
|
|
|
|
|
void Core_CovarMatrixTest::prepare_to_validation( int ) |
|
{ |
|
Mat& avg = test_mat[REF_INPUT_OUTPUT][0]; |
|
double scale = 1.; |
|
|
|
if( !(flags & CV_COVAR_USE_AVG) ) |
|
{ |
|
Mat hdrs0 = cvarrToMat(temp_hdrs[0]); |
|
|
|
int i; |
|
avg = Scalar::all(0); |
|
|
|
for( i = 0; i < count; i++ ) |
|
{ |
|
Mat vec; |
|
if( flags & CV_COVAR_ROWS ) |
|
vec = hdrs0.row(i); |
|
else if( flags & CV_COVAR_COLS ) |
|
vec = hdrs0.col(i); |
|
else |
|
vec = cvarrToMat(temp_hdrs[i]); |
|
|
|
cvtest::add(avg, 1, vec, 1, Scalar::all(0), avg, avg.type()); |
|
} |
|
|
|
cvtest::add(avg, 1./count, avg, 0., Scalar::all(0), avg, avg.type()); |
|
} |
|
|
|
if( flags & CV_COVAR_SCALE ) |
|
{ |
|
scale = 1./count; |
|
} |
|
|
|
Mat& temp0 = test_mat[TEMP][0]; |
|
cv::repeat( avg, temp0.rows/avg.rows, temp0.cols/avg.cols, temp0 ); |
|
cvtest::add( test_mat[INPUT][0], 1, temp0, -1, Scalar::all(0), temp0, temp0.type()); |
|
|
|
cvtest::gemm( temp0, temp0, scale, Mat(), 0., test_mat[REF_OUTPUT][0], |
|
t_flag ^ ((flags & CV_COVAR_NORMAL) != 0) ? CV_GEMM_A_T : CV_GEMM_B_T ); |
|
temp_hdrs.clear(); |
|
} |
|
|
|
|
|
static void cvTsFloodWithZeros( Mat& mat, RNG& rng ) |
|
{ |
|
int k, total = mat.rows*mat.cols, type = mat.type(); |
|
int zero_total = cvtest::randInt(rng) % total; |
|
CV_Assert( type == CV_32FC1 || type == CV_64FC1 ); |
|
|
|
for( k = 0; k < zero_total; k++ ) |
|
{ |
|
int i = cvtest::randInt(rng) % mat.rows; |
|
int j = cvtest::randInt(rng) % mat.cols; |
|
|
|
if( type == CV_32FC1 ) |
|
mat.at<float>(i,j) = 0.f; |
|
else |
|
mat.at<double>(i,j) = 0.; |
|
} |
|
} |
|
|
|
|
|
///////////////// determinant ///////////////////// |
|
|
|
class Core_DetTest : public Core_MatrixTest |
|
{ |
|
public: |
|
typedef Core_MatrixTest Base; |
|
Core_DetTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ); |
|
int prepare_test_case( int test_case_idx ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
}; |
|
|
|
|
|
Core_DetTest::Core_DetTest() : Core_MatrixTest( 1, 1, false, true, 1 ) |
|
{ |
|
test_case_count = 100; |
|
max_log_array_size = 7; |
|
test_array[TEMP].push_back(NULL); |
|
} |
|
|
|
|
|
void Core_DetTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
Base::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
|
|
sizes[INPUT][0].width = sizes[INPUT][0].height; |
|
sizes[TEMP][0] = sizes[INPUT][0]; |
|
types[TEMP][0] = CV_64FC1; |
|
} |
|
|
|
|
|
void Core_DetTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ) |
|
{ |
|
low = cvScalarAll(-2.); |
|
high = cvScalarAll(2.); |
|
} |
|
|
|
|
|
double Core_DetTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) |
|
{ |
|
return CV_MAT_DEPTH(cvGetElemType(test_array[INPUT][0])) == CV_32F ? 1e-2 : 1e-5; |
|
} |
|
|
|
|
|
int Core_DetTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = Core_MatrixTest::prepare_test_case( test_case_idx ); |
|
if( code > 0 ) |
|
cvTsFloodWithZeros( test_mat[INPUT][0], ts->get_rng() ); |
|
|
|
return code; |
|
} |
|
|
|
|
|
void Core_DetTest::run_func() |
|
{ |
|
test_mat[OUTPUT][0].at<Scalar>(0,0) = cvRealScalar(cvDet(test_array[INPUT][0])); |
|
} |
|
|
|
|
|
// LU method that chooses the optimal in a column pivot element |
|
static double cvTsLU( CvMat* a, CvMat* b=NULL, CvMat* x=NULL, int* rank=0 ) |
|
{ |
|
int i, j, k, N = a->rows, N1 = a->cols, Nm = MIN(N, N1), step = a->step/sizeof(double); |
|
int M = b ? b->cols : 0, b_step = b ? b->step/sizeof(double) : 0; |
|
int x_step = x ? x->step/sizeof(double) : 0; |
|
double *a0 = a->data.db, *b0 = b ? b->data.db : 0; |
|
double *x0 = x ? x->data.db : 0; |
|
double t, det = 1.; |
|
CV_Assert( CV_MAT_TYPE(a->type) == CV_64FC1 && |
|
(!b || CV_ARE_TYPES_EQ(a,b)) && (!x || CV_ARE_TYPES_EQ(a,x))); |
|
|
|
for( i = 0; i < Nm; i++ ) |
|
{ |
|
double max_val = fabs(a0[i*step + i]); |
|
double *a1, *a2, *b1 = 0, *b2 = 0; |
|
k = i; |
|
|
|
for( j = i+1; j < N; j++ ) |
|
{ |
|
t = fabs(a0[j*step + i]); |
|
if( max_val < t ) |
|
{ |
|
max_val = t; |
|
k = j; |
|
} |
|
} |
|
|
|
if( k != i ) |
|
{ |
|
for( j = i; j < N1; j++ ) |
|
CV_SWAP( a0[i*step + j], a0[k*step + j], t ); |
|
|
|
for( j = 0; j < M; j++ ) |
|
CV_SWAP( b0[i*b_step + j], b0[k*b_step + j], t ); |
|
det = -det; |
|
} |
|
|
|
if( max_val == 0 ) |
|
{ |
|
if( rank ) |
|
*rank = i; |
|
return 0.; |
|
} |
|
|
|
a1 = a0 + i*step; |
|
a2 = a1 + step; |
|
b1 = b0 + i*b_step; |
|
b2 = b1 + b_step; |
|
|
|
for( j = i+1; j < N; j++, a2 += step, b2 += b_step ) |
|
{ |
|
t = a2[i]/a1[i]; |
|
for( k = i+1; k < N1; k++ ) |
|
a2[k] -= t*a1[k]; |
|
|
|
for( k = 0; k < M; k++ ) |
|
b2[k] -= t*b1[k]; |
|
} |
|
|
|
det *= a1[i]; |
|
} |
|
|
|
if( x ) |
|
{ |
|
CV_Assert( b ); |
|
|
|
for( i = N-1; i >= 0; i-- ) |
|
{ |
|
double* a1 = a0 + i*step; |
|
double* b1 = b0 + i*b_step; |
|
for( j = 0; j < M; j++ ) |
|
{ |
|
t = b1[j]; |
|
for( k = i+1; k < N1; k++ ) |
|
t -= a1[k]*x0[k*x_step + j]; |
|
x0[i*x_step + j] = t/a1[i]; |
|
} |
|
} |
|
} |
|
|
|
if( rank ) |
|
*rank = i; |
|
return det; |
|
} |
|
|
|
|
|
void Core_DetTest::prepare_to_validation( int ) |
|
{ |
|
test_mat[INPUT][0].convertTo(test_mat[TEMP][0], test_mat[TEMP][0].type()); |
|
CvMat temp0 = cvMat(test_mat[TEMP][0]); |
|
test_mat[REF_OUTPUT][0].at<Scalar>(0,0) = cvRealScalar(cvTsLU(&temp0, 0, 0)); |
|
} |
|
|
|
|
|
///////////////// invert ///////////////////// |
|
|
|
class Core_InvertTest : public Core_MatrixTest |
|
{ |
|
public: |
|
typedef Core_MatrixTest Base; |
|
Core_InvertTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
int prepare_test_case( int test_case_idx ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
int method, rank; |
|
double result; |
|
}; |
|
|
|
|
|
Core_InvertTest::Core_InvertTest() |
|
: Core_MatrixTest( 1, 1, false, false, 1 ), method(0), rank(0), result(0.) |
|
{ |
|
test_case_count = 100; |
|
max_log_array_size = 7; |
|
test_array[TEMP].push_back(NULL); |
|
test_array[TEMP].push_back(NULL); |
|
} |
|
|
|
|
|
void Core_InvertTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int bits = cvtest::randInt(rng); |
|
Base::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
int min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height ); |
|
|
|
if( (bits & 3) == 0 ) |
|
{ |
|
method = CV_SVD; |
|
if( bits & 4 ) |
|
{ |
|
sizes[INPUT][0] = Size(min_size, min_size); |
|
if( bits & 16 ) |
|
method = CV_CHOLESKY; |
|
} |
|
} |
|
else |
|
{ |
|
method = CV_LU; |
|
sizes[INPUT][0] = Size(min_size, min_size); |
|
} |
|
|
|
sizes[TEMP][0].width = sizes[INPUT][0].height; |
|
sizes[TEMP][0].height = sizes[INPUT][0].width; |
|
sizes[TEMP][1] = sizes[INPUT][0]; |
|
types[TEMP][0] = types[INPUT][0]; |
|
types[TEMP][1] = CV_64FC1; |
|
sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = Size(min_size, min_size); |
|
} |
|
|
|
|
|
double Core_InvertTest::get_success_error_level( int /*test_case_idx*/, int, int ) |
|
{ |
|
return CV_MAT_DEPTH(cvGetElemType(test_array[OUTPUT][0])) == CV_32F ? 1e-2 : 1e-6; |
|
} |
|
|
|
int Core_InvertTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = Core_MatrixTest::prepare_test_case( test_case_idx ); |
|
if( code > 0 ) |
|
{ |
|
cvTsFloodWithZeros( test_mat[INPUT][0], ts->get_rng() ); |
|
|
|
if( method == CV_CHOLESKY ) |
|
{ |
|
cvtest::gemm( test_mat[INPUT][0], test_mat[INPUT][0], 1., |
|
Mat(), 0., test_mat[TEMP][0], CV_GEMM_B_T ); |
|
cvtest::copy( test_mat[TEMP][0], test_mat[INPUT][0] ); |
|
} |
|
} |
|
|
|
return code; |
|
} |
|
|
|
|
|
|
|
void Core_InvertTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ) |
|
{ |
|
low = cvScalarAll(-1.); |
|
high = cvScalarAll(1.); |
|
} |
|
|
|
|
|
void Core_InvertTest::run_func() |
|
{ |
|
result = cvInvert(test_array[INPUT][0], test_array[TEMP][0], method); |
|
} |
|
|
|
|
|
static double cvTsSVDet( CvMat* mat, double* ratio ) |
|
{ |
|
int type = CV_MAT_TYPE(mat->type); |
|
int i, nm = MIN( mat->rows, mat->cols ); |
|
CvMat* w = cvCreateMat( nm, 1, type ); |
|
double det = 1.; |
|
|
|
cvSVD( mat, w, 0, 0, 0 ); |
|
|
|
if( type == CV_32FC1 ) |
|
{ |
|
for( i = 0; i < nm; i++ ) |
|
det *= w->data.fl[i]; |
|
*ratio = w->data.fl[nm-1] < FLT_EPSILON ? 0 : w->data.fl[nm-1]/w->data.fl[0]; |
|
} |
|
else |
|
{ |
|
for( i = 0; i < nm; i++ ) |
|
det *= w->data.db[i]; |
|
*ratio = w->data.db[nm-1] < FLT_EPSILON ? 0 : w->data.db[nm-1]/w->data.db[0]; |
|
} |
|
|
|
cvReleaseMat( &w ); |
|
return det; |
|
} |
|
|
|
void Core_InvertTest::prepare_to_validation( int ) |
|
{ |
|
Mat& input = test_mat[INPUT][0]; |
|
Mat& temp0 = test_mat[TEMP][0]; |
|
Mat& temp1 = test_mat[TEMP][1]; |
|
Mat& dst0 = test_mat[REF_OUTPUT][0]; |
|
Mat& dst = test_mat[OUTPUT][0]; |
|
CvMat _input = cvMat(input); |
|
double ratio = 0, det = cvTsSVDet( &_input, &ratio ); |
|
double threshold = (input.depth() == CV_32F ? FLT_EPSILON : DBL_EPSILON)*1000; |
|
|
|
cvtest::convert( input, temp1, temp1.type() ); |
|
|
|
if( det < threshold || |
|
((method == CV_LU || method == CV_CHOLESKY) && (result == 0 || ratio < threshold)) || |
|
((method == CV_SVD || method == CV_SVD_SYM) && result < threshold) ) |
|
{ |
|
dst = Scalar::all(0); |
|
dst0 = Scalar::all(0); |
|
return; |
|
} |
|
|
|
if( input.rows >= input.cols ) |
|
cvtest::gemm( temp0, input, 1., Mat(), 0., dst, 0 ); |
|
else |
|
cvtest::gemm( input, temp0, 1., Mat(), 0., dst, 0 ); |
|
|
|
cv::setIdentity( dst0, Scalar::all(1) ); |
|
} |
|
|
|
|
|
///////////////// solve ///////////////////// |
|
|
|
class Core_SolveTest : public Core_MatrixTest |
|
{ |
|
public: |
|
typedef Core_MatrixTest Base; |
|
Core_SolveTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
int prepare_test_case( int test_case_idx ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
int method, rank; |
|
double result; |
|
}; |
|
|
|
|
|
Core_SolveTest::Core_SolveTest() : Core_MatrixTest( 2, 1, false, false, 1 ), method(0), rank(0), result(0.) |
|
{ |
|
test_case_count = 100; |
|
max_log_array_size = 7; |
|
test_array[TEMP].push_back(NULL); |
|
test_array[TEMP].push_back(NULL); |
|
} |
|
|
|
|
|
void Core_SolveTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int bits = cvtest::randInt(rng); |
|
Base::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
CvSize in_sz = cvSize(sizes[INPUT][0]); |
|
if( in_sz.width > in_sz.height ) |
|
in_sz = cvSize(in_sz.height, in_sz.width); |
