mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1019 lines
28 KiB
1019 lines
28 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
#include "precomp.hpp" |
|
#include "bufferpool.impl.hpp" |
|
|
|
namespace cv { |
|
|
|
void MatAllocator::map(UMatData*, int) const |
|
{ |
|
} |
|
|
|
void MatAllocator::unmap(UMatData* u) const |
|
{ |
|
if(u->urefcount == 0 && u->refcount == 0) |
|
{ |
|
deallocate(u); |
|
} |
|
} |
|
|
|
void MatAllocator::download(UMatData* u, void* dstptr, |
|
int dims, const size_t sz[], |
|
const size_t srcofs[], const size_t srcstep[], |
|
const size_t dststep[]) const |
|
{ |
|
if(!u) |
|
return; |
|
int isz[CV_MAX_DIM]; |
|
uchar* srcptr = u->data; |
|
for( int i = 0; i < dims; i++ ) |
|
{ |
|
CV_Assert( sz[i] <= (size_t)INT_MAX ); |
|
if( sz[i] == 0 ) |
|
return; |
|
if( srcofs ) |
|
srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1); |
|
isz[i] = (int)sz[i]; |
|
} |
|
|
|
Mat src(dims, isz, CV_8U, srcptr, srcstep); |
|
Mat dst(dims, isz, CV_8U, dstptr, dststep); |
|
|
|
const Mat* arrays[] = { &src, &dst }; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs, 2); |
|
size_t planesz = it.size; |
|
|
|
for( size_t j = 0; j < it.nplanes; j++, ++it ) |
|
memcpy(ptrs[1], ptrs[0], planesz); |
|
} |
|
|
|
|
|
void MatAllocator::upload(UMatData* u, const void* srcptr, int dims, const size_t sz[], |
|
const size_t dstofs[], const size_t dststep[], |
|
const size_t srcstep[]) const |
|
{ |
|
if(!u) |
|
return; |
|
int isz[CV_MAX_DIM]; |
|
uchar* dstptr = u->data; |
|
for( int i = 0; i < dims; i++ ) |
|
{ |
|
CV_Assert( sz[i] <= (size_t)INT_MAX ); |
|
if( sz[i] == 0 ) |
|
return; |
|
if( dstofs ) |
|
dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1); |
|
isz[i] = (int)sz[i]; |
|
} |
|
|
|
Mat src(dims, isz, CV_8U, (void*)srcptr, srcstep); |
|
Mat dst(dims, isz, CV_8U, dstptr, dststep); |
|
|
|
const Mat* arrays[] = { &src, &dst }; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs, 2); |
|
size_t planesz = it.size; |
|
|
|
for( size_t j = 0; j < it.nplanes; j++, ++it ) |
|
memcpy(ptrs[1], ptrs[0], planesz); |
|
} |
|
|
|
void MatAllocator::copy(UMatData* usrc, UMatData* udst, int dims, const size_t sz[], |
|
const size_t srcofs[], const size_t srcstep[], |
|
const size_t dstofs[], const size_t dststep[], bool /*sync*/) const |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
if(!usrc || !udst) |
|
return; |
|
int isz[CV_MAX_DIM]; |
|
uchar* srcptr = usrc->data; |
|
uchar* dstptr = udst->data; |
|
for( int i = 0; i < dims; i++ ) |
|
{ |
|
CV_Assert( sz[i] <= (size_t)INT_MAX ); |
|
if( sz[i] == 0 ) |
|
return; |
|
if( srcofs ) |
|
srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1); |
|
if( dstofs ) |
|
dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1); |
|
isz[i] = (int)sz[i]; |
|
} |
|
|
|
Mat src(dims, isz, CV_8U, srcptr, srcstep); |
|
Mat dst(dims, isz, CV_8U, dstptr, dststep); |
|
|
|
const Mat* arrays[] = { &src, &dst }; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs, 2); |
|
size_t planesz = it.size; |
|
|
|
for( size_t j = 0; j < it.nplanes; j++, ++it ) |
|
memcpy(ptrs[1], ptrs[0], planesz); |
|
} |
|
|
|
BufferPoolController* MatAllocator::getBufferPoolController(const char* id) const |
|
{ |
|
CV_UNUSED(id); |
|
static DummyBufferPoolController dummy; |
|
return &dummy; |
|
} |
|
|
|
class StdMatAllocator CV_FINAL : public MatAllocator |
