mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
438 lines
12 KiB
438 lines
12 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_core.hpp" |
|
|
|
namespace cv { namespace hal { |
|
|
|
#if CV_SIMD |
|
/* |
|
The trick with STORE_UNALIGNED/STORE_ALIGNED_NOCACHE is the following: |
|
on IA there are instructions movntps and such to which |
|
v_store_interleave(...., STORE_ALIGNED_NOCACHE) is mapped. |
|
Those instructions write directly into memory w/o touching cache |
|
that results in dramatic speed improvements, especially on |
|
large arrays (FullHD, 4K etc.). |
|
|
|
Those intrinsics require the destination address to be aligned |
|
by 16/32 bits (with SSE2 and AVX2, respectively). |
|
So we potentially split the processing into 3 stages: |
|
1) the optional prefix part [0:i0), where we use simple unaligned stores. |
|
2) the optional main part [i0:len - VECSZ], where we use "nocache" mode. |
|
But in some cases we have to use unaligned stores in this part. |
|
3) the optional suffix part (the tail) (len - VECSZ:len) where we switch back to "unaligned" mode |
|
to process the remaining len - VECSZ elements. |
|
In principle there can be very poorly aligned data where there is no main part. |
|
For that we set i0=0 and use unaligned stores for the whole array. |
|
*/ |
|
template<typename T, typename VecT> static void |
|
vecmerge_( const T** src, T* dst, int len, int cn ) |
|
{ |
|
const int VECSZ = VecT::nlanes; |
|
int i, i0 = 0; |
|
const T* src0 = src[0]; |
|
const T* src1 = src[1]; |
|
|
|
const int dstElemSize = cn * sizeof(T); |
|
int r = (int)((size_t)(void*)dst % (VECSZ*sizeof(T))); |
|
hal::StoreMode mode = hal::STORE_ALIGNED_NOCACHE; |
|
if( r != 0 ) |
|
{ |
|
mode = hal::STORE_UNALIGNED; |
|
if (r % dstElemSize == 0 && len > VECSZ*2) |
|
i0 = VECSZ - (r / dstElemSize); |
|
} |
|
|
|
if( cn == 2 ) |
|
{ |
|
for( i = 0; i < len; i += VECSZ ) |
|
{ |
|
if( i > len - VECSZ ) |
|
{ |
|
i = len - VECSZ; |
|
mode = hal::STORE_UNALIGNED; |
|
} |
|
VecT a = vx_load(src0 + i), b = vx_load(src1 + i); |
|
v_store_interleave(dst + i*cn, a, b, mode); |
|
if( i < i0 ) |
|
{ |
|
i = i0 - VECSZ; |
|
mode = hal::STORE_ALIGNED_NOCACHE; |
|
} |
|
} |
|
} |
|
else if( cn == 3 ) |
|
{ |
|
const T* src2 = src[2]; |
|
for( i = 0; i < len; i += VECSZ ) |
|
{ |
|
if( i > len - VECSZ ) |
|
{ |
|
i = len - VECSZ; |
|
mode = hal::STORE_UNALIGNED; |
|
} |
|
VecT a = vx_load(src0 + i), b = vx_load(src1 + i), c = vx_load(src2 + i); |
|
v_store_interleave(dst + i*cn, a, b, c, mode); |
|
if( i < i0 ) |
|
{ |
|
i = i0 - VECSZ; |
|
mode = hal::STORE_ALIGNED_NOCACHE; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
CV_Assert( cn == 4 ); |
|
const T* src2 = src[2]; |
|
const T* src3 = src[3]; |
|
for( i = 0; i < len; i += VECSZ ) |
|
{ |
|
if( i > len - VECSZ ) |
|
{ |
|
i = len - VECSZ; |
|
mode = hal::STORE_UNALIGNED; |
|
} |
|
VecT a = vx_load(src0 + i), b = vx_load(src1 + i); |
|
VecT c = vx_load(src2 + i), d = vx_load(src3 + i); |
|
v_store_interleave(dst + i*cn, a, b, c, d, mode); |
|
if( i < i0 ) |
|
{ |
|
i = i0 - VECSZ; |
|
mode = hal::STORE_ALIGNED_NOCACHE; |
|
} |
|
} |
|
} |
|
vx_cleanup(); |
|
} |
|
#endif |
|
|
|
template<typename T> static void |
|
merge_( const T** src, T* dst, int len, int cn ) |
|
{ |
|
int k = cn % 4 ? cn % 4 : 4; |
|
int i, j; |
|
if( k == 1 ) |
|
{ |
|
const T* src0 = src[0]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
dst[j] = src0[i]; |
|
} |
|
else if( k == 2 ) |
|
{ |
|
const T *src0 = src[0], *src1 = src[1]; |
|
i = j = 0; |
|
for( ; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; |
|
dst[j+1] = src1[i]; |
|
} |
|
} |
|
else if( k == 3 ) |
|
{ |
|
const T *src0 = src[0], *src1 = src[1], *src2 = src[2]; |
|
i = j = 0; |
|
for( ; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; |
|
dst[j+1] = src1[i]; |
|