|
Base::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
sizes[INPUT][0] = in_sz; |
|
int min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height ); |
|
|
|
if( (bits & 3) == 0 ) |
|
{ |
|
method = CV_SVD; |
|
if( bits & 4 ) |
|
{ |
|
sizes[INPUT][0] = Size(min_size, min_size); |
|
/*if( bits & 8 ) |
|
method = CV_SVD_SYM;*/ |
|
} |
|
} |
|
else |
|
{ |
|
method = CV_LU; |
|
sizes[INPUT][0] = Size(min_size, min_size); |
|
} |
|
|
|
sizes[INPUT][1].height = sizes[INPUT][0].height; |
|
sizes[TEMP][0].width = sizes[INPUT][1].width; |
|
sizes[TEMP][0].height = sizes[INPUT][0].width; |
|
sizes[TEMP][1] = sizes[INPUT][0]; |
|
types[TEMP][0] = types[INPUT][0]; |
|
types[TEMP][1] = CV_64FC1; |
|
sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = Size(sizes[INPUT][1].width, min_size); |
|
} |
|
|
|
|
|
int Core_SolveTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = Core_MatrixTest::prepare_test_case( test_case_idx ); |
|
|
|
/*if( method == CV_SVD_SYM ) |
|
{ |
|
cvTsGEMM( test_array[INPUT][0], test_array[INPUT][0], 1., |
|
0, 0., test_array[TEMP][0], CV_GEMM_B_T ); |
|
cvTsCopy( test_array[TEMP][0], test_array[INPUT][0] ); |
|
}*/ |
|
|
|
return code; |
|
} |
|
|
|
|
|
void Core_SolveTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ) |
|
{ |
|
low = cvScalarAll(-1.); |
|
high = cvScalarAll(1.); |
|
} |
|
|
|
|
|
double Core_SolveTest::get_success_error_level( int /*test_case_idx*/, int, int ) |
|
{ |
|
return CV_MAT_DEPTH(cvGetElemType(test_array[OUTPUT][0])) == CV_32F ? 5e-2 : 1e-8; |
|
} |
|
|
|
|
|
void Core_SolveTest::run_func() |
|
{ |
|
result = cvSolve(test_array[INPUT][0], test_array[INPUT][1], test_array[TEMP][0], method); |
|
} |
|
|
|
void Core_SolveTest::prepare_to_validation( int ) |
|
{ |
|
//int rank = test_mat[REF_OUTPUT][0].rows; |
|
Mat& input = test_mat[INPUT][0]; |
|
Mat& dst = test_mat[OUTPUT][0]; |
|
Mat& dst0 = test_mat[REF_OUTPUT][0]; |
|
|
|
if( method == CV_LU ) |
|
{ |
|
if( result == 0 ) |
|
{ |
|
Mat& temp1 = test_mat[TEMP][1]; |
|
cvtest::convert(input, temp1, temp1.type()); |
|
dst = Scalar::all(0); |
|
CvMat _temp1 = cvMat(temp1); |
|
double det = cvTsLU( &_temp1, 0, 0 ); |
|
dst0 = Scalar::all(det != 0); |
|
return; |
|
} |
|
|
|
double threshold = (input.type() == CV_32F ? FLT_EPSILON : DBL_EPSILON)*1000; |
|
CvMat _input = cvMat(input); |
|
double ratio = 0, det = cvTsSVDet( &_input, &ratio ); |
|
if( det < threshold || ratio < threshold ) |
|
{ |
|
dst = Scalar::all(0); |
|
dst0 = Scalar::all(0); |
|
return; |
|
} |
|
} |
|
|
|
Mat* pdst = input.rows <= input.cols ? &test_mat[OUTPUT][0] : &test_mat[INPUT][1]; |
|
|
|
cvtest::gemm( input, test_mat[TEMP][0], 1., test_mat[INPUT][1], -1., *pdst, 0 ); |
|
if( pdst != &dst ) |
|
cvtest::gemm( input, *pdst, 1., Mat(), 0., dst, CV_GEMM_A_T ); |
|
dst0 = Scalar::all(0); |
|
} |
|
|
|
|
|
///////////////// SVD ///////////////////// |
|
|
|
class Core_SVDTest : public Core_MatrixTest |
|
{ |
|
public: |
|
typedef Core_MatrixTest Base; |
|
Core_SVDTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ); |
|
int prepare_test_case( int test_case_idx ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
int flags; |
|
bool have_u, have_v, symmetric, compact, vector_w; |
|
}; |
|
|
|
|
|
Core_SVDTest::Core_SVDTest() : |
|
Core_MatrixTest( 1, 4, false, false, 1 ), |
|
flags(0), have_u(false), have_v(false), symmetric(false), compact(false), vector_w(false) |
|
{ |
|
test_case_count = 100; |
|
max_log_array_size = 8; |
|
test_array[TEMP].push_back(NULL); |
|
test_array[TEMP].push_back(NULL); |
|
test_array[TEMP].push_back(NULL); |
|
test_array[TEMP].push_back(NULL); |
|
} |
|
|
|
|
|
void Core_SVDTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int bits = cvtest::randInt(rng); |
|
Core_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
int min_size, i, m, n; |
|
|
|
min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height ); |
|
|
|
flags = bits & (CV_SVD_MODIFY_A+CV_SVD_U_T+CV_SVD_V_T); |
|
have_u = (bits & 8) != 0; |
|
have_v = (bits & 16) != 0; |
|
symmetric = (bits & 32) != 0; |
|
compact = (bits & 64) != 0; |
|
vector_w = (bits & 128) != 0; |
|
|
|
if( symmetric ) |
|
sizes[INPUT][0] = Size(min_size, min_size); |
|
|
|
m = sizes[INPUT][0].height; |
|
n = sizes[INPUT][0].width; |
|
|
|
if( compact ) |
|
sizes[TEMP][0] = Size(min_size, min_size); |
|
else |
|
sizes[TEMP][0] = sizes[INPUT][0]; |
|
sizes[TEMP][3] = Size(0,0); |
|
|
|
if( vector_w ) |
|
{ |
|
sizes[TEMP][3] = sizes[TEMP][0]; |
|
if( bits & 256 ) |
|
sizes[TEMP][0] = Size(1, min_size); |
|
else |
|
sizes[TEMP][0] = Size(min_size, 1); |
|
} |
|
|
|
if( have_u ) |
|
{ |
|
sizes[TEMP][1] = compact ? Size(min_size, m) : Size(m, m); |
|
|
|
if( flags & CV_SVD_U_T ) |
|
CV_SWAP( sizes[TEMP][1].width, sizes[TEMP][1].height, i ); |
|
} |
|
else |
|
sizes[TEMP][1] = Size(0,0); |
|
|
|
if( have_v ) |
|
{ |
|
sizes[TEMP][2] = compact ? Size(n, min_size) : Size(n, n); |
|
|
|
if( !(flags & CV_SVD_V_T) ) |
|
CV_SWAP( sizes[TEMP][2].width, sizes[TEMP][2].height, i ); |
|
} |
|
else |
|
sizes[TEMP][2] = Size(0,0); |
|
|
|
types[TEMP][0] = types[TEMP][1] = types[TEMP][2] = types[TEMP][3] = types[INPUT][0]; |
|
types[OUTPUT][0] = types[OUTPUT][1] = types[OUTPUT][2] = types[INPUT][0]; |
|
types[OUTPUT][3] = CV_8UC1; |
|
sizes[OUTPUT][0] = !have_u || !have_v ? Size(0,0) : sizes[INPUT][0]; |
|
sizes[OUTPUT][1] = !have_u ? Size(0,0) : compact ? Size(min_size,min_size) : Size(m,m); |
|
sizes[OUTPUT][2] = !have_v ? Size(0,0) : compact ? Size(min_size,min_size) : Size(n,n); |
|
sizes[OUTPUT][3] = Size(min_size,1); |
|
|
|
for( i = 0; i < 4; i++ ) |
|
{ |
|
sizes[REF_OUTPUT][i] = sizes[OUTPUT][i]; |
|
types[REF_OUTPUT][i] = types[OUTPUT][i]; |
|
} |
|
} |
|
|
|
|
|
int Core_SVDTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = Core_MatrixTest::prepare_test_case( test_case_idx ); |
|
if( code > 0 ) |
|
{ |
|
Mat& input = test_mat[INPUT][0]; |
|
cvTsFloodWithZeros( input, ts->get_rng() ); |
|
|
|
if( symmetric && (have_u || have_v) ) |
|
{ |
|
Mat& temp = test_mat[TEMP][have_u ? 1 : 2]; |
|
cvtest::gemm( input, input, 1., Mat(), 0., temp, CV_GEMM_B_T ); |
|
cvtest::copy( temp, input ); |
|
} |
|
|
|
if( (flags & CV_SVD_MODIFY_A) && test_array[OUTPUT][0] ) |
|
cvtest::copy( input, test_mat[OUTPUT][0] ); |
|
} |
|
|
|
return code; |
|
} |
|
|
|
|
|
void Core_SVDTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ) |
|
{ |
|
low = cvScalarAll(-2.); |
|
high = cvScalarAll(2.); |
|
} |
|
|
|
double Core_SVDTest::get_success_error_level( int test_case_idx, int i, int j ) |
|
{ |
|
int input_depth = CV_MAT_DEPTH(cvGetElemType( test_array[INPUT][0] )); |
|
double input_precision = input_depth < CV_32F ? 0 : input_depth == CV_32F ? 1e-5 : 5e-11; |
|
double output_precision = Base::get_success_error_level( test_case_idx, i, j ); |
|
return MAX(input_precision, output_precision); |
|
} |
|
|
|
void Core_SVDTest::run_func() |
|
{ |
|
CvArr* src = test_array[!(flags & CV_SVD_MODIFY_A) ? INPUT : OUTPUT][0]; |
|
if( !src ) |
|
src = test_array[INPUT][0]; |
|
cvSVD( src, test_array[TEMP][0], test_array[TEMP][1], test_array[TEMP][2], flags ); |
|
} |
|
|
|
|
|
void Core_SVDTest::prepare_to_validation( int /*test_case_idx*/ ) |
|
{ |
|
Mat& input = test_mat[INPUT][0]; |
|
int depth = input.depth(); |
|
int i, m = input.rows, n = input.cols, min_size = MIN(m, n); |
|
Mat *src, *dst, *w; |
|
double prev = 0, threshold = depth == CV_32F ? FLT_EPSILON : DBL_EPSILON; |
|
|
|
if( have_u ) |
|
{ |
|
src = &test_mat[TEMP][1]; |
|
dst = &test_mat[OUTPUT][1]; |
|
cvtest::gemm( *src, *src, 1., Mat(), 0., *dst, src->rows == dst->rows ? CV_GEMM_B_T : CV_GEMM_A_T ); |
|
cv::setIdentity( test_mat[REF_OUTPUT][1], Scalar::all(1.) ); |
|
} |
|
|
|
if( have_v ) |
|
{ |
|
src = &test_mat[TEMP][2]; |
|
dst = &test_mat[OUTPUT][2]; |
|
cvtest::gemm( *src, *src, 1., Mat(), 0., *dst, src->rows == dst->rows ? CV_GEMM_B_T : CV_GEMM_A_T ); |
|
cv::setIdentity( test_mat[REF_OUTPUT][2], Scalar::all(1.) ); |
|
} |
|
|
|
w = &test_mat[TEMP][0]; |
|
for( i = 0; i < min_size; i++ ) |
|
{ |
|
double normval = 0, aii; |
|
if( w->rows > 1 && w->cols > 1 ) |
|
{ |
|
normval = cvtest::norm( w->row(i), NORM_L1 ); |
|
aii = depth == CV_32F ? w->at<float>(i,i) : w->at<double>(i,i); |
|
} |
|
else |
|
{ |
|
normval = aii = depth == CV_32F ? w->at<float>(i) : w->at<double>(i); |
|
} |
|
|
|
normval = fabs(normval - aii); |
|
test_mat[OUTPUT][3].at<uchar>(i) = aii >= 0 && normval < threshold && (i == 0 || aii <= prev); |
|
prev = aii; |
|
} |
|
|
|
test_mat[REF_OUTPUT][3] = Scalar::all(1); |
|
|
|
if( have_u && have_v ) |
|
{ |
|
if( vector_w ) |
|
{ |
|
test_mat[TEMP][3] = Scalar::all(0); |
|
for( i = 0; i < min_size; i++ ) |
|
{ |
|
double val = depth == CV_32F ? w->at<float>(i) : w->at<double>(i); |
|
cvSetReal2D( test_array[TEMP][3], i, i, val ); |
|
} |
|
w = &test_mat[TEMP][3]; |
|
} |
|
|
|
if( m >= n ) |
|
{ |
|
cvtest::gemm( test_mat[TEMP][1], *w, 1., Mat(), 0., test_mat[REF_OUTPUT][0], |
|
flags & CV_SVD_U_T ? CV_GEMM_A_T : 0 ); |
|
cvtest::gemm( test_mat[REF_OUTPUT][0], test_mat[TEMP][2], 1., Mat(), 0., |
|
test_mat[OUTPUT][0], flags & CV_SVD_V_T ? 0 : CV_GEMM_B_T ); |
|
} |
|
else |
|
{ |
|
cvtest::gemm( *w, test_mat[TEMP][2], 1., Mat(), 0., test_mat[REF_OUTPUT][0], |
|
flags & CV_SVD_V_T ? 0 : CV_GEMM_B_T ); |
|
cvtest::gemm( test_mat[TEMP][1], test_mat[REF_OUTPUT][0], 1., Mat(), 0., |
|
test_mat[OUTPUT][0], flags & CV_SVD_U_T ? CV_GEMM_A_T : 0 ); |
|
} |
|
|
|
cvtest::copy( test_mat[INPUT][0], test_mat[REF_OUTPUT][0] ); |
|
} |
|
} |
|
|
|
|
|
|
|
///////////////// SVBkSb ///////////////////// |
|
|
|
class Core_SVBkSbTest : public Core_MatrixTest |
|
{ |
|
public: |
|
typedef Core_MatrixTest Base; |
|
Core_SVBkSbTest(); |
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ); |
|
int prepare_test_case( int test_case_idx ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
int flags; |
|
bool have_b, symmetric, compact, vector_w; |
|
}; |
|
|
|
|
|
Core_SVBkSbTest::Core_SVBkSbTest() : Core_MatrixTest( 2, 1, false, false, 1 ), |
|
flags(0), have_b(false), symmetric(false), compact(false), vector_w(false) |
|
{ |
|
test_case_count = 100; |
|
test_array[TEMP].push_back(NULL); |
|
test_array[TEMP].push_back(NULL); |