|
{ |
|
public: |
|
UMatData* allocate(int dims, const int* sizes, int type, |
|
void* data0, size_t* step, int /*flags*/, UMatUsageFlags /*usageFlags*/) const CV_OVERRIDE |
|
{ |
|
size_t total = CV_ELEM_SIZE(type); |
|
for( int i = dims-1; i >= 0; i-- ) |
|
{ |
|
if( step ) |
|
{ |
|
if( data0 && step[i] != CV_AUTOSTEP ) |
|
{ |
|
CV_Assert(total <= step[i]); |
|
total = step[i]; |
|
} |
|
else |
|
step[i] = total; |
|
} |
|
total *= sizes[i]; |
|
} |
|
uchar* data = data0 ? (uchar*)data0 : (uchar*)fastMalloc(total); |
|
UMatData* u = new UMatData(this); |
|
u->data = u->origdata = data; |
|
u->size = total; |
|
if(data0) |
|
u->flags |= UMatData::USER_ALLOCATED; |
|
|
|
return u; |
|
} |
|
|
|
bool allocate(UMatData* u, int /*accessFlags*/, UMatUsageFlags /*usageFlags*/) const CV_OVERRIDE |
|
{ |
|
if(!u) return false; |
|
return true; |
|
} |
|
|
|
void deallocate(UMatData* u) const CV_OVERRIDE |
|
{ |
|
if(!u) |
|
return; |
|
|
|
CV_Assert(u->urefcount == 0); |
|
CV_Assert(u->refcount == 0); |
|
if( !(u->flags & UMatData::USER_ALLOCATED) ) |
|
{ |
|
fastFree(u->origdata); |
|
u->origdata = 0; |
|
} |
|
delete u; |
|
} |
|
}; |
|
|
|
namespace |
|
{ |
|
MatAllocator* volatile g_matAllocator = NULL; |
|
} |
|
|
|
MatAllocator* Mat::getDefaultAllocator() |
|
{ |
|
if (g_matAllocator == NULL) |
|
{ |
|
cv::AutoLock lock(cv::getInitializationMutex()); |
|
if (g_matAllocator == NULL) |
|
{ |
|
g_matAllocator = getStdAllocator(); |
|
} |
|
} |
|
return g_matAllocator; |
|
} |
|
void Mat::setDefaultAllocator(MatAllocator* allocator) |
|
{ |
|
g_matAllocator = allocator; |
|
} |
|
MatAllocator* Mat::getStdAllocator() |
|
{ |
|
CV_SINGLETON_LAZY_INIT(MatAllocator, new StdMatAllocator()) |
|
} |
|
|
|
//================================================================================================== |
|
|
|
void setSize( Mat& m, int _dims, const int* _sz, const size_t* _steps, bool autoSteps) |
|
{ |
|
CV_Assert( 0 <= _dims && _dims <= CV_MAX_DIM ); |
|
if( m.dims != _dims ) |
|
{ |
|
if( m.step.p != m.step.buf ) |
|
{ |
|
fastFree(m.step.p); |
|
m.step.p = m.step.buf; |
|
m.size.p = &m.rows; |
|
} |
|
if( _dims > 2 ) |
|
{ |
|
m.step.p = (size_t*)fastMalloc(_dims*sizeof(m.step.p[0]) + (_dims+1)*sizeof(m.size.p[0])); |
|
m.size.p = (int*)(m.step.p + _dims) + 1; |
|
m.size.p[-1] = _dims; |
|
m.rows = m.cols = -1; |
|
} |
|
} |
|
|
|
m.dims = _dims; |
|
if( !_sz ) |
|
return; |
|
|
|
size_t esz = CV_ELEM_SIZE(m.flags), esz1 = CV_ELEM_SIZE1(m.flags), total = esz; |
|
for( int i = _dims-1; i >= 0; i-- ) |
|
{ |
|
int s = _sz[i]; |
|
CV_Assert( s >= 0 ); |
|
m.size.p[i] = s; |
|
|
|
if( _steps ) |
|
{ |
|
if (_steps[i] % esz1 != 0) |
|
{ |
|
CV_Error(Error::BadStep, "Step must be a multiple of esz1"); |
|
} |
|
|
|
m.step.p[i] = i < _dims-1 ? _steps[i] : esz; |
|
} |
|
else if( autoSteps ) |
|
{ |
|
m.step.p[i] = total; |
|
int64 total1 = (int64)total*s; |
|
if( (uint64)total1 != (size_t)total1 ) |
|
CV_Error( CV_StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" ); |
|
total = (size_t)total1; |
|
} |
|
} |
|
|
|
if( _dims == 1 ) |
|
{ |
|
m.dims = 2; |
|
m.cols = 1; |
|
m.step[1] = esz; |
|
} |
|
} |
|
|
|
int updateContinuityFlag(int flags, int dims, const int* size, const size_t* step) |
|
{ |
|
int i, j; |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
if( size[i] > 1 ) |
|
