mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1544 lines
72 KiB
1544 lines
72 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_ML_HPP__ |
|
#define __OPENCV_ML_HPP__ |
|
|
|
#ifdef __cplusplus |
|
# include "opencv2/core.hpp" |
|
#endif |
|
|
|
#ifdef __cplusplus |
|
|
|
#include <float.h> |
|
#include <map> |
|
#include <iostream> |
|
|
|
/** |
|
@defgroup ml Machine Learning |
|
|
|
The Machine Learning Library (MLL) is a set of classes and functions for statistical |
|
classification, regression, and clustering of data. |
|
|
|
Most of the classification and regression algorithms are implemented as C++ classes. As the |
|
algorithms have different sets of features (like an ability to handle missing measurements or |
|
categorical input variables), there is a little common ground between the classes. This common |
|
ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from. |
|
|
|
See detailed overview here: @ref ml_intro. |
|
*/ |
|
|
|
namespace cv |
|
{ |
|
|
|
namespace ml |
|
{ |
|
|
|
//! @addtogroup ml |
|
//! @{ |
|
|
|
/** @brief Variable types */ |
|
enum VariableTypes |
|
{ |
|
VAR_NUMERICAL =0, //!< same as VAR_ORDERED |
|
VAR_ORDERED =0, //!< ordered variables |
|
VAR_CATEGORICAL =1 //!< categorical variables |
|
}; |
|
|
|
/** @brief %Error types */ |
|
enum ErrorTypes |
|
{ |
|
TEST_ERROR = 0, |
|
TRAIN_ERROR = 1 |
|
}; |
|
|
|
/** @brief Sample types */ |
|
enum SampleTypes |
|
{ |
|
ROW_SAMPLE = 0, //!< each training sample is a row of samples |
|
COL_SAMPLE = 1 //!< each training sample occupies a column of samples |
|
}; |
|
|
|
/** @brief The structure represents the logarithmic grid range of statmodel parameters. |
|
|
|
It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate |
|
being computed by cross-validation. |
|
*/ |
|
class CV_EXPORTS_W_MAP ParamGrid |
|
{ |
|
public: |
|
/** @brief Default constructor */ |
|
ParamGrid(); |
|
/** @brief Constructor with parameters */ |
|
ParamGrid(double _minVal, double _maxVal, double _logStep); |
|
|
|
CV_PROP_RW double minVal; //!< Minimum value of the statmodel parameter. Default value is 0. |
|
CV_PROP_RW double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0. |
|
/** @brief Logarithmic step for iterating the statmodel parameter. |
|
|
|
The grid determines the following iteration sequence of the statmodel parameter values: |
|
\f[(minVal, minVal*step, minVal*{step}^2, \dots, minVal*{logStep}^n),\f] |
|
where \f$n\f$ is the maximal index satisfying |
|
\f[\texttt{minVal} * \texttt{logStep} ^n < \texttt{maxVal}\f] |
|
The grid is logarithmic, so logStep must always be greater then 1. Default value is 1. |
|
*/ |
|
CV_PROP_RW double logStep; |
|
}; |
|
|
|
/** @brief Class encapsulating training data. |
|
|
|
Please note that the class only specifies the interface of training data, but not implementation. |
|
All the statistical model classes in _ml_ module accepts Ptr\<TrainData\> as parameter. In other |
|
words, you can create your own class derived from TrainData and pass smart pointer to the instance |
|
of this class into StatModel::train. |
|
|
|
@sa @ref ml_intro_data |
|
*/ |
|
class CV_EXPORTS TrainData |
|
{ |
|
public: |
|
static inline float missingValue() { return FLT_MAX; } |
|
virtual ~TrainData(); |
|
|
|
virtual int getLayout() const = 0; |
|
virtual int getNTrainSamples() const = 0; |
|
virtual int getNTestSamples() const = 0; |
|
virtual int getNSamples() const = 0; |
|
virtual int getNVars() const = 0; |
|
virtual int getNAllVars() const = 0; |
|
|
|
virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0; |
|
virtual Mat getSamples() const = 0; |
|
virtual Mat getMissing() const = 0; |
|
|
|
/** @brief Returns matrix of train samples |
|
|
|
@param layout The requested layout. If it's different from the initial one, the matrix is |
|
transposed. See ml::SampleTypes. |
|
@param compressSamples if true, the function returns only the training samples (specified by |
|
sampleIdx) |
|
@param compressVars if true, the function returns the shorter training samples, containing only |