|
test_array[TEMP].push_back(NULL); |
|
} |
|
|
|
|
|
void Core_SVBkSbTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, |
|
vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int bits = cvtest::randInt(rng); |
|
Base::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
int min_size, i, m, n; |
|
cv::Size b_size; |
|
|
|
min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height ); |
|
|
|
flags = bits & (CV_SVD_MODIFY_A+CV_SVD_U_T+CV_SVD_V_T); |
|
have_b = (bits & 16) != 0; |
|
symmetric = (bits & 32) != 0; |
|
compact = (bits & 64) != 0; |
|
vector_w = (bits & 128) != 0; |
|
|
|
if( symmetric ) |
|
sizes[INPUT][0] = Size(min_size, min_size); |
|
|
|
m = sizes[INPUT][0].height; |
|
n = sizes[INPUT][0].width; |
|
|
|
sizes[INPUT][1] = Size(0,0); |
|
b_size = cvSize(m, m); |
|
if( have_b ) |
|
{ |
|
sizes[INPUT][1].height = sizes[INPUT][0].height; |
|
sizes[INPUT][1].width = cvtest::randInt(rng) % 100 + 1; |
|
b_size = sizes[INPUT][1]; |
|
} |
|
|
|
if( compact ) |
|
sizes[TEMP][0] = Size(min_size, min_size); |
|
else |
|
sizes[TEMP][0] = sizes[INPUT][0]; |
|
|
|
if( vector_w ) |
|
{ |
|
if( bits & 256 ) |
|
sizes[TEMP][0] = Size(1, min_size); |
|
else |
|
sizes[TEMP][0] = Size(min_size, 1); |
|
} |
|
|
|
sizes[TEMP][1] = compact ? Size(min_size, m) : Size(m, m); |
|
|
|
if( flags & CV_SVD_U_T ) |
|
CV_SWAP( sizes[TEMP][1].width, sizes[TEMP][1].height, i ); |
|
|
|
sizes[TEMP][2] = compact ? Size(n, min_size) : Size(n, n); |
|
|
|
if( !(flags & CV_SVD_V_T) ) |
|
CV_SWAP( sizes[TEMP][2].width, sizes[TEMP][2].height, i ); |
|
|
|
types[TEMP][0] = types[TEMP][1] = types[TEMP][2] = types[INPUT][0]; |
|
types[OUTPUT][0] = types[REF_OUTPUT][0] = types[INPUT][0]; |
|
sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = Size( b_size.width, n ); |
|
} |
|
|
|
|
|
int Core_SVBkSbTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = Base::prepare_test_case( test_case_idx ); |
|
if( code > 0 ) |
|
{ |
|
Mat& input = test_mat[INPUT][0]; |
|
cvTsFloodWithZeros( input, ts->get_rng() ); |
|
|
|
if( symmetric ) |
|
{ |
|
Mat& temp = test_mat[TEMP][1]; |
|
cvtest::gemm( input, input, 1., Mat(), 0., temp, CV_GEMM_B_T ); |
|
cvtest::copy( temp, input ); |
|
} |
|
|
|
CvMat _input = cvMat(input); |
|
cvSVD( &_input, test_array[TEMP][0], test_array[TEMP][1], test_array[TEMP][2], flags ); |
|
} |
|
|
|
return code; |
|
} |
|
|
|
|
|
void Core_SVBkSbTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, Scalar& low, Scalar& high ) |
|
{ |
|
low = cvScalarAll(-2.); |
|
high = cvScalarAll(2.); |
|
} |
|
|
|
|
|
double Core_SVBkSbTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) |
|
{ |
|
return CV_MAT_DEPTH(cvGetElemType(test_array[INPUT][0])) == CV_32F ? 1e-3 : 1e-7; |
|
} |
|
|
|
|
|
void Core_SVBkSbTest::run_func() |
|
{ |
|
cvSVBkSb( test_array[TEMP][0], test_array[TEMP][1], test_array[TEMP][2], |
|
test_array[INPUT][1], test_array[OUTPUT][0], flags ); |
|
} |
|
|
|
|
|
void Core_SVBkSbTest::prepare_to_validation( int ) |
|
{ |
|
Mat& input = test_mat[INPUT][0]; |
|
int i, m = input.rows, n = input.cols, min_size = MIN(m, n); |
|
bool is_float = input.type() == CV_32F; |
|
Size w_size = compact ? Size(min_size,min_size) : Size(m,n); |
|
Mat& w = test_mat[TEMP][0]; |
|
Mat wdb( w_size.height, w_size.width, CV_64FC1 ); |
|
CvMat _w = cvMat(w), _wdb = cvMat(wdb); |
|
// use exactly the same threshold as in icvSVD... , |
|
// so the changes in the library and here should be synchronized. |
|
double threshold = cv::sum(w)[0]*(DBL_EPSILON*2);//(is_float ? FLT_EPSILON*10 : DBL_EPSILON*2); |
|
|
|
wdb = Scalar::all(0); |
|
for( i = 0; i < min_size; i++ ) |
|
{ |
|
double wii = vector_w ? cvGetReal1D(&_w,i) : cvGetReal2D(&_w,i,i); |
|
cvSetReal2D( &_wdb, i, i, wii > threshold ? 1./wii : 0. ); |
|
} |
|
|
|
Mat u = test_mat[TEMP][1]; |
|
Mat v = test_mat[TEMP][2]; |
|
Mat b = test_mat[INPUT][1]; |
|
|
|
if( is_float ) |
|
{ |
|
test_mat[TEMP][1].convertTo(u, CV_64F); |
|
test_mat[TEMP][2].convertTo(v, CV_64F); |
|
if( !b.empty() ) |
|
test_mat[INPUT][1].convertTo(b, CV_64F); |
|
} |
|
|
|
Mat t0, t1; |
|
|
|
if( !b.empty() ) |
|
cvtest::gemm( u, b, 1., Mat(), 0., t0, !(flags & CV_SVD_U_T) ? CV_GEMM_A_T : 0 ); |
|
else if( flags & CV_SVD_U_T ) |
|
cvtest::copy( u, t0 ); |
|
else |
|
cvtest::transpose( u, t0 ); |
|
|
|
cvtest::gemm( wdb, t0, 1, Mat(), 0, t1, 0 ); |
|
|
|
cvtest::gemm( v, t1, 1, Mat(), 0, t0, flags & CV_SVD_V_T ? CV_GEMM_A_T : 0 ); |
|
Mat& dst0 = test_mat[REF_OUTPUT][0]; |
|
t0.convertTo(dst0, dst0.type() ); |
|
} |
|
|
|
|
|
typedef std::complex<double> complex_type; |
|
|
|
struct pred_complex |
|
{ |
|
bool operator() (const complex_type& lhs, const complex_type& rhs) const |
|
{ |
|
return fabs(lhs.real() - rhs.real()) > fabs(rhs.real())*FLT_EPSILON ? lhs.real() < rhs.real() : lhs.imag() < rhs.imag(); |
|
} |
|
}; |
|
|
|
struct pred_double |
|
{ |
|
bool operator() (const double& lhs, const double& rhs) const |
|
{ |
|
return lhs < rhs; |
|
} |
|
}; |
|
|
|
class Core_SolvePolyTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
Core_SolvePolyTest(); |
|
~Core_SolvePolyTest(); |
|
protected: |
|
virtual void run( int start_from ); |
|
}; |
|
|
|
Core_SolvePolyTest::Core_SolvePolyTest() {} |
|
|
|
Core_SolvePolyTest::~Core_SolvePolyTest() {} |
|
|
|
void Core_SolvePolyTest::run( int ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int fig = 100; |
|
double range = 50; |
|
double err_eps = 1e-4; |
|
|
|
for (int idx = 0, max_idx = 1000, progress = 0; idx < max_idx; ++idx) |
|
{ |
|
progress = update_progress(progress, idx-1, max_idx, 0); |
|
int n = cvtest::randInt(rng) % 13 + 1; |
|
std::vector<complex_type> r(n), ar(n), c(n + 1, 0); |
|
std::vector<double> a(n + 1), u(n * 2), ar1(n), ar2(n); |
|
|
|
int rr_odds = 3; // odds that we get a real root |
|
for (int j = 0; j < n;) |
|
{ |
|
if (cvtest::randInt(rng) % rr_odds == 0 || j == n - 1) |
|
r[j++] = cvtest::randReal(rng) * range; |
|
else |
|
{ |
|
r[j] = complex_type(cvtest::randReal(rng) * range, |
|
cvtest::randReal(rng) * range + 1); |
|
r[j + 1] = std::conj(r[j]); |
|
j += 2; |
|
} |
|
} |
|
|
|
for (int j = 0, k = 1 << n, jj, kk; j < k; ++j) |
|
{ |
|
int p = 0; |
|
complex_type v(1); |
|
for (jj = 0, kk = 1; jj < n && !(j & kk); ++jj, ++p, kk <<= 1) |
|
; |
|
for (; jj < n; ++jj, kk <<= 1) |
|
{ |
|
if (j & kk) |
|
v *= -r[jj]; |
|
else |
|
++p; |
|
} |
|
c[p] += v; |
|
} |
|
|
|
bool pass = false; |
|
double div = 0, s = 0; |
|
int cubic_case = idx & 1; |
|
for (int maxiter = 100; !pass && maxiter < 10000; maxiter *= 2, cubic_case = (cubic_case + 1) % 2) |
|
{ |
|
for (int j = 0; j < n + 1; ++j) |
|
a[j] = c[j].real(); |
|
|
|
CvMat amat, umat; |
|
cvInitMatHeader(&amat, n + 1, 1, CV_64FC1, &a[0]); |
|
cvInitMatHeader(&umat, n, 1, CV_64FC2, &u[0]); |
|
cvSolvePoly(&amat, &umat, maxiter, fig); |
|
|
|
for (int j = 0; j < n; ++j) |
|
ar[j] = complex_type(u[j * 2], u[j * 2 + 1]); |
|
|
|
std::sort(r.begin(), r.end(), pred_complex()); |
|
std::sort(ar.begin(), ar.end(), pred_complex()); |
|
|
|
pass = true; |
|
if( n == 3 ) |
|
{ |
|
ar2.resize(n); |
|
cv::Mat _umat2(3, 1, CV_64F, &ar2[0]), umat2 = _umat2; |
|
cvFlip(&amat, &amat, 0); |
|
int nr2; |
|
if( cubic_case == 0 ) |
|
nr2 = cv::solveCubic(cv::cvarrToMat(&amat),umat2); |
|
else |
|
nr2 = cv::solveCubic(cv::Mat_<float>(cv::cvarrToMat(&amat)), umat2); |
|
cvFlip(&amat, &amat, 0); |
|
if(nr2 > 0) |
|
std::sort(ar2.begin(), ar2.begin()+nr2, pred_double()); |
|
ar2.resize(nr2); |
|
|
|
int nr1 = 0; |
|
for(int j = 0; j < n; j++) |
|
if( fabs(r[j].imag()) < DBL_EPSILON ) |
|
ar1[nr1++] = r[j].real(); |
|
|
|
pass = pass && nr1 == nr2; |
|
if( nr2 > 0 ) |
|
{ |
|
div = s = 0; |
|
for(int j = 0; j < nr1; j++) |
|
{ |
|
s += fabs(ar1[j]); |
|
div += fabs(ar1[j] - ar2[j]); |
|
} |
|
div /= s; |
|
pass = pass && div < err_eps; |
|
} |
|
} |
|
|
|
div = s = 0; |
|
for (int j = 0; j < n; ++j) |
|
{ |
|
s += fabs(r[j].real()) + fabs(r[j].imag()); |
|
div += sqrt(pow(r[j].real() - ar[j].real(), 2) + pow(r[j].imag() - ar[j].imag(), 2)); |
|
} |
|
div /= s; |
|
pass = pass && div < err_eps; |
|
} |
|
|
|
//test x^3 = 0 |
|
cv::Mat coeffs_5623(4, 1, CV_64FC1); |
|
cv::Mat r_5623(3, 1, CV_64FC2); |
|
coeffs_5623.at<double>(0) = 1; |
|
coeffs_5623.at<double>(1) = 0; |
|
coeffs_5623.at<double>(2) = 0; |
|
coeffs_5623.at<double>(3) = 0; |
|
double prec_5623 = cv::solveCubic(coeffs_5623, r_5623); |
|
pass = pass && r_5623.at<double>(0) == 0 && r_5623.at<double>(1) == 0 && r_5623.at<double>(2) == 0; |
|
pass = pass && prec_5623 == 1; |
|
|
|
if (!pass) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
ts->printf( cvtest::TS::LOG, "too big diff = %g\n", div ); |
|
|
|
for (size_t j=0;j<ar2.size();++j) |
|
ts->printf( cvtest::TS::LOG, "ar2[%d]=%g\n", j, ar2[j]); |
|
ts->printf(cvtest::TS::LOG, "\n"); |
|
|
|
for (size_t j=0;j<r.size();++j) |
|
ts->printf( cvtest::TS::LOG, "r[%d]=(%g, %g)\n", j, r[j].real(), r[j].imag()); |
|
ts->printf( cvtest::TS::LOG, "\n" ); |
|
for (size_t j=0;j<ar.size();++j) |
|
ts->printf( cvtest::TS::LOG, "ar[%d]=(%g, %g)\n", j, ar[j].real(), ar[j].imag()); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
template<typename T> |
|
static void checkRoot(Mat& r, T re, T im) |
|
{ |
|
for (int i = 0; i < r.cols*r.rows; i++) |
|
{ |
|
Vec<T, 2> v = *(Vec<T, 2>*)r.ptr(i); |
|
if (fabs(re - v[0]) < 1e-6 && fabs(im - v[1]) < 1e-6) |
|
{ |
|
v[0] = std::numeric_limits<T>::quiet_NaN(); |
|
v[1] = std::numeric_limits<T>::quiet_NaN(); |
|
return; |
|
} |
|
} |
|
GTEST_NONFATAL_FAILURE_("Can't find root") << "(" << re << ", " << im << ")"; |
|
} |
|
TEST(Core_SolvePoly, regression_5599) |
|
{ |
|
// x^4 - x^2 = 0, roots: 1, -1, 0, 0 |
|
cv::Mat coefs = (cv::Mat_<float>(1,5) << 0, 0, -1, 0, 1 ); |
|
{ |
|
cv::Mat r; |
|
double prec; |
|
prec = cv::solvePoly(coefs, r); |
|
EXPECT_LE(prec, 1e-6); |
|
EXPECT_EQ(4u, r.total()); |
|
//std::cout << "Preciseness = " << prec << std::endl; |
|
//std::cout << "roots:\n" << r << "\n" << std::endl; |
|
ASSERT_EQ(CV_32FC2, r.type()); |
|
checkRoot<float>(r, 1, 0); |
|
checkRoot<float>(r, -1, 0); |
|
checkRoot<float>(r, 0, 0); |
|
checkRoot<float>(r, 0, 0); |
|
} |
|
// x^2 - 2x + 1 = 0, roots: 1, 1 |
|
coefs = (cv::Mat_<float>(1,3) << 1, -2, 1 ); |
|
{ |
|