break; |
|
} |
|
|
|
uint64 t = (uint64)size[std::min(i, dims-1)]*CV_MAT_CN(flags); |
|
for( j = dims-1; j > i; j-- ) |
|
{ |
|
t *= size[j]; |
|
if( step[j]*size[j] < step[j-1] ) |
|
break; |
|
} |
|
|
|
if( j <= i && t == (uint64)(int)t ) |
|
return flags | Mat::CONTINUOUS_FLAG; |
|
return flags & ~Mat::CONTINUOUS_FLAG; |
|
} |
|
|
|
void Mat::updateContinuityFlag() |
|
{ |
|
flags = cv::updateContinuityFlag(flags, dims, size.p, step.p); |
|
} |
|
|
|
void finalizeHdr(Mat& m) |
|
{ |
|
m.updateContinuityFlag(); |
|
int d = m.dims; |
|
if( d > 2 ) |
|
m.rows = m.cols = -1; |
|
if(m.u) |
|
m.datastart = m.data = m.u->data; |
|
if( m.data ) |
|
{ |
|
m.datalimit = m.datastart + m.size[0]*m.step[0]; |
|
if( m.size[0] > 0 ) |
|
{ |
|
m.dataend = m.ptr() + m.size[d-1]*m.step[d-1]; |
|
for( int i = 0; i < d-1; i++ ) |
|
m.dataend += (m.size[i] - 1)*m.step[i]; |
|
} |
|
else |
|
m.dataend = m.datalimit; |
|
} |
|
else |
|
m.dataend = m.datalimit = 0; |
|
} |
|
|
|
//================================================================================================== |
|
|
|
void Mat::create(int d, const int* _sizes, int _type) |
|
{ |
|
int i; |
|
CV_Assert(0 <= d && d <= CV_MAX_DIM && _sizes); |
|
_type = CV_MAT_TYPE(_type); |
|
|
|
if( data && (d == dims || (d == 1 && dims <= 2)) && _type == type() ) |
|
{ |
|
if( d == 2 && rows == _sizes[0] && cols == _sizes[1] ) |
|
return; |
|
for( i = 0; i < d; i++ ) |
|
if( size[i] != _sizes[i] ) |
|
break; |
|
if( i == d && (d > 1 || size[1] == 1)) |
|
return; |
|
} |
|
|
|
int _sizes_backup[CV_MAX_DIM]; // #5991 |
|
if (_sizes == (this->size.p)) |
|
{ |
|
for(i = 0; i < d; i++ ) |
|
_sizes_backup[i] = _sizes[i]; |
|
_sizes = _sizes_backup; |
|
} |
|
|
|
release(); |
|
if( d == 0 ) |
|
return; |
|
flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL; |
|
setSize(*this, d, _sizes, 0, true); |
|
|
|
if( total() > 0 ) |
|
{ |
|
MatAllocator *a = allocator, *a0 = getDefaultAllocator(); |
|
#ifdef HAVE_TGPU |
|
if( !a || a == tegra::getAllocator() ) |
|
a = tegra::getAllocator(d, _sizes, _type); |
|
#endif |
|
if(!a) |
|
a = a0; |
|
try |
|
{ |
|
u = a->allocate(dims, size, _type, 0, step.p, 0, USAGE_DEFAULT); |
|
CV_Assert(u != 0); |
|
} |
|
catch (...) |
|
{ |
|
if (a == a0) |
|
throw; |
|
u = a0->allocate(dims, size, _type, 0, step.p, 0, USAGE_DEFAULT); |
|
CV_Assert(u != 0); |
|
} |
|
CV_Assert( step[dims-1] == (size_t)CV_ELEM_SIZE(flags) ); |
|
} |
|
|
|
addref(); |
|
finalizeHdr(*this); |
|
} |
|
|
|
void Mat::create(const std::vector<int>& _sizes, int _type) |
|
{ |
|
create((int)_sizes.size(), _sizes.data(), _type); |
|
} |
|
|
|
void Mat::copySize(const Mat& m) |
|
{ |
|
setSize(*this, m.dims, 0, 0); |
|
for( int i = 0; i < dims; i++ ) |
|
{ |
|
size[i] = m.size[i]; |
|
step[i] = m.step[i]; |
|
} |
|
} |
|
|
|
void Mat::deallocate() |
|
{ |
|
if(u) |
|
{ |
|
UMatData* u_ = u; |
|
u = NULL; |
|
(u_->currAllocator ? u_->currAllocator : allocator ? allocator : getDefaultAllocator())->unmap(u_); |
|
} |
|
} |
|
|
|
Mat::Mat(const Mat& m, const Range& _rowRange, const Range& _colRange) |
|
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), |
|
datalimit(0), allocator(0), u(0), size(&rows) |
|
{ |
|
CV_Assert( m.dims >= 2 ); |
|
if( m.dims > 2 ) |
|
{ |
|
AutoBuffer<Range> rs(m.dims); |
|
rs[0] = _rowRange; |
|
rs[1] = _colRange; |
|
for( int i = 2; i < m.dims; i++ ) |