dst[j+2] = src2[i]; |
|
} |
|
} |
|
else |
|
{ |
|
const T *src0 = src[0], *src1 = src[1], *src2 = src[2], *src3 = src[3]; |
|
i = j = 0; |
|
for( ; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; dst[j+1] = src1[i]; |
|
dst[j+2] = src2[i]; dst[j+3] = src3[i]; |
|
} |
|
} |
|
|
|
for( ; k < cn; k += 4 ) |
|
{ |
|
const T *src0 = src[k], *src1 = src[k+1], *src2 = src[k+2], *src3 = src[k+3]; |
|
for( i = 0, j = k; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; dst[j+1] = src1[i]; |
|
dst[j+2] = src2[i]; dst[j+3] = src3[i]; |
|
} |
|
} |
|
} |
|
|
|
void merge8u(const uchar** src, uchar* dst, int len, int cn ) |
|
{ |
|
CALL_HAL(merge8u, cv_hal_merge8u, src, dst, len, cn) |
|
#if CV_SIMD |
|
if( len >= v_uint8::nlanes && 2 <= cn && cn <= 4 ) |
|
vecmerge_<uchar, v_uint8>(src, dst, len, cn); |
|
else |
|
#endif |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
void merge16u(const ushort** src, ushort* dst, int len, int cn ) |
|
{ |
|
CALL_HAL(merge16u, cv_hal_merge16u, src, dst, len, cn) |
|
#if CV_SIMD |
|
if( len >= v_uint16::nlanes && 2 <= cn && cn <= 4 ) |
|
vecmerge_<ushort, v_uint16>(src, dst, len, cn); |
|
else |
|
#endif |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
void merge32s(const int** src, int* dst, int len, int cn ) |
|
{ |
|
CALL_HAL(merge32s, cv_hal_merge32s, src, dst, len, cn) |
|
#if CV_SIMD |
|
if( len >= v_int32::nlanes && 2 <= cn && cn <= 4 ) |
|
vecmerge_<int, v_int32>(src, dst, len, cn); |
|
else |
|
#endif |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
void merge64s(const int64** src, int64* dst, int len, int cn ) |
|
{ |
|
CALL_HAL(merge64s, cv_hal_merge64s, src, dst, len, cn) |
|
#if CV_SIMD |
|
if( len >= v_int64::nlanes && 2 <= cn && cn <= 4 ) |
|
vecmerge_<int64, v_int64>(src, dst, len, cn); |
|
else |
|
#endif |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
}} // cv::hal:: |
|
|
|
|
|
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn); |
|
|
|
static MergeFunc getMergeFunc(int depth) |
|
{ |
|
static MergeFunc mergeTab[] = |
|
{ |
|
(MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), |
|
(MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), 0 |
|
}; |
|
|
|
return mergeTab[depth]; |
|
} |
|
|
|
#ifdef HAVE_IPP |
|
|
|
namespace cv { |
|
static bool ipp_merge(const Mat* mv, Mat& dst, int channels) |
|
{ |
|
#ifdef HAVE_IPP_IW_LL |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
if(channels != 3 && channels != 4) |
|
return false; |
|
|
|
if(mv[0].dims <= 2) |
|
{ |
|
IppiSize size = ippiSize(mv[0].size()); |
|
const void *srcPtrs[4] = {NULL}; |
|
size_t srcStep = mv[0].step; |
|
for(int i = 0; i < channels; i++) |
|
{ |
|
srcPtrs[i] = mv[i].ptr(); |
|
if(srcStep != mv[i].step) |
|
return false; |
|
} |
|
|
|
return CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, srcPtrs, (int)srcStep, dst.ptr(), (int)dst.step, size, (int)mv[0].elemSize1(), channels, 0) >= 0; |
|
} |
|
else |
|
{ |
|
const Mat *arrays[5] = {NULL}; |
|
uchar *ptrs[5] = {NULL}; |
|
arrays[0] = &dst; |
|
|
|
for(int i = 1; i < channels; i++) |
|
{ |
|
arrays[i] = &mv[i-1]; |
|
} |
|
|
|
NAryMatIterator it(arrays, ptrs); |
|
IppiSize size = { (int)it.size, 1 }; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
if(CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, (const void**)&ptrs[1], 0, ptrs[0], 0, size, (int)mv[0].elemSize1(), channels, 0) < 0) |
|
return false; |
|
} |
|
return true; |
|
} |
|
#else |
|
CV_UNUSED(dst); CV_UNUSED(mv); CV_UNUSED(channels); |
|
return false; |
|
#endif |
|
} |
|
} |
|
#endif |
|
|
|
void cv::merge(const Mat* mv, size_t n, OutputArray _dst) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_Assert( mv && n > 0 ); |
|
|
|
int depth = mv[0].depth(); |
|
bool allch1 = true; |
|
int k, cn = 0; |
|
size_t i; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth); |