cv::Mat r; |
|
double prec; |
|
prec = cv::solvePoly(coefs, r); |
|
EXPECT_LE(prec, 1e-6); |
|
EXPECT_EQ(2u, r.total()); |
|
//std::cout << "Preciseness = " << prec << std::endl; |
|
//std::cout << "roots:\n" << r << "\n" << std::endl; |
|
ASSERT_EQ(CV_32FC2, r.type()); |
|
checkRoot<float>(r, 1, 0); |
|
checkRoot<float>(r, 1, 0); |
|
} |
|
} |
|
|
|
class Core_PhaseTest : public cvtest::BaseTest |
|
{ |
|
int t; |
|
public: |
|
Core_PhaseTest(int t_) : t(t_) {} |
|
~Core_PhaseTest() {} |
|
protected: |
|
virtual void run(int) |
|
{ |
|
const float maxAngleDiff = 0.5; //in degrees |
|
const int axisCount = 8; |
|
const int dim = theRNG().uniform(1,10); |
|
const float scale = theRNG().uniform(1.f, 100.f); |
|
Mat x(axisCount + 1, dim, t), |
|
y(axisCount + 1, dim, t); |
|
Mat anglesInDegrees(axisCount + 1, dim, t); |
|
|
|
// fill the data |
|
x.row(0).setTo(Scalar(0)); |
|
y.row(0).setTo(Scalar(0)); |
|
anglesInDegrees.row(0).setTo(Scalar(0)); |
|
|
|
x.row(1).setTo(Scalar(scale)); |
|
y.row(1).setTo(Scalar(0)); |
|
anglesInDegrees.row(1).setTo(Scalar(0)); |
|
|
|
x.row(2).setTo(Scalar(scale)); |
|
y.row(2).setTo(Scalar(scale)); |
|
anglesInDegrees.row(2).setTo(Scalar(45)); |
|
|
|
x.row(3).setTo(Scalar(0)); |
|
y.row(3).setTo(Scalar(scale)); |
|
anglesInDegrees.row(3).setTo(Scalar(90)); |
|
|
|
x.row(4).setTo(Scalar(-scale)); |
|
y.row(4).setTo(Scalar(scale)); |
|
anglesInDegrees.row(4).setTo(Scalar(135)); |
|
|
|
x.row(5).setTo(Scalar(-scale)); |
|
y.row(5).setTo(Scalar(0)); |
|
anglesInDegrees.row(5).setTo(Scalar(180)); |
|
|
|
x.row(6).setTo(Scalar(-scale)); |
|
y.row(6).setTo(Scalar(-scale)); |
|
anglesInDegrees.row(6).setTo(Scalar(225)); |
|
|
|
x.row(7).setTo(Scalar(0)); |
|
y.row(7).setTo(Scalar(-scale)); |
|
anglesInDegrees.row(7).setTo(Scalar(270)); |
|
|
|
x.row(8).setTo(Scalar(scale)); |
|
y.row(8).setTo(Scalar(-scale)); |
|
anglesInDegrees.row(8).setTo(Scalar(315)); |
|
|
|
Mat resInRad, resInDeg; |
|
phase(x, y, resInRad, false); |
|
phase(x, y, resInDeg, true); |
|
|
|
CV_Assert(resInRad.size() == x.size()); |
|
CV_Assert(resInRad.type() == x.type()); |
|
|
|
CV_Assert(resInDeg.size() == x.size()); |
|
CV_Assert(resInDeg.type() == x.type()); |
|
|
|
// check the result |
|
int outOfRangeCount = countNonZero((resInDeg > 360) | (resInDeg < 0)); |
|
if(outOfRangeCount > 0) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "There are result angles that are out of range [0, 360] (part of them is %f)\n", |
|
static_cast<float>(outOfRangeCount)/resInDeg.total()); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
|
|
Mat diff = abs(anglesInDegrees - resInDeg); |
|
size_t errDegCount = diff.total() - countNonZero((diff < maxAngleDiff) | ((360 - diff) < maxAngleDiff)); |
|
if(errDegCount > 0) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "There are incorrect result angles (in degrees) (part of them is %f)\n", |
|
static_cast<float>(errDegCount)/resInDeg.total()); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
|
|
Mat convertedRes = resInRad * 180. / CV_PI; |
|
double normDiff = cvtest::norm(convertedRes - resInDeg, NORM_INF); |
|
if(normDiff > FLT_EPSILON * 180.) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "There are incorrect result angles (in radians)\n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
|
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
}; |
|
|
|
TEST(Core_CheckRange_Empty, accuracy) |
|
{ |
|
cv::Mat m; |
|
ASSERT_TRUE( cv::checkRange(m) ); |
|
} |
|
|
|
TEST(Core_CheckRange_INT_MAX, accuracy) |
|
{ |
|
cv::Mat m(3, 3, CV_32SC1, cv::Scalar(INT_MAX)); |
|
ASSERT_FALSE( cv::checkRange(m, true, 0, 0, INT_MAX) ); |
|
ASSERT_TRUE( cv::checkRange(m) ); |
|
} |
|
|
|
TEST(Core_CheckRange_INT_MAX1, accuracy) |
|
{ |
|
cv::Mat m(3, 3, CV_32SC1, cv::Scalar(INT_MAX)); |
|
ASSERT_TRUE( cv::checkRange(m, true, 0, 0, (float)((double)INT_MAX+1.0f)) ); |
|
ASSERT_TRUE( cv::checkRange(m) ); |
|
} |
|
|
|
template <typename T> class Core_CheckRange : public testing::Test {}; |
|
|
|
TYPED_TEST_CASE_P(Core_CheckRange); |
|
|
|
TYPED_TEST_P(Core_CheckRange, Negative) |
|
{ |
|
double min_bound = 4.5; |
|
double max_bound = 16.0; |
|
|
|
TypeParam data[] = {5, 10, 15, 10, 10, 2, 8, 12, 14}; |
|
cv::Mat src = cv::Mat(3,3, cv::DataDepth<TypeParam>::value, data); |
|
|
|
cv::Point bad_pt(0, 0); |
|
|
|
ASSERT_FALSE(checkRange(src, true, &bad_pt, min_bound, max_bound)); |
|
ASSERT_EQ(bad_pt.x, 2); |
|
ASSERT_EQ(bad_pt.y, 1); |
|
} |
|
|
|
TYPED_TEST_P(Core_CheckRange, Negative3CN) |
|
{ |
|
double min_bound = 4.5; |
|
double max_bound = 16.0; |
|
|
|
TypeParam data[] = { 5, 6, 7, 10, 11, 12, 13, 14, 15, |
|
10, 11, 12, 10, 11, 12, 2, 5, 6, |
|
8, 8, 8, 12, 12, 12, 14, 14, 14}; |
|
cv::Mat src = cv::Mat(3,3, CV_MAKETYPE(cv::DataDepth<TypeParam>::value, 3), data); |
|
|
|
cv::Point bad_pt(0, 0); |
|
|
|
ASSERT_FALSE(checkRange(src, true, &bad_pt, min_bound, max_bound)); |
|
ASSERT_EQ(bad_pt.x, 2); |
|
ASSERT_EQ(bad_pt.y, 1); |
|
} |
|
|
|
TYPED_TEST_P(Core_CheckRange, Positive) |
|
{ |
|
double min_bound = -1; |
|
double max_bound = 16.0; |
|
|
|
TypeParam data[] = {5, 10, 15, 4, 10, 2, 8, 12, 14}; |
|
cv::Mat src = cv::Mat(3,3, cv::DataDepth<TypeParam>::value, data); |
|
|
|
cv::Point bad_pt(0, 0); |
|
|
|
ASSERT_TRUE(checkRange(src, true, &bad_pt, min_bound, max_bound)); |
|
ASSERT_EQ(bad_pt.x, 0); |
|
ASSERT_EQ(bad_pt.y, 0); |
|
} |
|
|
|
TYPED_TEST_P(Core_CheckRange, Bounds) |
|
{ |
|
double min_bound = 24.5; |
|
double max_bound = 1.0; |
|
|
|
TypeParam data[] = {5, 10, 15, 4, 10, 2, 8, 12, 14}; |
|
cv::Mat src = cv::Mat(3,3, cv::DataDepth<TypeParam>::value, data); |
|
|
|
cv::Point bad_pt(0, 0); |
|
|
|
ASSERT_FALSE(checkRange(src, true, &bad_pt, min_bound, max_bound)); |
|
ASSERT_EQ(bad_pt.x, 0); |
|
ASSERT_EQ(bad_pt.y, 0); |
|
} |
|
|
|
TYPED_TEST_P(Core_CheckRange, Zero) |
|
{ |
|
double min_bound = 0.0; |
|
double max_bound = 0.1; |
|
|
|
cv::Mat src1 = cv::Mat::zeros(3, 3, cv::DataDepth<TypeParam>::value); |
|
|
|
int sizes[] = {5, 6, 7}; |
|
cv::Mat src2 = cv::Mat::zeros(3, sizes, cv::DataDepth<TypeParam>::value); |
|
|
|
ASSERT_TRUE( checkRange(src1, true, NULL, min_bound, max_bound) ); |
|
ASSERT_TRUE( checkRange(src2, true, NULL, min_bound, max_bound) ); |
|
} |
|
|
|
TYPED_TEST_P(Core_CheckRange, One) |
|
{ |
|
double min_bound = 1.0; |
|
double max_bound = 1.1; |
|
|
|
cv::Mat src1 = cv::Mat::ones(3, 3, cv::DataDepth<TypeParam>::value); |
|
|
|
int sizes[] = {5, 6, 7}; |
|
cv::Mat src2 = cv::Mat::ones(3, sizes, cv::DataDepth<TypeParam>::value); |
|
|
|
ASSERT_TRUE( checkRange(src1, true, NULL, min_bound, max_bound) ); |
|
ASSERT_TRUE( checkRange(src2, true, NULL, min_bound, max_bound) ); |
|
} |
|
|
|
TEST(Core_CheckRange, NaN) |
|
{ |
|
float data[] = { 5, 6, 7, 10, 11, 12, 13, 14, 15, |
|
10, 11, 12, 10, 11, 12, 5, 5, std::numeric_limits<float>::quiet_NaN(), |
|
8, 8, 8, 12, 12, 12, 14, 14, 14}; |
|
cv::Mat src = cv::Mat(3,3, CV_32FC3, data); |
|
|
|
cv::Point bad_pt(0, 0); |
|
|
|
ASSERT_FALSE(checkRange(src, true, &bad_pt)); |
|
ASSERT_EQ(bad_pt.x, 2); |
|
ASSERT_EQ(bad_pt.y, 1); |
|
} |
|
|
|
TEST(Core_CheckRange, Inf) |
|
{ |
|
float data[] = { 5, 6, 7, 10, 11, 12, 13, 14, 15, |
|
10, 11, 12, 10, 11, 12, 5, 5, std::numeric_limits<float>::infinity(), |
|
8, 8, 8, 12, 12, 12, 14, 14, 14}; |
|
cv::Mat src = cv::Mat(3,3, CV_32FC3, data); |
|
|
|
cv::Point bad_pt(0, 0); |
|
|
|
ASSERT_FALSE(checkRange(src, true, &bad_pt)); |
|
ASSERT_EQ(bad_pt.x, 2); |
|
ASSERT_EQ(bad_pt.y, 1); |
|
} |
|
|
|
TEST(Core_CheckRange, Inf_Minus) |
|
{ |
|
float data[] = { 5, 6, 7, 10, 11, 12, 13, 14, 15, |
|
10, 11, 12, 10, 11, 12, 5, 5, -std::numeric_limits<float>::infinity(), |
|
8, 8, 8, 12, 12, 12, 14, 14, 14}; |
|
cv::Mat src = cv::Mat(3,3, CV_32FC3, data); |
|
|
|
cv::Point bad_pt(0, 0); |
|
|
|
ASSERT_FALSE(checkRange(src, true, &bad_pt)); |
|
ASSERT_EQ(bad_pt.x, 2); |
|
ASSERT_EQ(bad_pt.y, 1); |
|
} |
|
|
|
REGISTER_TYPED_TEST_CASE_P(Core_CheckRange, Negative, Negative3CN, Positive, Bounds, Zero, One); |
|
|
|
typedef ::testing::Types<signed char,unsigned char, signed short, unsigned short, signed int> mat_data_types; |
|
INSTANTIATE_TYPED_TEST_CASE_P(Negative_Test, Core_CheckRange, mat_data_types); |
|
|
|
TEST(Core_Invert, small) |
|
{ |
|
cv::Mat a = (cv::Mat_<float>(3,3) << 2.42104644730331, 1.81444796521479, -3.98072565304758, 0, 7.08389214348967e-3, 5.55326770986007e-3, 0,0, 7.44556154284261e-3); |
|
//cv::randu(a, -1, 1); |
|
|
|
cv::Mat b = a.t()*a; |
|
cv::Mat c, i = Mat_<float>::eye(3, 3); |
|
cv::invert(b, c, cv::DECOMP_LU); //std::cout << b*c << std::endl; |
|
ASSERT_LT( cvtest::norm(b*c, i, CV_C), 0.1 ); |
|
cv::invert(b, c, cv::DECOMP_SVD); //std::cout << b*c << std::endl; |
|
ASSERT_LT( cvtest::norm(b*c, i, CV_C), 0.1 ); |
|
cv::invert(b, c, cv::DECOMP_CHOLESKY); //std::cout << b*c << std::endl; |
|
ASSERT_LT( cvtest::norm(b*c, i, CV_C), 0.1 ); |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
TEST(Core_CovarMatrix, accuracy) { Core_CovarMatrixTest test; test.safe_run(); } |
|
TEST(Core_CrossProduct, accuracy) { Core_CrossProductTest test; test.safe_run(); } |
|
TEST(Core_Determinant, accuracy) { Core_DetTest test; test.safe_run(); } |
|
TEST(Core_DotProduct, accuracy) { Core_DotProductTest test; test.safe_run(); } |
|
TEST(Core_GEMM, accuracy) { Core_GEMMTest test; test.safe_run(); } |
|
TEST(Core_Invert, accuracy) { Core_InvertTest test; test.safe_run(); } |
|
TEST(Core_Mahalanobis, accuracy) { Core_MahalanobisTest test; test.safe_run(); } |
|
TEST(Core_MulTransposed, accuracy) { Core_MulTransposedTest test; test.safe_run(); } |
|
TEST(Core_Transform, accuracy) { Core_TransformTest test; test.safe_run(); } |
|
TEST(Core_TransformLarge, accuracy) { Core_TransformLargeTest test; test.safe_run(); } |
|
TEST(Core_PerspectiveTransform, accuracy) { Core_PerspectiveTransformTest test; test.safe_run(); } |
|
TEST(Core_Pow, accuracy) { Core_PowTest test; test.safe_run(); } |
|
TEST(Core_SolveLinearSystem, accuracy) { Core_SolveTest test; test.safe_run(); } |
|
TEST(Core_SVD, accuracy) { Core_SVDTest test; test.safe_run(); } |
|
TEST(Core_SVBkSb, accuracy) { Core_SVBkSbTest test; test.safe_run(); } |
|
TEST(Core_Trace, accuracy) { Core_TraceTest test; test.safe_run(); } |