|
rs[i] = Range::all(); |
|
*this = m(rs.data()); |
|
return; |
|
} |
|
|
|
*this = m; |
|
try |
|
{ |
|
if( _rowRange != Range::all() && _rowRange != Range(0,rows) ) |
|
{ |
|
CV_Assert( 0 <= _rowRange.start && _rowRange.start <= _rowRange.end |
|
&& _rowRange.end <= m.rows ); |
|
rows = _rowRange.size(); |
|
data += step*_rowRange.start; |
|
flags |= SUBMATRIX_FLAG; |
|
} |
|
|
|
if( _colRange != Range::all() && _colRange != Range(0,cols) ) |
|
{ |
|
CV_Assert( 0 <= _colRange.start && _colRange.start <= _colRange.end |
|
&& _colRange.end <= m.cols ); |
|
cols = _colRange.size(); |
|
data += _colRange.start*elemSize(); |
|
flags |= SUBMATRIX_FLAG; |
|
} |
|
} |
|
catch(...) |
|
{ |
|
release(); |
|
throw; |
|
} |
|
|
|
updateContinuityFlag(); |
|
|
|
if( rows <= 0 || cols <= 0 ) |
|
{ |
|
release(); |
|
rows = cols = 0; |
|
} |
|
} |
|
|
|
|
|
Mat::Mat(const Mat& m, const Rect& roi) |
|
: flags(m.flags), dims(2), rows(roi.height), cols(roi.width), |
|
data(m.data + roi.y*m.step[0]), |
|
datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), |
|
allocator(m.allocator), u(m.u), size(&rows) |
|
{ |
|
CV_Assert( m.dims <= 2 ); |
|
|
|
size_t esz = CV_ELEM_SIZE(flags); |
|
data += roi.x*esz; |
|
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && |
|
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows ); |
|
if( u ) |
|
CV_XADD(&u->refcount, 1); |
|
if( roi.width < m.cols || roi.height < m.rows ) |
|
flags |= SUBMATRIX_FLAG; |
|
|
|
step[0] = m.step[0]; step[1] = esz; |
|
updateContinuityFlag(); |
|
|
|
if( rows <= 0 || cols <= 0 ) |
|
{ |
|
release(); |
|
rows = cols = 0; |
|
} |
|
} |
|
|
|
|
|
Mat::Mat(int _dims, const int* _sizes, int _type, void* _data, const size_t* _steps) |
|
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), |
|
datalimit(0), allocator(0), u(0), size(&rows) |
|
{ |
|
flags |= CV_MAT_TYPE(_type); |
|
datastart = data = (uchar*)_data; |
|
setSize(*this, _dims, _sizes, _steps, true); |
|
finalizeHdr(*this); |
|
} |
|
|
|
|
|
Mat::Mat(const std::vector<int>& _sizes, int _type, void* _data, const size_t* _steps) |
|
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), |
|
datalimit(0), allocator(0), u(0), size(&rows) |
|
{ |
|
flags |= CV_MAT_TYPE(_type); |
|
datastart = data = (uchar*)_data; |
|
setSize(*this, (int)_sizes.size(), _sizes.data(), _steps, true); |
|
finalizeHdr(*this); |
|
} |
|
|
|
|
|
Mat::Mat(const Mat& m, const Range* ranges) |
|
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), |
|
datalimit(0), allocator(0), u(0), size(&rows) |
|
{ |
|
int d = m.dims; |
|
|
|
CV_Assert(ranges); |
|
for( int i = 0; i < d; i++ ) |
|
{ |
|
Range r = ranges[i]; |
|
CV_Assert( r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i]) ); |
|
} |
|
*this = m; |
|
for( int i = 0; i < d; i++ ) |
|
{ |
|
Range r = ranges[i]; |
|
if( r != Range::all() && r != Range(0, size.p[i])) |
|
{ |
|
size.p[i] = r.end - r.start; |
|
data += r.start*step.p[i]; |
|
flags |= SUBMATRIX_FLAG; |
|
} |
|
} |
|
updateContinuityFlag(); |
|
} |
|
|
|
Mat::Mat(const Mat& m, const std::vector<Range>& ranges) |
|
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), |
|
datalimit(0), allocator(0), u(0), size(&rows) |
|
{ |
|
int d = m.dims; |
|
|
|
CV_Assert((int)ranges.size() == d); |
|
for (int i = 0; i < d; i++) |
|
{ |
|
Range r = ranges[i]; |
|