|
allch1 = allch1 && mv[i].channels() == 1; |
|
cn += mv[i].channels(); |
|
} |
|
|
|
CV_Assert( 0 < cn && cn <= CV_CN_MAX ); |
|
_dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn)); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( n == 1 ) |
|
{ |
|
mv[0].copyTo(dst); |
|
return; |
|
} |
|
|
|
CV_IPP_RUN(allch1, ipp_merge(mv, dst, (int)n)); |
|
|
|
if( !allch1 ) |
|
{ |
|
AutoBuffer<int> pairs(cn*2); |
|
int j, ni=0; |
|
|
|
for( i = 0, j = 0; i < n; i++, j += ni ) |
|
{ |
|
ni = mv[i].channels(); |
|
for( k = 0; k < ni; k++ ) |
|
{ |
|
pairs[(j+k)*2] = j + k; |
|
pairs[(j+k)*2+1] = j + k; |
|
} |
|
} |
|
mixChannels( mv, n, &dst, 1, &pairs[0], cn ); |
|
return; |
|
} |
|
|
|
MergeFunc func = getMergeFunc(depth); |
|
CV_Assert( func != 0 ); |
|
|
|
size_t esz = dst.elemSize(), esz1 = dst.elemSize1(); |
|
size_t blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz); |
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); |
|
const Mat** arrays = (const Mat**)_buf.data(); |
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); |
|
|
|
arrays[0] = &dst; |
|
for( k = 0; k < cn; k++ ) |
|
arrays[k+1] = &mv[k]; |
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1); |
|
size_t total = (int)it.size; |
|
size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0)); |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( size_t j = 0; j < total; j += blocksize ) |
|
{ |
|
size_t bsz = std::min(total - j, blocksize); |
|
func( (const uchar**)&ptrs[1], ptrs[0], (int)bsz, cn ); |
|
|
|
if( j + blocksize < total ) |
|
{ |
|
ptrs[0] += bsz*esz; |
|
for( int t = 0; t < cn; t++ ) |
|
ptrs[t+1] += bsz*esz1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_merge( InputArrayOfArrays _mv, OutputArray _dst ) |
|
{ |
|
std::vector<UMat> src, ksrc; |
|
_mv.getUMatVector(src); |
|
CV_Assert(!src.empty()); |
|
|
|
int type = src[0].type(), depth = CV_MAT_DEPTH(type), |
|
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; |
|
Size size = src[0].size(); |
|
|
|
for (size_t i = 0, srcsize = src.size(); i < srcsize; ++i) |
|
{ |
|
int itype = src[i].type(), icn = CV_MAT_CN(itype), idepth = CV_MAT_DEPTH(itype), |
|
esz1 = CV_ELEM_SIZE1(idepth); |
|
if (src[i].dims > 2) |
|
return false; |
|
|
|
CV_Assert(size == src[i].size() && depth == idepth); |
|
|
|
for (int cn = 0; cn < icn; ++cn) |
|
{ |
|
UMat tsrc = src[i]; |
|
tsrc.offset += cn * esz1; |
|
ksrc.push_back(tsrc); |
|
} |
|
} |
|
int dcn = (int)ksrc.size(); |
|
|
|
String srcargs, processelem, cndecl, indexdecl; |
|
for (int i = 0; i < dcn; ++i) |
|
{ |
|
srcargs += format("DECLARE_SRC_PARAM(%d)", i); |
|
processelem += format("PROCESS_ELEM(%d)", i); |
|
indexdecl += format("DECLARE_INDEX(%d)", i); |
|
cndecl += format(" -D scn%d=%d", i, ksrc[i].channels()); |
|
} |
|
|
|
ocl::Kernel k("merge", ocl::core::split_merge_oclsrc, |
|
format("-D OP_MERGE -D cn=%d -D T=%s -D DECLARE_SRC_PARAMS_N=%s" |
|
" -D DECLARE_INDEX_N=%s -D PROCESS_ELEMS_N=%s%s", |
|
dcn, ocl::memopTypeToStr(depth), srcargs.c_str(), |
|
indexdecl.c_str(), processelem.c_str(), cndecl.c_str())); |
|
if (k.empty()) |
|
return false; |
|
|
|
_dst.create(size, CV_MAKE_TYPE(depth, dcn)); |
|
UMat dst = _dst.getUMat(); |
|
|
|
int argidx = 0; |
|
for (int i = 0; i < dcn; ++i) |
|
argidx = k.set(argidx, ocl::KernelArg::ReadOnlyNoSize(ksrc[i])); |
|
argidx = k.set(argidx, ocl::KernelArg::WriteOnly(dst)); |
|
k.set(argidx, rowsPerWI); |
|
|
|
size_t globalsize[2] = { (size_t)dst.cols, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
void cv::merge(InputArrayOfArrays _mv, OutputArray _dst) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_OCL_RUN(_mv.isUMatVector() && _dst.isUMat(), |
|
ocl_merge(_mv, _dst)) |
|
|
|
std::vector<Mat> mv; |
|
_mv.getMatVector(mv); |
|
merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst); |
|
}
|
|
|