mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
266 lines
8.0 KiB
266 lines
8.0 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and / or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace { |
|
|
|
using namespace cv::softcascade; |
|
|
|
class HOG6MagLuv : public ChannelFeatureBuilder |
|
{ |
|
enum {N_CHANNELS = 10}; |
|
public: |
|
virtual ~HOG6MagLuv() {} |
|
virtual cv::AlgorithmInfo* info() const; |
|
|
|
virtual int totalChannels() const {return N_CHANNELS; } |
|
|
|
virtual void operator()(cv::InputArray _frame, cv::OutputArray _integrals, cv::Size channelsSize) const |
|
{ |
|
CV_Assert(_frame.type() == CV_8UC3); |
|
|
|
cv::Mat frame = _frame.getMat(); |
|
int h = frame.rows; |
|
int w = frame.cols; |
|
|
|
if (channelsSize != cv::Size()) |
|
_integrals.create(channelsSize.height * N_CHANNELS + 1, channelsSize.width + 1, CV_32SC1); |
|
|
|
if(_integrals.empty()) |
|
_integrals.create(frame.rows * N_CHANNELS + 1, frame.cols + 1, CV_32SC1); |
|
|
|
cv::Mat& integrals = _integrals.getMatRef(); |
|
|
|
cv::Mat channels, gray; |
|
|
|
channels.create(h * N_CHANNELS, w, CV_8UC1); |
|
channels.setTo(0); |
|
|
|
cvtColor(frame, gray, cv::COLOR_BGR2GRAY); |
|
|
|
cv::Mat df_dx, df_dy, mag, angle; |
|
cv::Sobel(gray, df_dx, CV_32F, 1, 0); |
|
cv::Sobel(gray, df_dy, CV_32F, 0, 1); |
|
|
|
cv::cartToPolar(df_dx, df_dy, mag, angle, true); |
|
mag *= (1.f / (8 * sqrt(2.f))); |
|
|
|
cv::Mat nmag = channels(cv::Rect(0, h * (N_CHANNELS - 4), w, h)); |
|
mag.convertTo(nmag, CV_8UC1); |
|
|
|
angle *= 6 / 360.f; |
|
|
|
for (int y = 0; y < h; ++y) |
|
{ |
|
uchar* magnitude = nmag.ptr<uchar>(y); |
|
float* ang = angle.ptr<float>(y); |
|
|
|
for (int x = 0; x < w; ++x) |
|
{ |
|
channels.ptr<uchar>(y + (h * (int)ang[x]))[x] = magnitude[x]; |
|
} |
|
} |
|
|
|
cv::Mat luv, shrunk; |
|
cv::cvtColor(frame, luv, cv::COLOR_BGR2Luv); |
|
|
|
std::vector<cv::Mat> splited; |
|
for (int i = 0; i < 3; ++i) |
|
splited.push_back(channels(cv::Rect(0, h * (7 + i), w, h))); |
|
split(luv, splited); |
|
cv::resize(channels, shrunk, cv::Size(integrals.cols - 1, integrals.rows - 1), -1 , -1, cv::INTER_AREA); |
|
cv::integral(shrunk, integrals, cv::noArray(), CV_32S); |
|
} |
|
}; |
|
|
|
} |
|
|
|
using cv::softcascade::ChannelFeatureBuilder; |
|
using cv::softcascade::ChannelFeature; |
|
|
|
CV_INIT_ALGORITHM(HOG6MagLuv, "ChannelFeatureBuilder.HOG6MagLuv", ) |
|
|
|
ChannelFeatureBuilder::~ChannelFeatureBuilder() {} |
|
|
|
cv::Ptr<ChannelFeatureBuilder> ChannelFeatureBuilder::create(const cv::String& featureType) |
|
{ |
|
return Algorithm::create<ChannelFeatureBuilder>("ChannelFeatureBuilder." + featureType); |
|
} |
|
|
|
ChannelFeature::ChannelFeature(int x, int y, int w, int h, int ch) |
|
: bb(cv::Rect(x, y, w, h)), channel(ch) {} |
|
|
|
bool ChannelFeature::operator ==(ChannelFeature b) |
|
{ |
|
return bb == b.bb && channel == b.channel; |
|
} |
|
|
|
bool ChannelFeature::operator !=(ChannelFeature b) |
|
{ |
|
return bb != b.bb || channel != b.channel; |
|
} |
|
|
|
|
|
float ChannelFeature::operator() (const cv::Mat& integrals, const cv::Size& model) const |
|
{ |
|
int step = model.width + 1; |
|
|
|