|
the active variables. |
|
|
|
In current implementation the function tries to avoid physical data copying and returns the |
|
matrix stored inside TrainData (unless the transposition or compression is needed). |
|
*/ |
|
virtual Mat getTrainSamples(int layout=ROW_SAMPLE, |
|
bool compressSamples=true, |
|
bool compressVars=true) const = 0; |
|
|
|
/** @brief Returns the vector of responses |
|
|
|
The function returns ordered or the original categorical responses. Usually it's used in |
|
regression algorithms. |
|
*/ |
|
virtual Mat getTrainResponses() const = 0; |
|
|
|
/** @brief Returns the vector of normalized categorical responses |
|
|
|
The function returns vector of responses. Each response is integer from `0` to `<number of |
|
classes>-1`. The actual label value can be retrieved then from the class label vector, see |
|
TrainData::getClassLabels. |
|
*/ |
|
virtual Mat getTrainNormCatResponses() const = 0; |
|
virtual Mat getTestResponses() const = 0; |
|
virtual Mat getTestNormCatResponses() const = 0; |
|
virtual Mat getResponses() const = 0; |
|
virtual Mat getNormCatResponses() const = 0; |
|
virtual Mat getSampleWeights() const = 0; |
|
virtual Mat getTrainSampleWeights() const = 0; |
|
virtual Mat getTestSampleWeights() const = 0; |
|
virtual Mat getVarIdx() const = 0; |
|
virtual Mat getVarType() const = 0; |
|
virtual int getResponseType() const = 0; |
|
virtual Mat getTrainSampleIdx() const = 0; |
|
virtual Mat getTestSampleIdx() const = 0; |
|
virtual void getValues(int vi, InputArray sidx, float* values) const = 0; |
|
virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0; |
|
virtual Mat getDefaultSubstValues() const = 0; |
|
|
|
virtual int getCatCount(int vi) const = 0; |
|
|
|
/** @brief Returns the vector of class labels |
|
|
|
The function returns vector of unique labels occurred in the responses. |
|
*/ |
|
virtual Mat getClassLabels() const = 0; |
|
|
|
virtual Mat getCatOfs() const = 0; |
|
virtual Mat getCatMap() const = 0; |
|
|
|
/** @brief Splits the training data into the training and test parts |
|
@sa TrainData::setTrainTestSplitRatio |
|
*/ |
|
virtual void setTrainTestSplit(int count, bool shuffle=true) = 0; |
|
|
|
/** @brief Splits the training data into the training and test parts |
|
|
|
The function selects a subset of specified relative size and then returns it as the training |
|
set. If the function is not called, all the data is used for training. Please, note that for |
|
each of TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test |
|
subset can be retrieved and processed as well. |
|
@sa TrainData::setTrainTestSplit |
|
*/ |
|
virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0; |
|
virtual void shuffleTrainTest() = 0; |
|
|
|
static Mat getSubVector(const Mat& vec, const Mat& idx); |
|
|
|
/** @brief Reads the dataset from a .csv file and returns the ready-to-use training data. |
|
|
|
@param filename The input file name |
|
@param headerLineCount The number of lines in the beginning to skip; besides the header, the |
|
function also skips empty lines and lines staring with `#` |
|
@param responseStartIdx Index of the first output variable. If -1, the function considers the |
|
last variable as the response |
|
@param responseEndIdx Index of the last output variable + 1. If -1, then there is single |
|
response variable at responseStartIdx. |
|
@param varTypeSpec The optional text string that specifies the variables' types. It has the |
|
format `ord[n1-n2,n3,n4-n5,...]cat[n6,n7-n8,...]`. That is, variables from `n1 to n2` |
|
(inclusive range), `n3`, `n4 to n5` ... are considered ordered and `n6`, `n7 to n8` ... are |
|
considered as categorical. The range `[n1..n2] + [n3] + [n4..n5] + ... + [n6] + [n7..n8]` |
|
should cover all the variables. If varTypeSpec is not specified, then algorithm uses the |
|
following rules: |
|
- all input variables are considered ordered by default. If some column contains has non- |
|
