mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
239 lines
8.4 KiB
239 lines
8.4 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_core.hpp" |
|
#include "stat.hpp" |
|
|
|
#include "sum.simd.hpp" |
|
#include "sum.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content |
|
|
|
namespace cv |
|
{ |
|
|
|
SumFunc getSumFunc(int depth) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CV_CPU_DISPATCH(getSumFunc, (depth), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
bool ocl_sum( InputArray _src, Scalar & res, int sum_op, InputArray _mask, |
|
InputArray _src2, bool calc2, const Scalar & res2 ) |
|
{ |
|
CV_Assert(sum_op == OCL_OP_SUM || sum_op == OCL_OP_SUM_ABS || sum_op == OCL_OP_SUM_SQR); |
|
|
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
bool doubleSupport = dev.doubleFPConfig() > 0, |
|
haveMask = _mask.kind() != _InputArray::NONE, |
|
haveSrc2 = _src2.kind() != _InputArray::NONE; |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), |
|
kercn = cn == 1 && !haveMask ? ocl::predictOptimalVectorWidth(_src, _src2) : 1, |
|
mcn = std::max(cn, kercn); |
|
CV_Assert(!haveSrc2 || _src2.type() == type); |
|
int convert_cn = haveSrc2 ? mcn : cn; |
|
|
|
if ( (!doubleSupport && depth == CV_64F) || cn > 4 ) |
|
return false; |
|
|
|
int ngroups = dev.maxComputeUnits(), dbsize = ngroups * (calc2 ? 2 : 1); |
|
size_t wgs = dev.maxWorkGroupSize(); |
|
|
|
int ddepth = std::max(sum_op == OCL_OP_SUM_SQR ? CV_32F : CV_32S, depth), |
|
dtype = CV_MAKE_TYPE(ddepth, cn); |
|
CV_Assert(!haveMask || _mask.type() == CV_8UC1); |
|
|
|
int wgs2_aligned = 1; |
|
while (wgs2_aligned < (int)wgs) |
|
wgs2_aligned <<= 1; |
|
wgs2_aligned >>= 1; |
|
|
|
static const char * const opMap[3] = { "OP_SUM", "OP_SUM_ABS", "OP_SUM_SQR" }; |
|
char cvt[2][40]; |
|
String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstTK=%s -D dstT1=%s -D ddepth=%d -D cn=%d" |
|
" -D convertToDT=%s -D %s -D WGS=%d -D WGS2_ALIGNED=%d%s%s%s%s -D kercn=%d%s%s%s -D convertFromU=%s", |
|
ocl::typeToStr(CV_MAKE_TYPE(depth, mcn)), ocl::typeToStr(depth), |
|
ocl::typeToStr(dtype), ocl::typeToStr(CV_MAKE_TYPE(ddepth, mcn)), |
|
ocl::typeToStr(ddepth), ddepth, cn, |
|
ocl::convertTypeStr(depth, ddepth, mcn, cvt[0]), |
|
opMap[sum_op], (int)wgs, wgs2_aligned, |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "", |
|
haveMask ? " -D HAVE_MASK" : "", |
|
_src.isContinuous() ? " -D HAVE_SRC_CONT" : "", |
|
haveMask && _mask.isContinuous() ? " -D HAVE_MASK_CONT" : "", kercn, |
|
haveSrc2 ? " -D HAVE_SRC2" : "", calc2 ? " -D OP_CALC2" : "", |
|
haveSrc2 && _src2.isContinuous() ? " -D HAVE_SRC2_CONT" : "", |
|
depth <= CV_32S && ddepth == CV_32S ? ocl::convertTypeStr(CV_8U, ddepth, convert_cn, cvt[1]) : "noconvert"); |
|
|
|
ocl::Kernel k("reduce", ocl::core::reduce_oclsrc, opts); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(), src2 = _src2.getUMat(), |
|
db(1, dbsize, dtype), mask = _mask.getUMat(); |
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), |
|
dbarg = ocl::KernelArg::PtrWriteOnly(db), |
|
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), |
|
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2); |
|
|
|
if (haveMask) |
|
{ |
|
if (haveSrc2) |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg, src2arg); |
|
else |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg); |
|
} |
|
else |
|
{ |
|
if (haveSrc2) |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, src2arg); |
|
else |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg); |
|
} |
|
|
|
size_t globalsize = ngroups * wgs; |