CV_Assert(r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i])); |
|
} |
|
*this = m; |
|
for (int i = 0; i < d; i++) |
|
{ |
|
Range r = ranges[i]; |
|
if (r != Range::all() && r != Range(0, size.p[i])) |
|
{ |
|
size.p[i] = r.end - r.start; |
|
data += r.start*step.p[i]; |
|
flags |= SUBMATRIX_FLAG; |
|
} |
|
} |
|
updateContinuityFlag(); |
|
} |
|
|
|
|
|
Mat Mat::diag(int d) const |
|
{ |
|
CV_Assert( dims <= 2 ); |
|
Mat m = *this; |
|
size_t esz = elemSize(); |
|
int len; |
|
|
|
if( d >= 0 ) |
|
{ |
|
len = std::min(cols - d, rows); |
|
m.data += esz*d; |
|
} |
|
else |
|
{ |
|
len = std::min(rows + d, cols); |
|
m.data -= step[0]*d; |
|
} |
|
CV_DbgAssert( len > 0 ); |
|
|
|
m.size[0] = m.rows = len; |
|
m.size[1] = m.cols = 1; |
|
m.step[0] += (len > 1 ? esz : 0); |
|
|
|
m.updateContinuityFlag(); |
|
|
|
if( size() != Size(1,1) ) |
|
m.flags |= SUBMATRIX_FLAG; |
|
|
|
return m; |
|
} |
|
|
|
|
|
void Mat::pop_back(size_t nelems) |
|
{ |
|
CV_Assert( nelems <= (size_t)size.p[0] ); |
|
|
|
if( isSubmatrix() ) |
|
*this = rowRange(0, size.p[0] - (int)nelems); |
|
else |
|
{ |
|
size.p[0] -= (int)nelems; |
|
dataend -= nelems*step.p[0]; |
|
} |
|
} |
|
|
|
|
|
void Mat::push_back_(const void* elem) |
|
{ |
|
size_t r = size.p[0]; |
|
if( isSubmatrix() || dataend + step.p[0] > datalimit ) |
|
reserve( std::max(r + 1, (r*3+1)/2) ); |
|
|
|
size_t esz = elemSize(); |
|
memcpy(data + r*step.p[0], elem, esz); |
|
size.p[0] = int(r + 1); |
|
dataend += step.p[0]; |
|
uint64 tsz = size.p[0]; |
|
for( int i = 1; i < dims; i++ ) |
|
tsz *= size.p[i]; |
|
if( esz < step.p[0] || tsz != (uint64)(int)tsz ) |
|
flags &= ~CONTINUOUS_FLAG; |
|
} |
|
|
|
|
|
void Mat::reserve(size_t nelems) |
|
{ |
|
const size_t MIN_SIZE = 64; |
|
|
|
CV_Assert( (int)nelems >= 0 ); |
|
if( !isSubmatrix() && data + step.p[0]*nelems <= datalimit ) |
|
return; |
|
|
|
int r = size.p[0]; |
|
|
|
if( (size_t)r >= nelems ) |
|
return; |
|
|
|
size.p[0] = std::max((int)nelems, 1); |
|
size_t newsize = total()*elemSize(); |
|
|
|
if( newsize < MIN_SIZE ) |
|
size.p[0] = (int)((MIN_SIZE + newsize - 1)*nelems/newsize); |
|
|
|
Mat m(dims, size.p, type()); |
|
size.p[0] = r; |
|
if( r > 0 ) |
|
{ |
|
Mat mpart = m.rowRange(0, r); |
|
copyTo(mpart); |
|
} |
|
|
|
*this = m; |
|
size.p[0] = r; |
|
dataend = data + step.p[0]*r; |
|
} |
|
|
|
|
|
void Mat::reserveBuffer(size_t nbytes) |
|
{ |
|
size_t esz = 1; |
|
int mtype = CV_8UC1; |
|
if (!empty()) |
|
{ |
|
if (!isSubmatrix() && data + nbytes <= dataend)//Should it be datalimit? |
|
return; |
|
esz = elemSize(); |
|
mtype = type(); |
|
} |
|
|
|
size_t nelems = (nbytes - 1) / esz + 1; |
|
|
|
#if SIZE_MAX > UINT_MAX |
|
CV_Assert(nelems <= size_t(INT_MAX)*size_t(INT_MAX)); |
|
int newrows = nelems > size_t(INT_MAX) ? nelems > 0x400*size_t(INT_MAX) ? nelems > 0x100000 * size_t(INT_MAX) ? nelems > 0x40000000 * size_t(INT_MAX) ? |
|
size_t(INT_MAX) : 0x40000000 : 0x100000 : 0x400 : 1; |
|
#else |
|
int newrows = nelems > size_t(INT_MAX) ? 2 : 1; |
|
#endif |
|
int newcols = (int)((nelems - 1) / newrows + 1); |
|
|
|
create(newrows, newcols, mtype); |
|
} |
|
|
|
|
|
void Mat::resize(size_t nelems) |
|
{ |
|
int saveRows = size.p[0]; |
|
if( saveRows == (int)nelems ) |
|
return; |
|
CV_Assert( (int)nelems >= 0 ); |
|
|
|
if( isSubmatrix() || data + step.p[0]*nelems > datalimit ) |
|
reserve(nelems); |
|
|