numerical values, e.g. 'apple', 'pear', 'apple', 'apple', 'mango', the corresponding |
|
variable is considered categorical. |
|
- if there are several output variables, they are all considered as ordered. Error is |
|
reported when non-numerical values are used. |
|
- if there is a single output variable, then if its values are non-numerical or are all |
|
integers, then it's considered categorical. Otherwise, it's considered ordered. |
|
@param delimiter The character used to separate values in each line. |
|
@param missch The character used to specify missing measurements. It should not be a digit. |
|
Although it's a non-numerical value, it surely does not affect the decision of whether the |
|
variable ordered or categorical. |
|
*/ |
|
static Ptr<TrainData> loadFromCSV(const String& filename, |
|
int headerLineCount, |
|
int responseStartIdx=-1, |
|
int responseEndIdx=-1, |
|
const String& varTypeSpec=String(), |
|
char delimiter=',', |
|
char missch='?'); |
|
|
|
/** @brief Creates training data from in-memory arrays. |
|
|
|
@param samples matrix of samples. It should have CV_32F type. |
|
@param layout see ml::SampleTypes. |
|
@param responses matrix of responses. If the responses are scalar, they should be stored as a |
|
single row or as a single column. The matrix should have type CV_32F or CV_32S (in the |
|
former case the responses are considered as ordered by default; in the latter case - as |
|
categorical) |
|
@param varIdx vector specifying which variables to use for training. It can be an integer vector |
|
(CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of |
|
active variables. |
|
@param sampleIdx vector specifying which samples to use for training. It can be an integer |
|
vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask |
|
of training samples. |
|
@param sampleWeights optional vector with weights for each sample. It should have CV_32F type. |
|
@param varType optional vector of type CV_8U and size `<number_of_variables_in_samples> + |
|
<number_of_variables_in_responses>`, containing types of each input and output variable. See |
|
ml::VariableTypes. |
|
*/ |
|
static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses, |
|
InputArray varIdx=noArray(), InputArray sampleIdx=noArray(), |
|
InputArray sampleWeights=noArray(), InputArray varType=noArray()); |
|
}; |
|
|
|
/** @brief Base class for statistical models in OpenCV ML. |
|
*/ |
|
class CV_EXPORTS_W StatModel : public Algorithm |
|
{ |
|
public: |
|
/** Predict options */ |
|
enum Flags { |
|
UPDATE_MODEL = 1, |
|
RAW_OUTPUT=1, //!< makes the method return the raw results (the sum), not the class label |
|
COMPRESSED_INPUT=2, |
|
PREPROCESSED_INPUT=4 |
|
}; |
|
virtual void clear(); |
|
|
|
/** @brief Returns the number of variables in training samples */ |
|
virtual int getVarCount() const = 0; |
|
|
|
/** @brief Returns true if the model is trained */ |
|
virtual bool isTrained() const = 0; |
|
/** @brief Returns true if the model is classifier */ |
|
virtual bool isClassifier() const = 0; |
|
|
|
/** @brief Trains the statistical model |
|
|
|
@param trainData training data that can be loaded from file using TrainData::loadFromCSV or |
|
created with TrainData::create. |
|
@param flags optional flags, depending on the model. Some of the models can be updated with the |
|
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). |
|
*/ |
|
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ); |
|
|
|
/** @brief Trains the statistical model |
|
|
|
@param samples training samples |
|
@param layout See ml::SampleTypes. |
|
@param responses vector of responses associated with the training samples. |
|
*/ |
|
virtual bool train( InputArray samples, int layout, InputArray responses ); |
|
|
|
/** @brief Computes error on the training or test dataset |
|
|
|
@param data the training data |
|
@param test if true, the error is computed over the test subset of the data, otherwise it's |
|
computed over the training subset of the data. Please note that if you loaded a completely |