|
TEST(Core_SolvePoly, accuracy) { Core_SolvePolyTest test; test.safe_run(); } |
|
TEST(Core_Phase, accuracy32f) { Core_PhaseTest test(CV_32FC1); test.safe_run(); } |
|
TEST(Core_Phase, accuracy64f) { Core_PhaseTest test(CV_64FC1); test.safe_run(); } |
|
|
|
TEST(Core_SVD, flt) |
|
{ |
|
float a[] = { |
|
1.23377746e+011f, -7.05490125e+010f, -4.18380882e+010f, -11693456.f, |
|
-39091328.f, 77492224.f, -7.05490125e+010f, 2.36211143e+011f, |
|
-3.51093473e+010f, 70773408.f, -4.83386156e+005f, -129560368.f, |
|
-4.18380882e+010f, -3.51093473e+010f, 9.25311222e+010f, -49052424.f, |
|
43922752.f, 12176842.f, -11693456.f, 70773408.f, -49052424.f, 8.40836094e+004f, |
|
5.17475293e+003f, -1.16122949e+004f, -39091328.f, -4.83386156e+005f, |
|
43922752.f, 5.17475293e+003f, 5.16047969e+004f, 5.68887842e+003f, 77492224.f, |
|
-129560368.f, 12176842.f, -1.16122949e+004f, 5.68887842e+003f, |
|
1.28060578e+005f |
|
}; |
|
|
|
float b[] = { |
|
283751232.f, 2.61604198e+009f, -745033216.f, 2.31125625e+005f, |
|
-4.52429188e+005f, -1.37596525e+006f |
|
}; |
|
|
|
Mat A(6, 6, CV_32F, a); |
|
Mat B(6, 1, CV_32F, b); |
|
Mat X, B1; |
|
solve(A, B, X, DECOMP_SVD); |
|
B1 = A*X; |
|
EXPECT_LE(cvtest::norm(B1, B, NORM_L2 + NORM_RELATIVE), FLT_EPSILON*10); |
|
} |
|
|
|
|
|
// TODO: eigenvv, invsqrt, cbrt, fastarctan, (round, floor, ceil(?)), |
|
|
|
enum |
|
{ |
|
MAT_N_DIM_C1, |
|
MAT_N_1_CDIM, |
|
MAT_1_N_CDIM, |
|
MAT_N_DIM_C1_NONCONT, |
|
MAT_N_1_CDIM_NONCONT, |
|
VECTOR |
|
}; |
|
|
|
class CV_KMeansSingularTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_KMeansSingularTest() {} |
|
~CV_KMeansSingularTest() {} |
|
protected: |
|
void run(int inVariant) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int i, iter = 0, N = 0, N0 = 0, K = 0, dims = 0; |
|
Mat labels; |
|
|
|
{ |
|
const int MAX_DIM=5; |
|
int MAX_POINTS = 100, maxIter = 100; |
|
for( iter = 0; iter < maxIter; iter++ ) |
|
{ |
|
ts->update_context(this, iter, true); |
|
dims = rng.uniform(inVariant == MAT_1_N_CDIM ? 2 : 1, MAX_DIM+1); |
|
N = rng.uniform(2, MAX_POINTS+1); |
|
N0 = rng.uniform(1, MAX(N/10, 2)); |
|
K = rng.uniform(1, N+1); |
|
|
|
Mat centers; |
|
|
|
if (inVariant == VECTOR) |
|
{ |
|
dims = 2; |
|
|
|
std::vector<cv::Point2f> data0(N0); |
|
rng.fill(data0, RNG::UNIFORM, -1, 1); |
|
|
|
std::vector<cv::Point2f> data(N); |
|
for( i = 0; i < N; i++ ) |
|
data[i] = data0[rng.uniform(0, N0)]; |
|
|
|
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0), |
|
5, KMEANS_PP_CENTERS, centers); |
|
} |
|
else |
|
{ |
|
Mat data0(N0, dims, CV_32F); |
|
rng.fill(data0, RNG::UNIFORM, -1, 1); |
|
|
|
Mat data; |
|
|
|
switch (inVariant) |
|
{ |
|
case MAT_N_DIM_C1: |
|
data.create(N, dims, CV_32F); |
|
for( i = 0; i < N; i++ ) |
|
data0.row(rng.uniform(0, N0)).copyTo(data.row(i)); |
|
break; |
|
|
|
case MAT_N_1_CDIM: |
|
data.create(N, 1, CV_32FC(dims)); |
|
for( i = 0; i < N; i++ ) |
|
memcpy(data.ptr(i), data0.ptr(rng.uniform(0, N0)), dims * sizeof(float)); |
|
break; |
|
|
|
case MAT_1_N_CDIM: |
|
data.create(1, N, CV_32FC(dims)); |
|
for( i = 0; i < N; i++ ) |
|
memcpy(data.ptr() + i * dims * sizeof(float), data0.ptr(rng.uniform(0, N0)), dims * sizeof(float)); |
|
break; |
|
|
|
case MAT_N_DIM_C1_NONCONT: |
|
data.create(N, dims + 5, CV_32F); |
|
data = data(Range(0, N), Range(0, dims)); |
|
for( i = 0; i < N; i++ ) |
|
data0.row(rng.uniform(0, N0)).copyTo(data.row(i)); |
|
break; |
|
|
|
case MAT_N_1_CDIM_NONCONT: |
|
data.create(N, 3, CV_32FC(dims)); |
|
data = data.colRange(0, 1); |
|
for( i = 0; i < N; i++ ) |
|
memcpy(data.ptr(i), data0.ptr(rng.uniform(0, N0)), dims * sizeof(float)); |
|
break; |
|
} |
|
|
|
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0), |
|
5, KMEANS_PP_CENTERS, centers); |
|
} |
|
|
|
ASSERT_EQ(centers.rows, K); |
|
ASSERT_EQ(labels.rows, N); |
|
|
|
Mat hist(K, 1, CV_32S, Scalar(0)); |
|
for( i = 0; i < N; i++ ) |
|
{ |
|
int l = labels.at<int>(i); |
|
ASSERT_GE(l, 0); |
|
ASSERT_LT(l, K); |
|
hist.at<int>(l)++; |
|
} |
|
for( i = 0; i < K; i++ ) |
|
ASSERT_GT(hist.at<int>(i), 0); |
|
} |
|
} |
|
} |
|
}; |
|
|
|
TEST(Core_KMeans, singular) { CV_KMeansSingularTest test; test.safe_run(MAT_N_DIM_C1); } |
|
|
|
CV_ENUM(KMeansInputVariant, MAT_N_DIM_C1, MAT_N_1_CDIM, MAT_1_N_CDIM, MAT_N_DIM_C1_NONCONT, MAT_N_1_CDIM_NONCONT, VECTOR) |
|
|
|
typedef testing::TestWithParam<KMeansInputVariant> Core_KMeans_InputVariants; |
|
|
|
TEST_P(Core_KMeans_InputVariants, singular) |
|
{ |
|
CV_KMeansSingularTest test; |
|
test.safe_run(GetParam()); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(AllVariants, Core_KMeans_InputVariants, KMeansInputVariant::all()); |
|
|
|
TEST(Core_KMeans, compactness) |
|
{ |
|
const int N = 1024; |
|
const int attempts = 4; |
|
const TermCriteria crit = TermCriteria(TermCriteria::COUNT, 5, 0); // low number of iterations |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
for (int K = 1; K <= N; K *= 2) |
|
{ |
|
Mat data(N, 1, CV_32FC2); |
|
cvtest::randUni(ts.get_rng(), data, Scalar(-200, -200), Scalar(200, 200)); |
|
Mat labels, centers; |
|
double compactness = kmeans(data, K, labels, crit, attempts, KMEANS_PP_CENTERS, centers); |
|
centers = centers.reshape(2); |
|
EXPECT_EQ(labels.rows, N); |
|
EXPECT_EQ(centers.rows, K); |
|
EXPECT_GE(compactness, 0.0); |
|
double expected = 0.0; |
|
for (int i = 0; i < N; ++i) |
|
{ |
|
int l = labels.at<int>(i); |
|
Point2f d = data.at<Point2f>(i) - centers.at<Point2f>(l); |
|
expected += d.x * d.x + d.y * d.y; |
|
} |
|
EXPECT_NEAR(expected, compactness, expected * 1e-8); |
|
if (K == N) |
|
{ |
|
EXPECT_DOUBLE_EQ(compactness, 0.0); |
|
} |
|
} |
|
} |
|
|
|
TEST(Core_KMeans, bad_input) |
|
{ |
|
const int N = 100; |
|
const int attempts = 4; |
|
const TermCriteria crit = TermCriteria(TermCriteria::COUNT, 5, 0); // low number of iterations |
|
const int K = 3; |
|
Mat data(N, 1, CV_32FC2); |
|
cv::randu(data, Scalar(-200, -200), Scalar(200, 200)); |
|
{ |
|
SCOPED_TRACE("Huge value"); |
|
data.at<Vec2f>(10, 0) = Vec2f(1e20f, 0); |
|
Mat labels, centers; |
|
EXPECT_ANY_THROW(kmeans(data, K, labels, crit, attempts, KMEANS_PP_CENTERS, centers)); |
|
} |
|
{ |
|
SCOPED_TRACE("Negative value"); |
|
data.at<Vec2f>(10, 0) = Vec2f(0, -1e20f); |
|
Mat labels, centers; |
|
EXPECT_ANY_THROW(kmeans(data, K, labels, crit, attempts, KMEANS_PP_CENTERS, centers)); |
|
} |
|
{ |
|
SCOPED_TRACE("NaN"); |
|
data.at<Vec2f>(10, 0) = Vec2f(0, std::numeric_limits<float>::quiet_NaN()); |
|
Mat labels, centers; |
|
EXPECT_ANY_THROW(kmeans(data, K, labels, crit, attempts, KMEANS_PP_CENTERS, centers)); |
|
} |
|
} |
|
|
|
TEST(CovariationMatrixVectorOfMat, accuracy) |
|
{ |
|
unsigned int col_problem_size = 8, row_problem_size = 8, vector_size = 16; |
|
cv::Mat src(vector_size, col_problem_size * row_problem_size, CV_32F); |
|
int singleMatFlags = CV_COVAR_ROWS; |
|
|
|
cv::Mat gold; |
|
cv::Mat goldMean; |
|
cv::randu(src,cv::Scalar(-128), cv::Scalar(128)); |
|
cv::calcCovarMatrix(src,gold,goldMean,singleMatFlags,CV_32F); |
|
std::vector<cv::Mat> srcVec; |
|
for(size_t i = 0; i < vector_size; i++) |
|
{ |
|
srcVec.push_back(src.row(static_cast<int>(i)).reshape(0,col_problem_size)); |
|
} |
|
|
|
cv::Mat actual; |
|
cv::Mat actualMean; |
|
cv::calcCovarMatrix(srcVec, actual, actualMean,singleMatFlags,CV_32F); |
|
|
|
cv::Mat diff; |
|
cv::absdiff(gold, actual, diff); |
|
cv::Scalar s = cv::sum(diff); |
|
ASSERT_EQ(s.dot(s), 0.0); |
|
|
|
cv::Mat meanDiff; |
|
cv::absdiff(goldMean, actualMean.reshape(0,1), meanDiff); |
|
cv::Scalar sDiff = cv::sum(meanDiff); |
|
ASSERT_EQ(sDiff.dot(sDiff), 0.0); |
|
} |
|
|
|
TEST(CovariationMatrixVectorOfMatWithMean, accuracy) |
|
{ |
|
unsigned int col_problem_size = 8, row_problem_size = 8, vector_size = 16; |
|
cv::Mat src(vector_size, col_problem_size * row_problem_size, CV_32F); |
|
int singleMatFlags = CV_COVAR_ROWS | CV_COVAR_USE_AVG; |
|
|
|
cv::Mat gold; |
|
cv::randu(src,cv::Scalar(-128), cv::Scalar(128)); |
|
cv::Mat goldMean; |
|
|
|
cv::reduce(src, goldMean, 0, REDUCE_AVG, CV_32F); |
|
|
|
cv::calcCovarMatrix(src,gold,goldMean,singleMatFlags,CV_32F); |
|
|
|
std::vector<cv::Mat> srcVec; |
|
for(size_t i = 0; i < vector_size; i++) |
|
{ |
|
srcVec.push_back(src.row(static_cast<int>(i)).reshape(0,col_problem_size)); |
|
} |
|
|
|
cv::Mat actual; |
|
cv::Mat actualMean = goldMean.reshape(0, row_problem_size); |
|
cv::calcCovarMatrix(srcVec, actual, actualMean,singleMatFlags,CV_32F); |
|
|
|
cv::Mat diff; |
|
cv::absdiff(gold, actual, diff); |
|
cv::Scalar s = cv::sum(diff); |
|
ASSERT_EQ(s.dot(s), 0.0); |
|
|
|
cv::Mat meanDiff; |
|
cv::absdiff(goldMean, actualMean.reshape(0,1), meanDiff); |
|
cv::Scalar sDiff = cv::sum(meanDiff); |
|
ASSERT_EQ(sDiff.dot(sDiff), 0.0); |
|
} |
|
|
|
TEST(Core_Pow, special) |
|
{ |
|
for( int i = 0; i < 100; i++ ) |
|
{ |
|
int n = theRNG().uniform(1, 30); |
|
Mat mtx0(1, n, CV_8S), mtx, result; |
|
randu(mtx0, -5, 5); |
|
|
|
int type = theRNG().uniform(0, 2) ? CV_64F : CV_32F; |
|
double eps = type == CV_32F ? 1e-3 : 1e-10; |
|
mtx0.convertTo(mtx, type); |
|
// generate power from [-n, n] interval with 1/8 step - enough to check various cases. |
|
const int max_pf = 3; |
|
int pf = theRNG().uniform(0, max_pf*2+1); |
|
double power = ((1 << pf) - (1 << (max_pf*2-1)))/16.; |
|
int ipower = cvRound(power); |
|
bool is_ipower = ipower == power; |
|
cv::pow(mtx, power, result); |
|
for( int j = 0; j < n; j++ ) |
|
{ |
|
double val = type == CV_32F ? (double)mtx.at<float>(j) : mtx.at<double>(j); |
|
double r = type == CV_32F ? (double)result.at<float>(j) : result.at<double>(j); |
|
double r0; |
|
if( power == 0. ) |
|
r0 = 1; |
|
else if( is_ipower ) |
|
{ |
|
r0 = 1; |
|
for( int k = 0; k < std::abs(ipower); k++ ) |
|
r0 *= val; |
|
if( ipower < 0 ) |
|
r0 = 1./r0; |
|
} |
|
else |
|
r0 = std::pow(val, power); |
|
if( cvIsInf(r0) ) |
|
{ |
|
ASSERT_TRUE(cvIsInf(r) != 0); |
|
} |
|
else if( cvIsNaN(r0) ) |
|
{ |
|
ASSERT_TRUE(cvIsNaN(r) != 0); |
|
} |
|
else |
|
{ |
|
ASSERT_TRUE(cvIsInf(r) == 0 && cvIsNaN(r) == 0); |
|
ASSERT_LT(fabs(r - r0), eps); |
|
} |
|
} |
|
} |
|
} |
|
|
|
TEST(Core_Cholesky, accuracy64f) |
|
{ |
|
const int n = 5; |
|
Mat A(n, n, CV_64F), refA; |
|
Mat mean(1, 1, CV_64F); |
|