|
size.p[0] = (int)nelems; |
|
dataend += (size.p[0] - saveRows)*step.p[0]; |
|
|
|
//updateContinuityFlag(*this); |
|
} |
|
|
|
|
|
void Mat::resize(size_t nelems, const Scalar& s) |
|
{ |
|
int saveRows = size.p[0]; |
|
resize(nelems); |
|
|
|
if( size.p[0] > saveRows ) |
|
{ |
|
Mat part = rowRange(saveRows, size.p[0]); |
|
part = s; |
|
} |
|
} |
|
|
|
void Mat::push_back(const Mat& elems) |
|
{ |
|
size_t r = size.p[0]; |
|
size_t delta = elems.size.p[0]; |
|
if( delta == 0 ) |
|
return; |
|
if( this == &elems ) |
|
{ |
|
Mat tmp = elems; |
|
push_back(tmp); |
|
return; |
|
} |
|
if( !data ) |
|
{ |
|
*this = elems.clone(); |
|
return; |
|
} |
|
|
|
size.p[0] = elems.size.p[0]; |
|
bool eq = size == elems.size; |
|
size.p[0] = int(r); |
|
if( !eq ) |
|
CV_Error(CV_StsUnmatchedSizes, "Pushed vector length is not equal to matrix row length"); |
|
if( type() != elems.type() ) |
|
CV_Error(CV_StsUnmatchedFormats, "Pushed vector type is not the same as matrix type"); |
|
|
|
if( isSubmatrix() || dataend + step.p[0]*delta > datalimit ) |
|
reserve( std::max(r + delta, (r*3+1)/2) ); |
|
|
|
size.p[0] += int(delta); |
|
dataend += step.p[0]*delta; |
|
|
|
//updateContinuityFlag(*this); |
|
|
|
if( isContinuous() && elems.isContinuous() ) |
|
memcpy(data + r*step.p[0], elems.data, elems.total()*elems.elemSize()); |
|
else |
|
{ |
|
Mat part = rowRange(int(r), int(r + delta)); |
|
elems.copyTo(part); |
|
} |
|
} |
|
|
|
|
|
void Mat::locateROI( Size& wholeSize, Point& ofs ) const |
|
{ |
|
CV_Assert( dims <= 2 && step[0] > 0 ); |
|
size_t esz = elemSize(), minstep; |
|
ptrdiff_t delta1 = data - datastart, delta2 = dataend - datastart; |
|
|
|
if( delta1 == 0 ) |
|
ofs.x = ofs.y = 0; |
|
else |
|
{ |
|
ofs.y = (int)(delta1/step[0]); |
|
ofs.x = (int)((delta1 - step[0]*ofs.y)/esz); |
|
CV_DbgAssert( data == datastart + ofs.y*step[0] + ofs.x*esz ); |
|
} |
|
minstep = (ofs.x + cols)*esz; |
|
wholeSize.height = (int)((delta2 - minstep)/step[0] + 1); |
|
wholeSize.height = std::max(wholeSize.height, ofs.y + rows); |
|
wholeSize.width = (int)((delta2 - step*(wholeSize.height-1))/esz); |
|
wholeSize.width = std::max(wholeSize.width, ofs.x + cols); |
|
} |
|
|
|
Mat& Mat::adjustROI( int dtop, int dbottom, int dleft, int dright ) |
|
{ |
|
CV_Assert( dims <= 2 && step[0] > 0 ); |
|
Size wholeSize; Point ofs; |
|
size_t esz = elemSize(); |
|
locateROI( wholeSize, ofs ); |
|
int row1 = std::min(std::max(ofs.y - dtop, 0), wholeSize.height), row2 = std::max(0, std::min(ofs.y + rows + dbottom, wholeSize.height)); |
|
int col1 = std::min(std::max(ofs.x - dleft, 0), wholeSize.width), col2 = std::max(0, std::min(ofs.x + cols + dright, wholeSize.width)); |
|
if(row1 > row2) |
|
std::swap(row1, row2); |
|
if(col1 > col2) |
|
std::swap(col1, col2); |
|
|
|
data += (row1 - ofs.y)*step + (col1 - ofs.x)*esz; |
|
rows = row2 - row1; cols = col2 - col1; |
|
size.p[0] = rows; size.p[1] = cols; |
|
updateContinuityFlag(); |
|
return *this; |
|
} |
|
|
|
Mat Mat::reshape(int new_cn, int new_rows) const |
|
{ |
|
int cn = channels(); |
|
Mat hdr = *this; |
|
|
|
if( dims > 2 ) |
|
{ |
|
if( new_rows == 0 && new_cn != 0 && size[dims-1]*cn % new_cn == 0 ) |
|
{ |
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT); |
|
hdr.step[dims-1] = CV_ELEM_SIZE(hdr.flags); |
|
hdr.size[dims-1] = hdr.size[dims-1]*cn / new_cn; |
|
return hdr; |