|
different dataset to evaluate already trained classifier, you will probably want not to set |
|
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so |
|
that the error is computed for the whole new set. Yes, this sounds a bit confusing. |
|
@param resp the optional output responses. |
|
|
|
The method uses StatModel::predict to compute the error. For regression models the error is |
|
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%). |
|
*/ |
|
virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const; |
|
|
|
/** @brief Predicts response(s) for the provided sample(s) |
|
|
|
@param samples The input samples, floating-point matrix |
|
@param results The optional output matrix of results. |
|
@param flags The optional flags, model-dependent. See cv::ml::StatModel::Flags. |
|
*/ |
|
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0; |
|
|
|
/** @brief Loads model from the file |
|
|
|
This is static template method of StatModel. It's usage is following (in the case of SVM): |
|
@code |
|
Ptr<SVM> svm = StatModel::load<SVM>("my_svm_model.xml"); |
|
@endcode |
|
In order to make this method work, the derived class must overwrite Algorithm::read(const |
|
FileNode& fn). |
|
*/ |
|
template<typename _Tp> static Ptr<_Tp> load(const String& filename) |
|
{ |
|
FileStorage fs(filename, FileStorage::READ); |
|
Ptr<_Tp> model = _Tp::create(); |
|
model->read(fs.getFirstTopLevelNode()); |
|
return model->isTrained() ? model : Ptr<_Tp>(); |
|
} |
|
|
|
/** @brief Loads model from a String |
|
|
|
@param strModel The string variable containing the model you want to load. |
|
|
|
This is static template method of StatModel. It's usage is following (in the case of SVM): |
|
@code |
|
Ptr<SVM> svm = StatModel::loadFromString<SVM>(myStringModel); |
|
@endcode |
|
*/ |
|
template<typename _Tp> static Ptr<_Tp> loadFromString(const String& strModel) |
|
{ |
|
FileStorage fs(strModel, FileStorage::READ + FileStorage::MEMORY); |
|
Ptr<_Tp> model = _Tp::create(); |
|
model->read(fs.getFirstTopLevelNode()); |
|
return model->isTrained() ? model : Ptr<_Tp>(); |
|
} |
|
|
|
|
|
/** @brief Creates new statistical model and trains it |
|
|
|
@param data training data that can be loaded from file using TrainData::loadFromCSV or |
|
created with TrainData::create. |
|
@param p model parameters |
|
@param flags optional flags, depending on the model. Some of the models can be updated with the |
|
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). |
|
*/ |
|
template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, const typename _Tp::Params& p, int flags=0) |
|
{ |
|
Ptr<_Tp> model = _Tp::create(p); |
|
return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>(); |
|
} |
|
|
|
/** @brief Creates new statistical model and trains it |
|
|
|
@param samples training samples |
|
@param layout See ml::SampleTypes. |
|
@param responses vector of responses associated with the training samples. |
|
@param p model parameters |
|
@param flags optional flags, depending on the model. Some of the models can be updated with the |
|
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). |
|
*/ |
|
template<typename _Tp> static Ptr<_Tp> train(InputArray samples, int layout, InputArray responses, |
|
const typename _Tp::Params& p, int flags=0) |
|
{ |
|
Ptr<_Tp> model = _Tp::create(p); |
|
return !model.empty() && model->train(TrainData::create(samples, layout, responses), flags) ? model : Ptr<_Tp>(); |
|
} |
|
|
|
/** @brief Saves the model to a file. |
|
|
|
In order to make this method work, the derived class must overwrite |
|
Algorithm::write(FileStorage& fs). |
|
*/ |
|
virtual void save(const String& filename) const; |
|
virtual String getDefaultModelName() const = 0; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Normal Bayes Classifier * |
|
\****************************************************************************************/ |
|
|
|
/** @brief Bayes classifier for normally distributed data. |
|
|
|
@sa @ref ml_intro_bayes |