*mean.ptr<double>() = 10.0; |
|
Mat dev(1, 1, CV_64F); |
|
*dev.ptr<double>() = 10.0; |
|
RNG rng(10); |
|
rng.fill(A, RNG::NORMAL, mean, dev); |
|
A = A*A.t(); |
|
A.copyTo(refA); |
|
Cholesky(A.ptr<double>(), A.step, n, NULL, 0, 0); |
|
|
|
for (int i = 0; i < A.rows; i++) |
|
for (int j = i + 1; j < A.cols; j++) |
|
A.at<double>(i, j) = 0.0; |
|
EXPECT_LE(cvtest::norm(refA, A*A.t(), CV_RELATIVE_L2), FLT_EPSILON); |
|
} |
|
|
|
TEST(Core_QR_Solver, accuracy64f) |
|
{ |
|
int m = 20, n = 18; |
|
Mat A(m, m, CV_64F); |
|
Mat B(m, n, CV_64F); |
|
Mat mean(1, 1, CV_64F); |
|
*mean.ptr<double>() = 10.0; |
|
Mat dev(1, 1, CV_64F); |
|
*dev.ptr<double>() = 10.0; |
|
RNG rng(10); |
|
rng.fill(A, RNG::NORMAL, mean, dev); |
|
rng.fill(B, RNG::NORMAL, mean, dev); |
|
A = A*A.t(); |
|
Mat solutionQR; |
|
|
|
//solve system with square matrix |
|
solve(A, B, solutionQR, DECOMP_QR); |
|
EXPECT_LE(cvtest::norm(A*solutionQR, B, CV_RELATIVE_L2), FLT_EPSILON); |
|
|
|
A = Mat(m, n, CV_64F); |
|
B = Mat(m, n, CV_64F); |
|
rng.fill(A, RNG::NORMAL, mean, dev); |
|
rng.fill(B, RNG::NORMAL, mean, dev); |
|
|
|
//solve normal system |
|
solve(A, B, solutionQR, DECOMP_QR | DECOMP_NORMAL); |
|
EXPECT_LE(cvtest::norm(A.t()*(A*solutionQR), A.t()*B, CV_RELATIVE_L2), FLT_EPSILON); |
|
|
|
//solve overdeterminated system as a least squares problem |
|
Mat solutionSVD; |
|
solve(A, B, solutionQR, DECOMP_QR); |
|
solve(A, B, solutionSVD, DECOMP_SVD); |
|
EXPECT_LE(cvtest::norm(solutionQR, solutionSVD, CV_RELATIVE_L2), FLT_EPSILON); |
|
|
|
//solve system with singular matrix |
|
A = Mat(10, 10, CV_64F); |
|
B = Mat(10, 1, CV_64F); |
|
rng.fill(A, RNG::NORMAL, mean, dev); |
|
rng.fill(B, RNG::NORMAL, mean, dev); |
|
for (int i = 0; i < A.cols; i++) |
|
A.at<double>(0, i) = A.at<double>(1, i); |
|
ASSERT_FALSE(solve(A, B, solutionQR, DECOMP_QR)); |
|
} |
|
|
|
TEST(Core_Solve, regression_11888) |
|
{ |
|
cv::Matx<float, 3, 2> A( |
|
2, 1, |
|
3, 1, |
|
6, 1 |
|
); |
|
cv::Vec<float, 3> b(4, 5, 7); |
|
cv::Matx<float, 2, 1> xQR = A.solve(b, DECOMP_QR); |
|
cv::Matx<float, 2, 1> xSVD = A.solve(b, DECOMP_SVD); |
|
EXPECT_LE(cvtest::norm(xQR, xSVD, NORM_L2 | NORM_RELATIVE), 0.001); |
|
cv::Matx<float, 2, 3> iA = A.inv(DECOMP_SVD); |
|
EXPECT_LE(cvtest::norm(iA*A, Matx<float, 2, 2>::eye(), NORM_L2), 1e-3); |
|
EXPECT_ANY_THROW({ |
|
/*cv::Matx<float, 2, 1> xLU =*/ A.solve(b, DECOMP_LU); |
|
std::cout << "FATAL ERROR" << std::endl; |
|
}); |
|
} |
|
|
|
TEST(Core_Solve, Matx_2_2) |
|
{ |
|
cv::Matx<float, 2, 2> A( |
|
2, 1, |
|
1, 1 |
|
); |
|
cv::Vec<float, 2> b(4, 5); |
|
cv::Matx<float, 2, 1> xLU = A.solve(b, DECOMP_LU); |
|
cv::Matx<float, 2, 1> xQR = A.solve(b, DECOMP_QR); |
|
cv::Matx<float, 2, 1> xSVD = A.solve(b, DECOMP_SVD); |
|
EXPECT_LE(cvtest::norm(xQR, xSVD, NORM_L2 | NORM_RELATIVE), 1e-3); |
|
EXPECT_LE(cvtest::norm(xQR, xLU, NORM_L2 | NORM_RELATIVE), 1e-3); |
|
cv::Matx<float, 2, 2> iA = A.inv(DECOMP_SVD); |
|
EXPECT_LE(cvtest::norm(iA*A, Matx<float, 2, 2>::eye(), NORM_L2), 1e-3); |
|
} |
|
TEST(Core_Solve, Matx_3_3) |
|
{ |
|
cv::Matx<float, 3, 3> A( |
|
2, 1, 0, |
|
0, 1, 1, |
|
1, 0, 1 |
|
); |
|
cv::Vec<float, 3> b(4, 5, 6); |
|
cv::Matx<float, 3, 1> xLU = A.solve(b, DECOMP_LU); |
|
cv::Matx<float, 3, 1> xQR = A.solve(b, DECOMP_QR); |
|
cv::Matx<float, 3, 1> xSVD = A.solve(b, DECOMP_SVD); |
|
EXPECT_LE(cvtest::norm(xQR, xSVD, NORM_L2 | NORM_RELATIVE), 1e-3); |
|
EXPECT_LE(cvtest::norm(xQR, xLU, NORM_L2 | NORM_RELATIVE), 1e-3); |
|
cv::Matx<float, 3, 3> iA = A.inv(DECOMP_SVD); |
|
EXPECT_LE(cvtest::norm(iA*A, Matx<float, 3, 3>::eye(), NORM_L2), 1e-3); |
|
} |
|
|
|
TEST(Core_Solve, Matx_4_4) |
|
{ |
|
cv::Matx<float, 4, 4> A( |
|
2, 1, 0, 4, |
|
0, 1, 1, 3, |
|
1, 0, 1, 2, |
|
2, 2, 0, 1 |
|
); |
|
cv::Vec<float, 4> b(4, 5, 6, 7); |
|
cv::Matx<float, 4, 1> xLU = A.solve(b, DECOMP_LU); |
|
cv::Matx<float, 4, 1> xQR = A.solve(b, DECOMP_QR); |
|
cv::Matx<float, 4, 1> xSVD = A.solve(b, DECOMP_SVD); |
|
EXPECT_LE(cvtest::norm(xQR, xSVD, NORM_L2 | NORM_RELATIVE), 1e-3); |
|
EXPECT_LE(cvtest::norm(xQR, xLU, NORM_L2 | NORM_RELATIVE), 1e-3); |
|
cv::Matx<float, 4, 4> iA = A.inv(DECOMP_SVD); |
|
EXPECT_LE(cvtest::norm(iA*A, Matx<float, 4, 4>::eye(), NORM_L2), 1e-3); |
|
} |
|
|
|
softdouble naiveExp(softdouble x) |
|
{ |
|
int exponent = x.getExp(); |
|
int sign = x.getSign() ? -1 : 1; |
|
if(sign < 0 && exponent >= 10) return softdouble::inf(); |
|
softdouble mantissa = x.getFrac(); |
|
//Taylor series for mantissa |
|
uint64 fac[20] = {1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, |
|
39916800, 479001600, 6227020800, 87178291200, 1307674368000, |
|
20922789888000, 355687428096000, 6402373705728000, 121645100408832000, |
|
2432902008176640000}; |
|
softdouble sum = softdouble::one(); |
|
// 21! > (2 ** 64) |
|
for(int i = 20; i > 0; i--) |
|
sum += pow(mantissa, softdouble(i))/softdouble(fac[i-1]); |
|
if(exponent >= 0) |
|
{ |
|
exponent = (1 << exponent); |
|
return pow(sum, softdouble(exponent*sign)); |
|
} |
|
else |
|
{ |
|
if(sign < 0) sum = softdouble::one()/sum; |
|
exponent = -exponent; |
|
for(int j = 0; j < exponent; j++) |
|
sum = sqrt(sum); |
|
return sum; |
|
} |
|
} |
|
|
|
static float makeFP32(int sign, int exponent, int significand) |
|
{ |
|
Cv32suf x; |
|
x.u = (unsigned)(((sign & 1) << 31) | ((exponent&255) << 23) | (significand & 0x7fffff)); |
|
return x.f; |
|
} |
|
|
|
static float makeRandomFP32(RNG& rng, int sign, int exprange) |
|
{ |
|
if( sign == -1 ) |
|
sign = rng() % 2; |
|
int exponent = rng() % exprange; |
|
int significand = rng() % (1 << 23); |
|
return makeFP32(sign, exponent, significand); |
|
} |
|
|
|
TEST(Core_SoftFloat, exp32) |
|
{ |
|
//special cases |
|
EXPECT_TRUE(exp( softfloat::nan()).isNaN()); |
|
EXPECT_TRUE(exp( softfloat::inf()).isInf()); |
|
EXPECT_EQ (exp(-softfloat::inf()), softfloat::zero()); |
|
|
|
//ln(FLT_MAX) ~ 88.722 |
|
const softfloat ln_max(88.722f); |
|
vector<softfloat> inputs; |
|
RNG rng(0); |
|
inputs.push_back(softfloat::zero()); |
|
inputs.push_back(softfloat::one()); |
|
inputs.push_back(softfloat::min()); |
|
for(int i = 0; i < 50000; i++) |
|
{ |
|
float x = makeRandomFP32(rng, -1, 10+127 //bigger exponent will produce inf |
|
); |
|
if(softfloat(x) > ln_max) |
|
x = rng.uniform(0.0f, (float)ln_max); |
|
inputs.push_back(softfloat(x)); |
|
} |
|
|
|
for(size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
softfloat x(inputs[i]); |
|
softfloat y = exp(x); |
|
ASSERT_TRUE(!y.isNaN()); |
|
ASSERT_TRUE(!y.isInf()); |
|
ASSERT_GE(y, softfloat::zero()); |
|
softfloat ygood = naiveExp(x); |
|
softfloat diff = abs(ygood - y); |
|
const softfloat eps = softfloat::eps(); |
|
if(diff > eps) |
|
{ |
|
ASSERT_LE(diff/max(abs(y), abs(ygood)), eps); |
|
} |
|
} |
|
} |
|
|
|
TEST(Core_SoftFloat, exp64) |
|
{ |
|
//special cases |
|
EXPECT_TRUE(exp( softdouble::nan()).isNaN()); |
|
EXPECT_TRUE(exp( softdouble::inf()).isInf()); |
|
EXPECT_EQ (exp(-softdouble::inf()), softdouble::zero()); |
|
|
|
//ln(DBL_MAX) ~ 709.7827 |
|
const softdouble ln_max(709.7827); |
|
vector<softdouble> inputs; |
|
RNG rng(0); |
|
inputs.push_back(softdouble::zero()); |
|
inputs.push_back(softdouble::one()); |
|
inputs.push_back(softdouble::min()); |
|
for(int i = 0; i < 50000; i++) |
|
{ |
|
Cv64suf x; |
|
uint64 sign = rng() % 2; |
|
uint64 exponent = rng() % (10 + 1023); //bigger exponent will produce inf |
|
uint64 mantissa = (((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng)) & ((1LL << 52) - 1); |
|
x.u = (sign << 63) | (exponent << 52) | mantissa; |
|
if(softdouble(x.f) > ln_max) |
|
x.f = rng.uniform(0.0, (double)ln_max); |
|
inputs.push_back(softdouble(x.f)); |
|
} |
|
|
|
for(size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
softdouble x(inputs[i]); |
|
softdouble y = exp(x); |
|
ASSERT_TRUE(!y.isNaN()); |
|
ASSERT_TRUE(!y.isInf()); |
|
ASSERT_GE(y, softdouble::zero()); |
|
softdouble ygood = naiveExp(x); |
|
softdouble diff = abs(ygood - y); |
|
const softdouble eps = softdouble::eps(); |
|
if(diff > eps) |
|
{ |
|
ASSERT_LE(diff/max(abs(y), abs(ygood)), softdouble(8192)*eps); |
|
} |
|
} |
|
} |
|
|
|
TEST(Core_SoftFloat, log32) |
|
{ |
|
const int nValues = 50000; |
|
RNG rng(0); |
|
//special cases |
|
EXPECT_TRUE(log(softfloat::nan()).isNaN()); |
|
for(int i = 0; i < nValues; i++) |
|
{ |
|
softfloat x32(makeRandomFP32(rng, 1, 255)); |
|
ASSERT_TRUE(log(x32).isNaN()); |
|
} |
|
EXPECT_TRUE(log(softfloat::zero()).isInf()); |
|
|
|
vector<softfloat> inputs; |
|
|
|
inputs.push_back(softfloat::one()); |
|
inputs.push_back(softfloat(exp(softfloat::one()))); |
|
inputs.push_back(softfloat::min()); |
|
inputs.push_back(softfloat::max()); |
|
for(int i = 0; i < nValues; i++) |
|
{ |
|
inputs.push_back(softfloat(makeRandomFP32(rng, 0, 255))); |
|
} |
|
|
|
for(size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
softfloat x(inputs[i]); |
|
softfloat y = log(x); |
|
ASSERT_TRUE(!y.isNaN()); |
|
ASSERT_TRUE(!y.isInf()); |
|
softfloat ex = exp(y); |
|
softfloat diff = abs(ex - x); |
|
// 88 is approx estimate of max exp() argument |
|
ASSERT_TRUE(!ex.isInf() || (y > softfloat(88))); |
|
const softfloat eps2 = softfloat().setExp(-17); |
|
if(!ex.isInf() && diff > softfloat::eps()) |
|
{ |
|
ASSERT_LT(diff/max(abs(ex), x), eps2); |
|
} |
|
} |
|
} |
|
|
|
TEST(Core_SoftFloat, log64) |
|
{ |
|
const int nValues = 50000; |
|
RNG rng(0); |
|
//special cases |
|
EXPECT_TRUE(log(softdouble::nan()).isNaN()); |
|
for(int i = 0; i < nValues; i++) |
|
{ |
|
Cv64suf x; |
|
uint64 sign = 1; |
|
uint64 exponent = rng() % 2047; |
|
uint64 mantissa = (((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng)) & ((1LL << 52) - 1); |
|
x.u = (sign << 63) | (exponent << 52) | mantissa; |
|
softdouble x64(x.f); |
|
ASSERT_TRUE(log(x64).isNaN()); |
|
} |
|
EXPECT_TRUE(log(softdouble::zero()).isInf()); |
|
|
|
vector<softdouble> inputs; |
|
inputs.push_back(softdouble::one()); |
|
inputs.push_back(exp(softdouble::one())); |
|
inputs.push_back(softdouble::min()); |
|
inputs.push_back(softdouble::max()); |
|
for(int i = 0; i < nValues; i++) |
|
{ |
|
Cv64suf x; |
|
uint64 sign = 0; |
|
uint64 exponent = rng() % 2047; |
|
uint64 mantissa = (((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng)) & ((1LL << 52) - 1); |