|
} |
|
if( new_rows > 0 ) |
|
{ |
|
int sz[] = { new_rows, (int)(total()/new_rows) }; |
|
return reshape(new_cn, 2, sz); |
|
} |
|
} |
|
|
|
CV_Assert( dims <= 2 ); |
|
|
|
if( new_cn == 0 ) |
|
new_cn = cn; |
|
|
|
int total_width = cols * cn; |
|
|
|
if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 ) |
|
new_rows = rows * total_width / new_cn; |
|
|
|
if( new_rows != 0 && new_rows != rows ) |
|
{ |
|
int total_size = total_width * rows; |
|
if( !isContinuous() ) |
|
CV_Error( CV_BadStep, |
|
"The matrix is not continuous, thus its number of rows can not be changed" ); |
|
|
|
if( (unsigned)new_rows > (unsigned)total_size ) |
|
CV_Error( CV_StsOutOfRange, "Bad new number of rows" ); |
|
|
|
total_width = total_size / new_rows; |
|
|
|
if( total_width * new_rows != total_size ) |
|
CV_Error( CV_StsBadArg, "The total number of matrix elements " |
|
"is not divisible by the new number of rows" ); |
|
|
|
hdr.rows = new_rows; |
|
hdr.step[0] = total_width * elemSize1(); |
|
} |
|
|
|
int new_width = total_width / new_cn; |
|
|
|
if( new_width * new_cn != total_width ) |
|
CV_Error( CV_BadNumChannels, |
|
"The total width is not divisible by the new number of channels" ); |
|
|
|
hdr.cols = new_width; |
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT); |
|
hdr.step[1] = CV_ELEM_SIZE(hdr.flags); |
|
return hdr; |
|
} |
|
|
|
Mat Mat::reshape(int _cn, int _newndims, const int* _newsz) const |
|
{ |
|
if(_newndims == dims) |
|
{ |
|
if(_newsz == 0) |
|
return reshape(_cn); |
|
if(_newndims == 2) |
|
return reshape(_cn, _newsz[0]); |
|
} |
|
|
|
if (isContinuous()) |
|
{ |
|
CV_Assert(_cn >= 0 && _newndims > 0 && _newndims <= CV_MAX_DIM && _newsz); |
|
|
|
if (_cn == 0) |
|
_cn = this->channels(); |
|
else |
|
CV_Assert(_cn <= CV_CN_MAX); |
|
|
|
size_t total_elem1_ref = this->total() * this->channels(); |
|
size_t total_elem1 = _cn; |
|
|
|
AutoBuffer<int, 4> newsz_buf( (size_t)_newndims ); |
|
|
|
for (int i = 0; i < _newndims; i++) |
|
{ |
|
CV_Assert(_newsz[i] >= 0); |
|
|
|
if (_newsz[i] > 0) |
|
newsz_buf[i] = _newsz[i]; |
|
else if (i < dims) |
|
newsz_buf[i] = this->size[i]; |
|
else |
|
CV_Error(CV_StsOutOfRange, "Copy dimension (which has zero size) is not present in source matrix"); |
|
|
|
total_elem1 *= (size_t)newsz_buf[i]; |
|
} |
|
|
|
if (total_elem1 != total_elem1_ref) |
|
CV_Error(CV_StsUnmatchedSizes, "Requested and source matrices have different count of elements"); |
|
|
|
Mat hdr = *this; |
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((_cn-1) << CV_CN_SHIFT); |
|
setSize(hdr, _newndims, newsz_buf.data(), NULL, true); |
|
|
|
return hdr; |
|
} |
|
|
|
CV_Error(CV_StsNotImplemented, "Reshaping of n-dimensional non-continuous matrices is not supported yet"); |
|
// TBD |
|
} |
|
|
|
Mat Mat::reshape(int _cn, const std::vector<int>& _newshape) const |
|
{ |
|
if(_newshape.empty()) |
|
{ |
|
CV_Assert(empty()); |
|
return *this; |
|
} |
|
|
|
return reshape(_cn, (int)_newshape.size(), &_newshape[0]); |
|
} |
|
|
|
Mat Mat::diag(const Mat& d) |
|
{ |
|
CV_Assert( d.cols == 1 || d.rows == 1 ); |
|
int len = d.rows + d.cols - 1; |
|
Mat m(len, len, d.type(), Scalar(0)); |
|
Mat md = m.diag(); |
|
if( d.cols == 1 ) |
|
d.copyTo(md); |
|
else |
|
transpose(d, md); |
|
return m; |
|
} |
|
|
|
int Mat::checkVector(int _elemChannels, int _depth, bool _requireContinuous) const |