|
if (k.run(1, &globalsize, &wgs, false)) |
|
{ |
|
typedef Scalar (*part_sum)(Mat m); |
|
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> }, |
|
func = funcs[ddepth - CV_32S]; |
|
|
|
Mat mres = db.getMat(ACCESS_READ); |
|
if (calc2) |
|
const_cast<Scalar &>(res2) = func(mres.colRange(ngroups, dbsize)); |
|
|
|
res = func(mres.colRange(0, ngroups)); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
static bool ipp_sum(Mat &src, Scalar &_res) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
#if IPP_VERSION_X100 >= 700 |
|
int cn = src.channels(); |
|
if (cn > 4) |
|
return false; |
|
size_t total_size = src.total(); |
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
if( src.dims == 2 || (src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src.type(); |
|
typedef IppStatus (CV_STDCALL* ippiSumFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm); |
|
typedef IppStatus (CV_STDCALL* ippiSumFuncNoHint)(const void*, int, IppiSize, double *); |
|
ippiSumFuncHint ippiSumHint = |
|
type == CV_32FC1 ? (ippiSumFuncHint)ippiSum_32f_C1R : |
|
type == CV_32FC3 ? (ippiSumFuncHint)ippiSum_32f_C3R : |
|
type == CV_32FC4 ? (ippiSumFuncHint)ippiSum_32f_C4R : |
|
0; |
|
ippiSumFuncNoHint ippiSum = |
|
type == CV_8UC1 ? (ippiSumFuncNoHint)ippiSum_8u_C1R : |
|
type == CV_8UC3 ? (ippiSumFuncNoHint)ippiSum_8u_C3R : |
|
type == CV_8UC4 ? (ippiSumFuncNoHint)ippiSum_8u_C4R : |
|
type == CV_16UC1 ? (ippiSumFuncNoHint)ippiSum_16u_C1R : |
|
type == CV_16UC3 ? (ippiSumFuncNoHint)ippiSum_16u_C3R : |
|
type == CV_16UC4 ? (ippiSumFuncNoHint)ippiSum_16u_C4R : |
|
type == CV_16SC1 ? (ippiSumFuncNoHint)ippiSum_16s_C1R : |
|
type == CV_16SC3 ? (ippiSumFuncNoHint)ippiSum_16s_C3R : |
|
type == CV_16SC4 ? (ippiSumFuncNoHint)ippiSum_16s_C4R : |
|
0; |
|
CV_Assert(!ippiSumHint || !ippiSum); |
|
if( ippiSumHint || ippiSum ) |
|
{ |
|
Ipp64f res[4]; |
|
IppStatus ret = ippiSumHint ? |
|
CV_INSTRUMENT_FUN_IPP(ippiSumHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiSum, src.ptr(), (int)src.step[0], sz, res); |
|
if( ret >= 0 ) |
|
{ |
|
for( int i = 0; i < cn; i++ ) |
|
_res[i] = res[i]; |
|
return true; |
|
} |
|
} |
|
} |
|
#else |
|
CV_UNUSED(src); CV_UNUSED(_res); |
|
#endif |
|
return false; |
|
} |
|
#endif |
|
|
|
Scalar sum(InputArray _src) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP |
|
Scalar _res; |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, |
|
ocl_sum(_src, _res, OCL_OP_SUM), |
|
_res) |
|
#endif |
|
|
|
Mat src = _src.getMat(); |
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_sum(src, _res), _res); |
|
|
|
int k, cn = src.channels(), depth = src.depth(); |
|
SumFunc func = getSumFunc(depth); |
|
CV_Assert( cn <= 4 && func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, 0}; |
|
uchar* ptrs[1] = {}; |
|
NAryMatIterator it(arrays, ptrs); |
|
Scalar s; |
|
int total = (int)it.size, blockSize = total, intSumBlockSize = 0; |
|
int j, count = 0; |
|
AutoBuffer<int> _buf; |
|
int* buf = (int*)&s[0]; |
|
size_t esz = 0; |
|
bool blockSum = depth < CV_32S; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15); |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
_buf.allocate(cn); |
|
buf = _buf.data(); |
|
|
|
for( k = 0; k < cn; k++ ) |
|
buf[k] = 0; |
|
esz = src.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func( ptrs[0], 0, (uchar*)buf, bsz, cn ); |
|
count += bsz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
s[k] += buf[k]; |
|
buf[k] = 0; |
|
} |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
} |
|
} |
|
return s; |
|
} |
|
|
|
} // namespace
|
|
|