|
x.u = (sign << 63) | (exponent << 52) | mantissa; |
|
inputs.push_back(softdouble(x.f)); |
|
} |
|
|
|
for(size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
softdouble x(inputs[i]); |
|
softdouble y = log(x); |
|
ASSERT_TRUE(!y.isNaN()); |
|
ASSERT_TRUE(!y.isInf()); |
|
softdouble ex = exp(y); |
|
softdouble diff = abs(ex - x); |
|
// 700 is approx estimate of max exp() argument |
|
ASSERT_TRUE(!ex.isInf() || (y > softdouble(700))); |
|
const softdouble eps2 = softdouble().setExp(-41); |
|
if(!ex.isInf() && diff > softdouble::eps()) |
|
{ |
|
ASSERT_LT(diff/max(abs(ex), x), eps2); |
|
} |
|
} |
|
} |
|
|
|
TEST(Core_SoftFloat, cbrt32) |
|
{ |
|
vector<softfloat> inputs; |
|
RNG rng(0); |
|
inputs.push_back(softfloat::zero()); |
|
inputs.push_back(softfloat::one()); |
|
inputs.push_back(softfloat::max()); |
|
inputs.push_back(softfloat::min()); |
|
for(int i = 0; i < 50000; i++) |
|
{ |
|
inputs.push_back(softfloat(makeRandomFP32(rng, -1, 255))); |
|
} |
|
|
|
for(size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
softfloat x(inputs[i]); |
|
softfloat y = cbrt(x); |
|
ASSERT_TRUE(!y.isNaN()); |
|
ASSERT_TRUE(!y.isInf()); |
|
softfloat cube = y*y*y; |
|
softfloat diff = abs(x - cube); |
|
const softfloat eps = softfloat::eps(); |
|
if(diff > eps) |
|
{ |
|
ASSERT_LT(diff/max(abs(x), abs(cube)), softfloat(4)*eps); |
|
} |
|
} |
|
} |
|
|
|
TEST(Core_SoftFloat, pow32) |
|
{ |
|
const softfloat zero = softfloat::zero(), one = softfloat::one(); |
|
const softfloat inf = softfloat::inf(), nan = softfloat::nan(); |
|
const size_t nValues = 5000; |
|
RNG rng(0); |
|
//x ** nan == nan |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
Cv32suf x; |
|
x.u = rng(); |
|
ASSERT_TRUE(pow(softfloat(x.f), nan).isNaN()); |
|
} |
|
//x ** inf check |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
Cv32suf x; |
|
x.u = rng(); |
|
softfloat x32(x.f); |
|
softfloat ax = abs(x32); |
|
if(x32.isNaN()) |
|
{ |
|
ASSERT_TRUE(pow(x32, inf).isNaN()); |
|
} |
|
if(ax > one) |
|
{ |
|
ASSERT_TRUE(pow(x32, inf).isInf()); |
|
ASSERT_EQ (pow(x32, -inf), zero); |
|
} |
|
if(ax < one && ax > zero) |
|
{ |
|
ASSERT_TRUE(pow(x32, -inf).isInf()); |
|
ASSERT_EQ (pow(x32, inf), zero); |
|
} |
|
} |
|
//+-1 ** inf |
|
EXPECT_TRUE(pow( one, inf).isNaN()); |
|
EXPECT_TRUE(pow(-one, inf).isNaN()); |
|
|
|
// x ** 0 == 1 |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
Cv32suf x; |
|
x.u = rng(); |
|
ASSERT_EQ(pow(softfloat(x.f), zero), one); |
|
} |
|
|
|
// x ** 1 == x |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
Cv32suf x; |
|
x.u = rng(); |
|
softfloat x32(x.f); |
|
softfloat val = pow(x32, one); |
|
// don't compare val and x32 directly because x != x if x is nan |
|
ASSERT_EQ(val.v, x32.v); |
|
} |
|
|
|
// nan ** y == nan, if y != 0 |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
unsigned u = rng(); |
|
softfloat x32 = softfloat::fromRaw(u); |
|
x32 = (x32 != softfloat::zero()) ? x32 : softfloat::min(); |
|
ASSERT_TRUE(pow(nan, x32).isNaN()); |
|
} |
|
// nan ** 0 == 1 |
|
EXPECT_EQ(pow(nan, zero), one); |
|
|
|
// inf ** y == 0, if y < 0 |
|
// inf ** y == inf, if y > 0 |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
float x = makeRandomFP32(rng, 0, 255); |
|
softfloat x32 = softfloat(x); |
|
ASSERT_TRUE(pow( inf, x32).isInf()); |
|
ASSERT_TRUE(pow(-inf, x32).isInf()); |
|
ASSERT_EQ(pow( inf, -x32), zero); |
|
ASSERT_EQ(pow(-inf, -x32), zero); |
|
} |
|
|
|
// x ** y == (-x) ** y, if y % 2 == 0 |
|
// x ** y == - (-x) ** y, if y % 2 == 1 |
|
// x ** y == nan, if x < 0 and y is not integer |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
softfloat x32(makeRandomFP32(rng, 1, 255)); |
|
softfloat y32(makeRandomFP32(rng, -1, 23+127 //bigger exponent produces integer numbers only |
|
)); |
|
int yi = cvRound(y32); |
|
if(y32 != softfloat(yi)) |
|
ASSERT_TRUE(pow(x32, y32).isNaN()); |
|
else if(yi % 2) |
|
ASSERT_EQ(pow(-x32, y32), -pow(x32, y32)); |
|
else |
|
ASSERT_EQ(pow(-x32, y32), pow(x32, y32)); |
|
} |
|
|
|
// (0 ** 0) == 1 |
|
EXPECT_EQ(pow(zero, zero), one); |
|
|
|
// 0 ** y == inf, if y < 0 |
|
// 0 ** y == 0, if y > 0 |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
softfloat x32(makeRandomFP32(rng, 0, 255)); |
|
ASSERT_TRUE(pow(zero, -x32).isInf()); |
|
if(x32 != one) |
|
{ |
|
ASSERT_EQ(pow(zero, x32), zero); |
|
} |
|
} |
|
} |
|
|
|
TEST(Core_SoftFloat, pow64) |
|
{ |
|
const softdouble zero = softdouble::zero(), one = softdouble::one(); |
|
const softdouble inf = softdouble::inf(), nan = softdouble::nan(); |
|
|
|
const size_t nValues = 5000; |
|
RNG rng(0); |
|
|
|
//x ** nan == nan |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
Cv64suf x; |
|
x.u = ((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng); |
|
ASSERT_TRUE(pow(softdouble(x.f), nan).isNaN()); |
|
} |
|
//x ** inf check |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
Cv64suf x; |
|
x.u = ((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng); |
|
softdouble x64(x.f); |
|
softdouble ax = abs(x64); |
|
if(x64.isNaN()) |
|
{ |
|
ASSERT_TRUE(pow(x64, inf).isNaN()); |
|
} |
|
if(ax > one) |
|
{ |
|
ASSERT_TRUE(pow(x64, inf).isInf()); |
|
ASSERT_EQ(pow(x64, -inf), zero); |
|
} |
|
if(ax < one && ax > zero) |
|
{ |
|
ASSERT_TRUE(pow(x64, -inf).isInf()); |
|
ASSERT_EQ(pow(x64, inf), zero); |
|
} |
|
} |
|
//+-1 ** inf |
|
EXPECT_TRUE(pow( one, inf).isNaN()); |
|
EXPECT_TRUE(pow(-one, inf).isNaN()); |
|
|
|
// x ** 0 == 1 |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
Cv64suf x; |
|
x.u = ((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng); |
|
ASSERT_EQ(pow(softdouble(x.f), zero), one); |
|
} |
|
|
|
// x ** 1 == x |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
Cv64suf x; |
|
x.u = ((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng); |
|
softdouble x64(x.f); |
|
softdouble val = pow(x64, one); |
|
// don't compare val and x64 directly because x != x if x is nan |
|
ASSERT_EQ(val.v, x64.v); |
|
} |
|
|
|
// nan ** y == nan, if y != 0 |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
uint64 u = ((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng); |
|
softdouble x64 = softdouble::fromRaw(u); |
|
x64 = (x64 != softdouble::zero()) ? x64 : softdouble::min(); |
|
ASSERT_TRUE(pow(nan, x64).isNaN()); |
|
} |
|
// nan ** 0 == 1 |
|
EXPECT_EQ(pow(nan, zero), one); |
|
|
|
// inf ** y == 0, if y < 0 |
|
// inf ** y == inf, if y > 0 |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
Cv64suf x; |
|
uint64 sign = 0; |
|
uint64 exponent = rng() % 2047; |
|
uint64 mantissa = (((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng)) & ((1LL << 52) - 1); |
|
x.u = (sign << 63) | (exponent << 52) | mantissa; |
|
softdouble x64(x.f); |
|
ASSERT_TRUE(pow( inf, x64).isInf()); |
|
ASSERT_TRUE(pow(-inf, x64).isInf()); |
|
ASSERT_EQ(pow( inf, -x64), zero); |
|
ASSERT_EQ(pow(-inf, -x64), zero); |
|
} |
|
|
|
// x ** y == (-x) ** y, if y % 2 == 0 |
|
// x ** y == - (-x) ** y, if y % 2 == 1 |
|
// x ** y == nan, if x < 0 and y is not integer |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
Cv64suf x; |
|
uint64 sign = 1; |
|
uint64 exponent = rng() % 2047; |
|
uint64 mantissa = (((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng)) & ((1LL << 52) - 1); |
|
x.u = (sign << 63) | (exponent << 52) | mantissa; |
|
softdouble x64(x.f); |
|
Cv64suf y; |
|
sign = rng() % 2; |
|
//bigger exponent produces integer numbers only |
|
//exponent = rng() % (52 + 1023); |
|
//bigger exponent is too big |
|
exponent = rng() % (23 + 1023); |
|
mantissa = (((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng)) & ((1LL << 52) - 1); |
|
y.u = (sign << 63) | (exponent << 52) | mantissa; |
|
softdouble y64(y.f); |
|
uint64 yi = cvRound(y64); |
|
if(y64 != softdouble(yi)) |
|
ASSERT_TRUE(pow(x64, y64).isNaN()); |
|
else if(yi % 2) |
|
ASSERT_EQ(pow(-x64, y64), -pow(x64, y64)); |
|
else |
|
ASSERT_EQ(pow(-x64, y64), pow(x64, y64)); |
|
} |
|
|
|
// (0 ** 0) == 1 |
|
EXPECT_EQ(pow(zero, zero), one); |
|
|
|
// 0 ** y == inf, if y < 0 |
|
// 0 ** y == 0, if y > 0 |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
Cv64suf x; |
|
uint64 sign = 0; |
|
uint64 exponent = rng() % 2047; |
|
uint64 mantissa = (((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng)) & ((1LL << 52) - 1); |
|
x.u = (sign << 63) | (exponent << 52) | mantissa; |
|
softdouble x64(x.f); |
|
|
|
ASSERT_TRUE(pow(zero, -x64).isInf()); |
|
if(x64 != one) |
|
{ |
|
ASSERT_EQ(pow(zero, x64), zero); |
|
} |
|
} |
|
} |
|
|
|
TEST(Core_SoftFloat, sincos64) |
|
{ |
|
static const softdouble |
|
two = softdouble(2), three = softdouble(3), |
|
half = softdouble::one()/two, |
|
zero = softdouble::zero(), one = softdouble::one(), |
|
pi = softdouble::pi(), piby2 = pi/two, eps = softdouble::eps(), |
|
sin45 = sqrt(two)/two, sin60 = sqrt(three)/two; |
|
|
|
softdouble vstdAngles[] = |
|
//x, sin(x), cos(x) |
|
{ |
|
zero, zero, one, |
|
pi/softdouble(6), half, sin60, |
|
pi/softdouble(4), sin45, sin45, |
|
pi/three, sin60, half, |
|
}; |
|
vector<softdouble> stdAngles; |
|
stdAngles.assign(vstdAngles, vstdAngles + 3*4); |
|
|
|
static const softdouble stdEps = eps.setExp(-39); |
|
const size_t nStdValues = 5000; |
|
for(size_t i = 0; i < nStdValues; i++) |
|
{ |
|
for(size_t k = 0; k < stdAngles.size()/3; k++) |
|
{ |
|
softdouble x = stdAngles[k*3] + pi*softdouble(2*((int)i-(int)nStdValues/2)); |
|
softdouble s = stdAngles[k*3+1]; |
|
softdouble c = stdAngles[k*3+2]; |
|
ASSERT_LE(abs(sin(x) - s), stdEps); |
|
ASSERT_LE(abs(cos(x) - c), stdEps); |
|
//sin(x+pi/2) = cos(x) |
|
ASSERT_LE(abs(sin(x + piby2) - c), stdEps); |
|
//sin(x+pi) = -sin(x) |
|
ASSERT_LE(abs(sin(x + pi) + s), stdEps); |
|
//cos(x+pi/2) = -sin(x) |
|
ASSERT_LE(abs(cos(x+piby2) + s), stdEps); |
|
//cos(x+pi) = -cos(x) |
|
ASSERT_LE(abs(cos(x+pi) + c), stdEps); |
|
} |
|
} |
|
|
|
// sin(x) is NaN iff x ix NaN or Inf |
|
EXPECT_TRUE(sin(softdouble::inf()).isNaN()); |
|
EXPECT_TRUE(sin(softdouble::nan()).isNaN()); |
|
|
|
vector<int> exponents; |
|
exponents.push_back(0); |
|
for(int i = 1; i < 52; i++) |
|
{ |
|
exponents.push_back( i); |
|
exponents.push_back(-i); |
|
} |
|
exponents.push_back(256); exponents.push_back(-256); |
|