|
*/ |
|
class CV_EXPORTS_W NormalBayesClassifier : public StatModel |
|
{ |
|
public: |
|
class CV_EXPORTS_W Params |
|
{ |
|
public: |
|
Params(); |
|
}; |
|
/** @brief Predicts the response for sample(s). |
|
|
|
The method estimates the most probable classes for input vectors. Input vectors (one or more) |
|
are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one |
|
output vector outputs. The predicted class for a single input vector is returned by the method. |
|
The vector outputProbs contains the output probabilities corresponding to each element of |
|
result. |
|
*/ |
|
virtual float predictProb( InputArray inputs, OutputArray outputs, |
|
OutputArray outputProbs, int flags=0 ) const = 0; |
|
virtual void setParams(const Params& params) = 0; |
|
virtual Params getParams() const = 0; |
|
|
|
/** @brief Creates empty model |
|
|
|
@param params The model parameters. There is none so far, the structure is used as a placeholder |
|
for possible extensions. |
|
|
|
Use StatModel::train to train the model: |
|
@code |
|
StatModel::train<NormalBayesClassifier>(traindata, params); // to create and train the model |
|
StatModel::load<NormalBayesClassifier>(filename); // load the pre-trained model |
|
@endcode |
|
*/ |
|
static Ptr<NormalBayesClassifier> create(const Params& params=Params()); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* K-Nearest Neighbour Classifier * |
|
\****************************************************************************************/ |
|
|
|
/** @brief The class implements K-Nearest Neighbors model |
|
|
|
@sa @ref ml_intro_knn |
|
*/ |
|
class CV_EXPORTS_W KNearest : public StatModel |
|
{ |
|
public: |
|
class CV_EXPORTS_W_MAP Params |
|
{ |
|
public: |
|
/** @brief Constructor with parameters */ |
|
Params(int defaultK=10, bool isclassifier_=true, int Emax_=INT_MAX, int algorithmType_=BRUTE_FORCE); |
|
|
|
CV_PROP_RW int defaultK; //!< default number of neighbors to use in predict method |
|
CV_PROP_RW bool isclassifier; //!< whether classification or regression model should be trained |
|
CV_PROP_RW int Emax; //!< for implementation with KDTree |
|
CV_PROP_RW int algorithmType; //!< See KNearest::Types |
|
}; |
|
virtual void setParams(const Params& p) = 0; |
|
virtual Params getParams() const = 0; |
|
|
|
/** @brief Finds the neighbors and predicts responses for input vectors. |
|
|
|
@param samples Input samples stored by rows. It is a single-precision floating-point matrix of |
|
`<number_of_samples> * k` size. |
|
@param k Number of used nearest neighbors. Should be greater than 1. |
|
@param results Vector with results of prediction (regression or classification) for each input |
|
sample. It is a single-precision floating-point vector with `<number_of_samples>` elements. |
|
@param neighborResponses Optional output values for corresponding neighbors. It is a single- |
|
precision floating-point matrix of `<number_of_samples> * k` size. |
|
@param dist Optional output distances from the input vectors to the corresponding neighbors. It |
|
is a single-precision floating-point matrix of `<number_of_samples> * k` size. |
|
|
|
For each input vector (a row of the matrix samples), the method finds the k nearest neighbors. |
|
In case of regression, the predicted result is a mean value of the particular vector's neighbor |
|
responses. In case of classification, the class is determined by voting. |
|
|
|
For each input vector, the neighbors are sorted by their distances to the vector. |
|
|
|
In case of C++ interface you can use output pointers to empty matrices and the function will |
|
allocate memory itself. |
|
|
|
If only a single input vector is passed, all output matrices are optional and the predicted |
|
value is returned by the method. |
|
|
|
The function is parallelized with the TBB library. |
|
*/ |
|
virtual float findNearest( InputArray samples, int k, |
|
OutputArray results, |
|
OutputArray neighborResponses=noArray(), |
|
OutputArray dist=noArray() ) const = 0; |
|
|
|