const int* ptr = integrals.ptr<int>(0) + (model.height * channel + bb.y) * step + bb.x; |
|
|
|
int a = ptr[0]; |
|
int b = ptr[bb.width]; |
|
|
|
ptr += bb.height * step; |
|
|
|
int c = ptr[bb.width]; |
|
int d = ptr[0]; |
|
|
|
return (float)(a - b + c - d); |
|
} |
|
|
|
void cv::softcascade::write(cv::FileStorage& fs, const cv::String&, const ChannelFeature& f) |
|
{ |
|
fs << "{" << "channel" << f.channel << "rect" << f.bb << "}"; |
|
} |
|
|
|
std::ostream& cv::softcascade::operator<<(std::ostream& out, const ChannelFeature& m) |
|
{ |
|
return out << m.channel << " " << "[" << m.bb.width << " x " << m.bb.height << " from (" << m.bb.x << ", " << m.bb.y << ")]"; |
|
} |
|
|
|
ChannelFeature::~ChannelFeature(){} |
|
|
|
namespace { |
|
|
|
using namespace cv::softcascade; |
|
|
|
class ChannelFeaturePool : public FeaturePool |
|
{ |
|
public: |
|
ChannelFeaturePool(cv::Size m, int n, int ch) : FeaturePool(), model(m), N_CHANNELS(ch) |
|
{ |
|
CV_Assert(m != cv::Size() && n > 0 && (ch == 10 || ch == 8)); |
|
fill(n); |
|
} |
|
|
|
virtual int size() const { return (int)pool.size(); } |
|
virtual float apply(int fi, int si, const cv::Mat& integrals) const; |
|
virtual void write( cv::FileStorage& fs, int index) const; |
|
|
|
virtual ~ChannelFeaturePool() {} |
|
|
|
private: |
|
|
|
void fill(int desired); |
|
|
|
cv::Size model; |
|
std::vector<ChannelFeature> pool; |
|
int N_CHANNELS; |
|
}; |
|
|
|
float ChannelFeaturePool::apply(int fi, int si, const cv::Mat& integrals) const |
|
{ |
|
return pool[fi](integrals.row(si), model); |
|
} |
|
|
|
void ChannelFeaturePool::write( cv::FileStorage& fs, int index) const |
|
{ |
|
|
|
CV_Assert((index >= 0) && (index < (int)pool.size())); |
|
fs << pool[index]; |
|
} |
|
|
|
void ChannelFeaturePool::fill(int desired) |
|
{ |
|
using namespace cv::softcascade::internal; |
|
int mw = model.width; |
|
int mh = model.height; |
|
|
|
int maxPoolSize = (mw -1) * mw / 2 * (mh - 1) * mh / 2 * N_CHANNELS; |
|
|
|
int nfeatures = std::min(desired, maxPoolSize); |
|
pool.reserve(nfeatures); |
|
|
|
Random::engine eng((Random::seed_type)FEATURE_RECT_SEED); |
|
Random::engine eng_ch(DCHANNELS_SEED); |
|
|
|
Random::uniform chRand(0, N_CHANNELS - 1); |
|
|
|
Random::uniform xRand(0, model.width - 2); |
|
Random::uniform yRand(0, model.height - 2); |
|
|
|
Random::uniform wRand(1, model.width - 1); |
|
Random::uniform hRand(1, model.height - 1); |
|
|
|
while (pool.size() < size_t(nfeatures)) |
|
{ |
|
int x = xRand(eng); |
|
int y = yRand(eng); |
|
|
|
int w = 1 + wRand(eng, model.width - x - 1); |
|
int h = 1 + hRand(eng, model.height - y - 1); |
|
|
|
CV_Assert(w > 0); |
|
CV_Assert(h > 0); |
|
|
|
CV_Assert(w + x < model.width); |
|
CV_Assert(h + y < model.height); |
|
|
|
int ch = chRand(eng_ch); |
|
|
|
ChannelFeature f(x, y, w, h, ch); |
|
|
|
if (std::find(pool.begin(), pool.end(),f) == pool.end()) |
|
{ |
|
pool.push_back(f); |
|
} |
|
} |
|
} |
|
|
|
} |
|
|
|
cv::Ptr<FeaturePool> FeaturePool::create(const cv::Size& model, int nfeatures, int nchannels ) |
|
{ |
|
cv::Ptr<FeaturePool> pool(new ChannelFeaturePool(model, nfeatures, nchannels)); |
|
return pool; |
|
}
|
|
|