|
{ |
|
return data && (depth() == _depth || _depth <= 0) && |
|
(isContinuous() || !_requireContinuous) && |
|
((dims == 2 && (((rows == 1 || cols == 1) && channels() == _elemChannels) || |
|
(cols == _elemChannels && channels() == 1))) || |
|
(dims == 3 && channels() == 1 && size.p[2] == _elemChannels && (size.p[0] == 1 || size.p[1] == 1) && |
|
(isContinuous() || step.p[1] == step.p[2]*size.p[2]))) |
|
? (int)(total()*channels()/_elemChannels) : -1; |
|
} |
|
|
|
|
|
static inline Size getContinuousSize_(int flags, int cols, int rows, int widthScale) |
|
{ |
|
int64 sz = (int64)cols * rows * widthScale; |
|
bool has_int_overflow = sz >= INT_MAX; |
|
bool isContiguous = (flags & Mat::CONTINUOUS_FLAG) != 0; |
|
return (isContiguous && !has_int_overflow) |
|
? Size((int)sz, 1) |
|
: Size(cols * widthScale, rows); |
|
} |
|
|
|
Size getContinuousSize2D(Mat& m1, int widthScale) |
|
{ |
|
CV_CheckLE(m1.dims, 2, ""); |
|
return getContinuousSize_(m1.flags, |
|
m1.cols, m1.rows, widthScale); |
|
} |
|
Size getContinuousSize2D(Mat& m1, Mat& m2, int widthScale) |
|
{ |
|
CV_CheckLE(m1.dims, 2, ""); |
|
CV_CheckLE(m2.dims, 2, ""); |
|
const Size sz1 = m1.size(); |
|
if (sz1 != m2.size()) // reshape all matrixes to the same size (#4159) |
|
{ |
|
size_t total_sz = m1.total(); |
|
CV_CheckEQ(total_sz, m2.total(), ""); |
|
bool is_m1_vector = m1.cols == 1 || m1.rows == 1; |
|
bool is_m2_vector = m2.cols == 1 || m2.rows == 1; |
|
CV_Assert(is_m1_vector); CV_Assert(is_m2_vector); |
|
int total = (int)total_sz; // vector-column |
|
bool isContiguous = ((m1.flags & m2.flags) & Mat::CONTINUOUS_FLAG) != 0; |
|
bool has_int_overflow = ((int64)total_sz * widthScale) >= INT_MAX; |
|
if (isContiguous && !has_int_overflow) |
|
total = 1; // vector-row |
|
m1 = m1.reshape(0, total); |
|
m2 = m2.reshape(0, total); |
|
CV_Assert(m1.cols == m2.cols && m1.rows == m2.rows); |
|
return Size(m1.cols * widthScale, m1.rows); |
|
} |
|
return getContinuousSize_(m1.flags & m2.flags, |
|
m1.cols, m1.rows, widthScale); |
|
} |
|
|
|
Size getContinuousSize2D(Mat& m1, Mat& m2, Mat& m3, int widthScale) |
|
{ |
|
CV_CheckLE(m1.dims, 2, ""); |
|
CV_CheckLE(m2.dims, 2, ""); |
|
CV_CheckLE(m3.dims, 2, ""); |
|
const Size sz1 = m1.size(); |
|
if (sz1 != m2.size() || sz1 != m3.size()) // reshape all matrixes to the same size (#4159) |
|
{ |
|
size_t total_sz = m1.total(); |
|
CV_CheckEQ(total_sz, m2.total(), ""); |
|
CV_CheckEQ(total_sz, m3.total(), ""); |
|
bool is_m1_vector = m1.cols == 1 || m1.rows == 1; |
|
bool is_m2_vector = m2.cols == 1 || m2.rows == 1; |
|
bool is_m3_vector = m3.cols == 1 || m3.rows == 1; |
|
CV_Assert(is_m1_vector); CV_Assert(is_m2_vector); CV_Assert(is_m3_vector); |
|
int total = (int)total_sz; // vector-column |
|
bool isContiguous = ((m1.flags & m2.flags & m3.flags) & Mat::CONTINUOUS_FLAG) != 0; |
|
bool has_int_overflow = ((int64)total_sz * widthScale) >= INT_MAX; |
|
if (isContiguous && !has_int_overflow) |
|
total = 1; // vector-row |
|
m1 = m1.reshape(0, total); |
|
m2 = m2.reshape(0, total); |
|
m3 = m3.reshape(0, total); |
|
CV_Assert(m1.cols == m2.cols && m1.rows == m2.rows && m1.cols == m3.cols && m1.rows == m3.rows); |
|
return Size(m1.cols * widthScale, m1.rows); |
|
} |
|
return getContinuousSize_(m1.flags & m2.flags & m3.flags, |
|
m1.cols, m1.rows, widthScale); |
|
} |
|
|
|
} // cv::
|
|
|