enum Types { BRUTE_FORCE=1, KDTREE=2 }; |
|
|
|
/** @brief Creates the empty model |
|
|
|
@param params The model parameters |
|
|
|
The static method creates empty %KNearest classifier. It should be then trained using train |
|
method (see StatModel::train). Alternatively, you can load boost model from file using: |
|
`StatModel::load<KNearest>(filename)` |
|
*/ |
|
static Ptr<KNearest> create(const Params& params=Params()); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Support Vector Machines * |
|
\****************************************************************************************/ |
|
|
|
/** @brief Support Vector Machines. |
|
|
|
@sa @ref ml_intro_svm |
|
*/ |
|
class CV_EXPORTS_W SVM : public StatModel |
|
{ |
|
public: |
|
/** @brief %SVM training parameters. |
|
|
|
The structure must be initialized and passed to the training method of %SVM. |
|
*/ |
|
class CV_EXPORTS_W_MAP Params |
|
{ |
|
public: |
|
/** @brief Default constructor */ |
|
Params(); |
|
/** @brief Constructor with parameters */ |
|
Params( int svm_type, int kernel_type, |
|
double degree, double gamma, double coef0, |
|
double Cvalue, double nu, double p, |
|
const Mat& classWeights, TermCriteria termCrit ); |
|
|
|
/** Type of a %SVM formulation. See SVM::Types. Default value is SVM::C_SVC. */ |
|
CV_PROP_RW int svmType; |
|
/** Type of a %SVM kernel. See SVM::KernelTypes. Default value is SVM::RBF. */ |
|
CV_PROP_RW int kernelType; |
|
/** Parameter \f$\gamma\f$ of a kernel function (SVM::POLY / SVM::RBF / SVM::SIGMOID / |
|
SVM::CHI2). Default value is 1. */ |
|
CV_PROP_RW double gamma; |
|
/** Parameter coef0 of a kernel function (SVM::POLY / SVM::SIGMOID). Default value is 0. */ |
|
CV_PROP_RW double coef0; |
|
/** Parameter degree of a kernel function (SVM::POLY). Default value is 0. */ |
|
CV_PROP_RW double degree; |
|
|
|
/** Parameter C of a %SVM optimization problem (SVM::C_SVC / SVM::EPS_SVR / SVM::NU_SVR). |
|
Default value is 0. */ |
|
CV_PROP_RW double C; |
|
/** Parameter \f$\nu\f$ of a %SVM optimization problem (SVM::NU_SVC / SVM::ONE_CLASS / |
|
SVM::NU_SVR). Default value is 0. */ |
|
CV_PROP_RW double nu; |
|
/** Parameter \f$\epsilon\f$ of a %SVM optimization problem (SVM::EPS_SVR). Default value is 0. */ |
|
CV_PROP_RW double p; |
|
|
|
/** Optional weights in the SVM::C_SVC problem , assigned to particular classes. They are |
|
multiplied by C so the parameter C of class \#i becomes classWeights(i) \* C. Thus these |
|
weights affect the misclassification penalty for different classes. The larger weight, the |
|
larger penalty on misclassification of data from the corresponding class. Default value is |
|
empty Mat.*/ |
|
CV_PROP_RW Mat classWeights; |
|
/** Termination criteria of the iterative %SVM training procedure which solves a partial |
|
case of constrained quadratic optimization problem. You can specify tolerance and/or the |
|
maximum number of iterations. Default value is TermCriteria( |
|
TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON );*/ |
|
CV_PROP_RW TermCriteria termCrit; |
|
}; |
|
|
|
class CV_EXPORTS Kernel : public Algorithm |
|
{ |
|
public: |
|
virtual int getType() const = 0; |
|
virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0; |
|
}; |
|
|
|
//! %SVM type |
|
enum Types { |
|
/** C-Support Vector Classification. n-class classification (n \f$\geq\f$ 2), allows |
|
imperfect separation of classes with penalty multiplier C for outliers. */ |
|
C_SVC=100, |
|
/** \f$\nu\f$-Support Vector Classification. n-class classification with possible |
|
imperfect separation. Parameter \f$\nu\f$ (in the range 0..1, the larger the value, the smoother |
|
the decision boundary) is used instead of C. */ |
|
NU_SVC=101, |
|
/** Distribution Estimation (One-class %SVM). All the training data are from |
|
the same class, %SVM builds a boundary that separates the class from the rest of the feature |
|
space. */ |
|
ONE_CLASS=102, |
|
/** \f$\epsilon\f$-Support Vector Regression. The distance between feature vectors |