exponents.push_back(512); exponents.push_back(-512); |
|
exponents.push_back(1022); exponents.push_back(-1022); |
|
|
|
vector<softdouble> inputs; |
|
RNG rng(0); |
|
|
|
static const size_t nValues = 1 << 18; |
|
for(size_t i = 0; i < nValues; i++) |
|
{ |
|
softdouble x; |
|
uint64 mantissa = (((long long int)((unsigned int)(rng)) << 32 ) | (unsigned int)(rng)) & ((1LL << 52) - 1); |
|
x.v = mantissa; |
|
x = x.setSign((rng() % 2) != 0); |
|
x = x.setExp(exponents[rng() % exponents.size()]); |
|
inputs.push_back(x); |
|
} |
|
|
|
for(size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
softdouble x = inputs[i]; |
|
|
|
int xexp = x.getExp(); |
|
softdouble randEps = eps.setExp(std::max(xexp-52, -46)); |
|
softdouble sx = sin(x); |
|
softdouble cx = cos(x); |
|
ASSERT_FALSE(sx.isInf()); ASSERT_FALSE(cx.isInf()); |
|
ASSERT_FALSE(sx.isNaN()); ASSERT_FALSE(cx.isNaN()); |
|
ASSERT_LE(abs(sx), one); ASSERT_LE(abs(cx), one); |
|
ASSERT_LE(abs((sx*sx + cx*cx) - one), eps); |
|
ASSERT_LE(abs(sin(x*two) - two*sx*cx), randEps); |
|
ASSERT_LE(abs(cos(x*two) - (cx*cx - sx*sx)), randEps); |
|
ASSERT_LE(abs(sin(-x) + sx), eps); |
|
ASSERT_LE(abs(cos(-x) - cx), eps); |
|
ASSERT_LE(abs(sin(x + piby2) - cx), randEps); |
|
ASSERT_LE(abs(sin(x + pi) + sx), randEps); |
|
ASSERT_LE(abs(cos(x+piby2) + sx), randEps); |
|
ASSERT_LE(abs(cos(x+pi) + cx), randEps); |
|
} |
|
} |
|
|
|
TEST(Core_SoftFloat, CvRound) |
|
{ |
|
struct |
|
{ |
|
uint64_t inVal; |
|
int64_t out64; |
|
int32_t out32; |
|
} _values[] = |
|
{ |
|
{ 0x0123456789abcdefU, 0, 0 }, // 3.51270056408850369812238561681E-303 |
|
{ 0x0000000000000000U, 0, 0 }, // 0 |
|
{ 0x8000000000000000U, 0, 0 }, // -0 |
|
{ 0x000123456789abcdU, 0, 0 }, // 1.5822747438273385725152200433E-309 |
|
{ 0x800123456789abcdU, 0, 0 }, // -1.5822747438273385725152200433E-309 |
|
{ 0x7ff0000000000000U, INT64_MAX, INT32_MAX }, // +inf |
|
{ 0xfff0000000000000U, INT64_MIN, INT32_MIN }, // -inf |
|
{ 0x7ff0000000000001U, INT64_MAX, INT32_MAX }, // nan(casts to maximum value) |
|
{ 0xfff0000000000001U, INT64_MAX, INT32_MAX }, // nan(casts to maximum value) |
|
{ 0x7ffa5a5a5a5a5a5aU, INT64_MAX, INT32_MAX }, // nan(casts to maximum value) |
|
{ 0xfffa5a5a5a5a5a5aU, INT64_MAX, INT32_MAX }, // nan(casts to maximum value) |
|
{ 0x7fe123456789abcdU, INT64_MAX, INT32_MAX }, // 9.627645455595956656406699747E307 |
|
{ 0xffe123456789abcdU, INT64_MIN, INT32_MIN }, // -9.627645455595956656406699747E307 |
|
{ 0x43ffffffffffffffU, INT64_MAX, INT32_MAX }, // (2^53-1)*2^12 |
|
{ 0xc3ffffffffffffffU, INT64_MIN, INT32_MIN }, // -(2^53-1)*2^12 |
|
{ 0x43f0000000000000U, INT64_MAX, INT32_MAX }, // 2^64 |
|
{ 0xc3f0000000000000U, INT64_MIN, INT32_MIN }, // -2^64 |
|
{ 0x43efffffffffffffU, INT64_MAX, INT32_MAX }, // (2^53-1)*2^11 |
|
{ 0xc3efffffffffffffU, INT64_MIN, INT32_MIN }, // -(2^53-1)*2^11 |
|
{ 0x43e0000000000000U, INT64_MAX, INT32_MAX }, // 2^63 |
|
{ 0xc3e0000000000000U, -0x7fffffffffffffff-1, INT32_MIN }, // -2^63 |
|
{ 0x43dfffffffffffffU, 0x7ffffffffffffc00, INT32_MAX }, // (2^53-1)*2^10 |
|
{ 0xc3dfffffffffffffU, -0x7ffffffffffffc00, INT32_MIN }, // -(2^53-1)*2^10 |
|
{ 0x433fffffffffffffU, 0x1fffffffffffff, INT32_MAX }, // (2^53-1) |
|
{ 0xc33fffffffffffffU, -0x1fffffffffffff, INT32_MIN }, // -(2^53-1) |
|
{ 0x432fffffffffffffU, 0x10000000000000, INT32_MAX }, // (2^52-1) + 0.5 |
|
{ 0xc32fffffffffffffU, -0x10000000000000, INT32_MIN }, // -(2^52-1) - 0.5 |
|
{ 0x431fffffffffffffU, 0x8000000000000, INT32_MAX }, // (2^51-1) + 0.75 |
|
{ 0xc31fffffffffffffU, -0x8000000000000, INT32_MIN }, // -(2^51-1) - 0.75 |
|
{ 0x431ffffffffffffeU, 0x8000000000000, INT32_MAX }, // (2^51-1) + 0.5 |
|
{ 0xc31ffffffffffffeU, -0x8000000000000, INT32_MIN }, // -(2^51-1) - 0.5 |
|
{ 0x431ffffffffffffdU, 0x7ffffffffffff, INT32_MAX }, // (2^51-1) + 0.25 |
|
{ 0xc31ffffffffffffdU, -0x7ffffffffffff, INT32_MIN }, // -(2^51-1) - 0.25 |
|
|
|
{ 0x41f0000000000000U, 0x100000000, INT32_MAX }, // 2^32 = 4294967296 |
|
{ 0xc1f0000000000000U, -0x100000000, INT32_MIN }, // -2^32 = -4294967296 |
|
{ 0x41efffffffffffffU, 0x100000000, INT32_MAX }, // 4294967295.99999952316284179688 |
|
{ 0xc1efffffffffffffU, -0x100000000, INT32_MIN }, // -4294967295.99999952316284179688 |
|
{ 0x41effffffff00000U, 0x100000000, INT32_MAX }, // (2^32-1) + 0.5 = 4294967295.5 |
|
{ 0xc1effffffff00000U, -0x100000000, INT32_MIN }, // -(2^32-1) - 0.5 = -4294967295.5 |
|
{ 0x41efffffffe00000U, 0xffffffffll, INT32_MAX }, // (2^32-1) |
|
{ 0xc1efffffffe00000U, -0xffffffffll, INT32_MIN }, // -(2^32-1) |
|
{ 0x41e0000000000000U, 0x80000000ll, INT32_MAX }, // 2^31 = 2147483648 |
|
{ 0xc1e0000000000000U, -0x80000000ll, -0x7fffffff-1 }, // -2^31 = -2147483648 |
|
{ 0x41dfffffffffffffU, 0x80000000ll, INT32_MAX }, // 2147483647.99999976158142089844 |
|
{ 0xc1dfffffffffffffU, -0x80000000ll, -0x7fffffff-1 }, // -2147483647.99999976158142089844 |
|
|
|
{ 0x41dffffffff00000U, 0x80000000ll, INT32_MAX }, // (2^31-1) + 0.75 |
|
{ 0xc1dffffffff00000U, -0x80000000ll, -0x7fffffff-1 }, // -(2^31-1) - 0.75 |
|
{ 0x41dfffffffe00001U, 0x80000000ll, INT32_MAX }, // (2^31-1) + 0.5 + 2^-22 |
|
{ 0xc1dfffffffe00001U, -0x80000000ll, -0x7fffffff-1 }, // -(2^31-1) - 0.5 - 2^-22 |
|
{ 0x41dfffffffe00000U, 0x80000000ll, INT32_MAX }, // (2^31-1) + 0.5 |
|
{ 0xc1dfffffffe00000U, -0x80000000ll, -0x7fffffff-1 }, // -(2^31-1) - 0.5 |
|
{ 0x41dfffffffdfffffU, 0x7fffffff, 0x7fffffff }, // (2^31-1) + 0.5 - 2^-22 |
|
{ 0xc1dfffffffdfffffU, -0x7fffffff, -0x7fffffff }, // -(2^31-1) - 0.5 + 2^-22 |
|
{ 0x41dfffffffd00000U, 0x7fffffff, 0x7fffffff }, // (2^31-1) + 0.25 |
|
{ 0xc1dfffffffd00000U, -0x7fffffff, -0x7fffffff }, // -(2^31-1) - 0.25 |
|
{ 0x41dfffffffc00000U, 0x7fffffff, 0x7fffffff }, // (2^31-1) |
|
{ 0xc1dfffffffc00000U, -0x7fffffff, -0x7fffffff }, // -(2^31-1) |
|
{ 0x41d0000000000000U, 0x40000000, 0x40000000 }, // 2^30 = 2147483648 |
|
{ 0xc1d0000000000000U, -0x40000000, -0x40000000 }, // -2^30 = -2147483648 |
|
|
|
{ 0x4006000000000000U, 3, 3 }, // 2.75 |
|
{ 0xc006000000000000U, -3, -3 }, // -2.75 |
|
{ 0x4004000000000001U, 3, 3 }, // 2.5 + 2^-51 |
|
{ 0xc004000000000001U, -3, -3 }, // -2.5 - 2^-51 |
|
{ 0x4004000000000000U, 2, 2 }, // 2.5 |
|
{ 0xc004000000000000U, -2, -2 }, // -2.5 |
|
{ 0x4003ffffffffffffU, 2, 2 }, // 2.5 - 2^-51 |
|
{ 0xc003ffffffffffffU, -2, -2 }, // -2.5 + 2^-51 |
|
{ 0x4002000000000000U, 2, 2 }, // 2.25 |
|
{ 0xc002000000000000U, -2, -2 }, // -2.25 |
|
|
|
{ 0x3ffc000000000000U, 2, 2 }, // 1.75 |
|
{ 0xbffc000000000000U, -2, -2 }, // -1.75 |
|
{ 0x3ff8000000000001U, 2, 2 }, // 1.5 + 2^-52 |
|
{ 0xbff8000000000001U, -2, -2 }, // -1.5 - 2^-52 |
|
{ 0x3ff8000000000000U, 2, 2 }, // 1.5 |
|
{ 0xbff8000000000000U, -2, -2 }, // -1.5 |
|
{ 0x3ff7ffffffffffffU, 1, 1 }, // 1.5 - 2^-52 |
|
{ 0xbff7ffffffffffffU, -1, -1 }, // -1.5 + 2^-52 |
|
{ 0x3ff4000000000000U, 1, 1 }, // 1.25 |
|
{ 0xbff4000000000000U, -1, -1 }, // -1.25 |
|
|
|
{ 0x3fe8000000000000U, 1, 1 }, // 0.75 |
|
{ 0xbfe8000000000000U, -1, -1 }, // -0.75 |
|
{ 0x3fe0000000000001U, 1, 1 }, // 0.5 + 2^-53 |
|
{ 0xbfe0000000000001U, -1, -1 }, // -0.5 - 2^-53 |
|
{ 0x3fe0000000000000U, 0, 0 }, // 0.5 |
|
{ 0xbfe0000000000000U, 0, 0 }, // -0.5 |
|
|
|
{ 0x3fd8000000000000U, 0, 0 }, // 0.375 |
|
{ 0xbfd8000000000000U, 0, 0 }, // -0.375 |
|
{ 0x3fd0000000000000U, 0, 0 }, // 0.25 |
|
{ 0xbfd0000000000000U, 0, 0 }, // -0.25 |
|
|
|
{ 0x0ff123456789abcdU, 0, 0 }, // 6.89918601543515033558134828315E-232 |
|
{ 0x8ff123456789abcdU, 0, 0 } // -6.89918601543515033558134828315E-232 |
|
}; |
|
struct testvalues |
|
{ |
|
softdouble inVal; |
|
int64_t out64; |
|
int32_t out32; |
|
} *values = (testvalues*)_values; |
|
|
|
for (int i = 0, maxi = sizeof(_values) / sizeof(_values[0]); i < maxi; i++) |
|
{ |
|
EXPECT_EQ(values[i].out64, cvRound64(values[i].inVal)); |
|
EXPECT_EQ(values[i].out64, saturate_cast<int64_t>(values[i].inVal)); |
|
EXPECT_EQ((uint64_t)(values[i].out64), saturate_cast<uint64_t>(values[i].inVal)); |
|
EXPECT_EQ(values[i].out32, cvRound(values[i].inVal)); |
|
EXPECT_EQ(values[i].out32, saturate_cast<int32_t>(values[i].inVal)); |
|
EXPECT_EQ((uint32_t)(values[i].out32), saturate_cast<uint32_t>(values[i].inVal)); |
|
} |
|
} |
|
|
|
template<typename T> |
|
static void checkRounding(T in, int outCeil, int outFloor) |
|
{ |
|
EXPECT_EQ(outCeil,cvCeil(in)); |
|
EXPECT_EQ(outFloor,cvFloor(in)); |
|
|
|
/* cvRound is not expected to be IEEE compliant. The implementation |
|
should round to one of the above. */ |
|
EXPECT_TRUE((cvRound(in) == outCeil) || (cvRound(in) == outFloor)); |
|
} |
|
|
|
TEST(Core_FastMath, InlineRoundingOps) |
|
{ |
|
struct |
|
{ |
|
double in; |
|
int outCeil; |
|
int outFloor; |
|
} values[] = |
|
{ |
|
// Values are chosen to convert to binary float 32/64 exactly |
|
{ 1.0, 1, 1 }, |
|
{ 1.5, 2, 1 }, |
|
{ -1.5, -1, -2} |
|
}; |
|
|
|
for (int i = 0, maxi = sizeof(values) / sizeof(values[0]); i < maxi; i++) |
|
{ |
|
checkRounding<double>(values[i].in, values[i].outCeil, values[i].outFloor); |
|
checkRounding<float>((float)values[i].in, values[i].outCeil, values[i].outFloor); |
|
} |
|
} |
|
|
|
TEST(Core_FastMath, InlineNaN) |
|
{ |
|
EXPECT_EQ( cvIsNaN((float) NAN), 1); |
|
EXPECT_EQ( cvIsNaN((float) -NAN), 1); |
|
EXPECT_EQ( cvIsNaN(0.0f), 0); |
|
EXPECT_EQ( cvIsNaN((double) NAN), 1); |
|
EXPECT_EQ( cvIsNaN((double) -NAN), 1); |
|
EXPECT_EQ( cvIsNaN(0.0), 0); |
|
|
|
// Regression: check the +/-Inf cases |
|
Cv64suf suf; |
|
suf.u = 0x7FF0000000000000UL; |
|
EXPECT_EQ( cvIsNaN(suf.f), 0); |
|
suf.u = 0xFFF0000000000000UL; |
|
EXPECT_EQ( cvIsNaN(suf.f), 0); |
|
} |
|
|
|
TEST(Core_FastMath, InlineIsInf) |
|
{ |
|
// Assume HUGE_VAL is infinity. Strictly speaking, may not always be true. |
|
EXPECT_EQ( cvIsInf((float) HUGE_VAL), 1); |
|
EXPECT_EQ( cvIsInf((float) -HUGE_VAL), 1); |
|
EXPECT_EQ( cvIsInf(0.0f), 0); |
|
EXPECT_EQ( cvIsInf((double) HUGE_VAL), 1); |
|
EXPECT_EQ( cvIsInf((double) -HUGE_VAL), 1); |
|
EXPECT_EQ( cvIsInf(0.0), 0); |
|
|
|
// Regression: check the cases of 0x7FF00000xxxxxxxx |
|
Cv64suf suf; |
|
suf.u = 0x7FF0000000000001UL; |
|
EXPECT_EQ( cvIsInf(suf.f), 0); |
|
suf.u = 0x7FF0000012345678UL; |
|
EXPECT_EQ( cvIsInf(suf.f), 0); |
|
} |
|
|
|
}} // namespace |
|
/* End of file. */
|
|
|