|
from the training set and the fitting hyper-plane must be less than p. For outliers the |
|
penalty multiplier C is used. */ |
|
EPS_SVR=103, |
|
/** \f$\nu\f$-Support Vector Regression. \f$\nu\f$ is used instead of p. |
|
See @cite LibSVM for details. */ |
|
NU_SVR=104 |
|
}; |
|
|
|
/** @brief %SVM kernel type |
|
|
|
A comparison of different kernels on the following 2D test case with four classes. Four |
|
SVM::C_SVC SVMs have been trained (one against rest) with auto_train. Evaluation on three |
|
different kernels (SVM::CHI2, SVM::INTER, SVM::RBF). The color depicts the class with max score. |
|
Bright means max-score \> 0, dark means max-score \< 0. |
|
![image](pics/SVM_Comparison.png) |
|
*/ |
|
enum KernelTypes { |
|
CUSTOM=-1, |
|
/** Linear kernel. No mapping is done, linear discrimination (or regression) is |
|
done in the original feature space. It is the fastest option. \f$K(x_i, x_j) = x_i^T x_j\f$. */ |
|
LINEAR=0, |
|
/** Polynomial kernel: |
|
\f$K(x_i, x_j) = (\gamma x_i^T x_j + coef0)^{degree}, \gamma > 0\f$. */ |
|
POLY=1, |
|
/** Radial basis function (RBF), a good choice in most cases. |
|
\f$K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}, \gamma > 0\f$. */ |
|
RBF=2, |
|
/** Sigmoid kernel: \f$K(x_i, x_j) = \tanh(\gamma x_i^T x_j + coef0)\f$. */ |
|
SIGMOID=3, |
|
/** Exponential Chi2 kernel, similar to the RBF kernel: |
|
\f$K(x_i, x_j) = e^{-\gamma \chi^2(x_i,x_j)}, \chi^2(x_i,x_j) = (x_i-x_j)^2/(x_i+x_j), \gamma > 0\f$. */ |
|
CHI2=4, |
|
/** Histogram intersection kernel. A fast kernel. \f$K(x_i, x_j) = min(x_i,x_j)\f$. */ |
|
INTER=5 |
|
}; |
|
|
|
//! %SVM params type |
|
enum ParamTypes { |
|
C=0, |
|
GAMMA=1, |
|
P=2, |
|
NU=3, |
|
COEF=4, |
|
DEGREE=5 |
|
}; |
|
|
|
/** @brief Trains an %SVM with optimal parameters. |
|
|
|
@param data the training data that can be constructed using TrainData::create or |
|
TrainData::loadFromCSV. |
|
@param kFold Cross-validation parameter. The training set is divided into kFold subsets. One |
|
subset is used to test the model, the others form the train set. So, the %SVM algorithm is |
|
executed kFold times. |
|
@param Cgrid grid for C |
|
@param gammaGrid grid for gamma |
|
@param pGrid grid for p |
|
@param nuGrid grid for nu |
|
@param coeffGrid grid for coeff |
|
@param degreeGrid grid for degree |
|
@param balanced If true and the problem is 2-class classification then the method creates more |
|
balanced cross-validation subsets that is proportions between classes in subsets are close |
|
to such proportion in the whole train dataset. |
|
|
|
The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, |
|
nu, coef0, degree from SVM::Params. Parameters are considered optimal when the cross-validation |
|
estimate of the test set error is minimal. |
|
|
|
If there is no need to optimize a parameter, the corresponding grid step should be set to any |
|
value less than or equal to 1. For example, to avoid optimization in gamma, set `gammaGrid.step |
|
= 0`, `gammaGrid.minVal`, `gamma_grid.maxVal` as arbitrary numbers. In this case, the value |
|
`params.gamma` is taken for gamma. |
|
|
|
And, finally, if the optimization in a parameter is required but the corresponding grid is |
|
unknown, you may call the function SVM::getDefaultGrid. To generate a grid, for example, for |
|
gamma, call `SVM::getDefaultGrid(SVM::GAMMA)`. |
|
|
|
This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the |
|
regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and |
|
the usual %SVM with parameters specified in params is executed. |
|
*/ |
|
virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10, |
|
ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C), |
|
ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA), |
|
ParamGrid pGrid = SVM::getDefaultGrid(SVM::P), |
|
ParamGrid nuGrid = SVM::getDefaultGrid(SVM::NU), |
|
ParamGrid coeffGrid = SVM::getDefaultGrid(SVM::COEF), |
|
ParamGrid degreeGrid = SVM::getDefaultGrid(SVM::DEGREE), |
|
bool balanced=false) = 0; |
|
|
|
/** @brief Retrieves all the support vectors |
|
|
|
The method returns all the support vector as floating-point matrix, where support vectors are |
|
stored as matrix rows. |
|
*/ |
|
CV_WRAP virtual Mat getSupportVectors() const = 0; |
|
|
|
virtual void setParams(const Params& p, const Ptr<Kernel>& customKernel=Ptr<Kernel>()) = 0; |
|
|
|
/** @brief Returns the current %SVM parameters. |
|
|
|
This function may be used to get the optimal parameters obtained while automatically training |
|
SVM::trainAuto. |
|
*/ |
|
virtual Params getParams() const = 0; |
|
virtual Ptr<Kernel> getKernel() const = 0; |
|
|
|
/** @brief Retrieves the decision function |
|
|
|
@param i the index of the decision function. If the problem solved is regression, 1-class or |
|
2-class classification, then there will be just one decision function and the index should |
|
always be 0. Otherwise, in the case of N-class classification, there will be \f$N(N-1)/2\f$ |
|
decision functions. |
|
@param alpha the optional output vector for weights, corresponding to different support vectors. |
|
In the case of linear %SVM all the alpha's will be 1's. |
|
@param svidx the optional output vector of indices of support vectors within the matrix of |
|
support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear |
|
%SVM each decision function consists of a single "compressed" support vector. |
|
|
|
The method returns rho parameter of the decision function, a scalar subtracted from the weighted |
|
sum of kernel responses. |
|
*/ |
|
virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0; |
|
|
|
/** @brief Generates a grid for %SVM parameters. |
|
|
|
@param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is |
|
generated for the parameter with this ID. |
|
|
|
The function generates a grid for the specified parameter of the %SVM algorithm. The grid may be |
|
passed to the function SVM::trainAuto. |
|
*/ |
|
static ParamGrid getDefaultGrid( int param_id ); |
|
|
|
/** @brief Creates empty model |
|
|
|
@param p %SVM parameters |
|
@param customKernel the optional custom kernel to use. It must implement SVM::Kernel interface. |
|
|
|
Use StatModel::train to train the model: |
|
@code |
|
StatModel::train<SVM>(traindata, params); // to create and train the model |
|
// or |
|
StatModel::load<SVM>(filename); // to load the pre-trained model. |
|
@endcode |
|
Since %SVM has several parameters, you may want to find the best parameters for your problem. It |
|
can be done with SVM::trainAuto. |
|
*/ |
|
static Ptr<SVM> create(const Params& p=Params(), const Ptr<Kernel>& customKernel=Ptr<Kernel>()); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Expectation - Maximization * |
|
\****************************************************************************************/ |
|
|
|
/** @brief The class implements the Expectation Maximization algorithm. |
|
|
|
@sa @ref ml_intro_em |
|
*/ |
|
class CV_EXPORTS_W EM : public StatModel |
|
{ |
|
public: |
|
//! Type of covariation matrices |
|
enum Types { |
|
/** A scaled identity matrix \f$\mu_k * I\f$. There is the only |
|
parameter \f$\mu_k\f$ to be estimated for each matrix. The option may be used in special cases, |
|
when the constraint is relevant, or as a first step in the optimization (for example in case |
|
when the data is preprocessed with PCA). The results of such preliminary estimation may be |
|
passed again to the optimization procedure, this time with |
|
covMatType=EM::COV_MAT_DIAGONAL. */ |
|
COV_MAT_SPHERICAL=0, |
|
/** A diagonal matrix with positive diagonal elements. The number of |
|
free parameters is d for each matrix. This is most commonly used option yielding good |
|
estimation results. */ |
|
COV_MAT_DIAGONAL=1, |
|
/** A symmetric positively defined matrix. The number of free |
|
parameters in each matrix is about \f$d^2/2\f$. It is not recommended to use this option, unless |
|
there is pretty accurate initial estimation of the parameters and/or a huge number of |
|
training samples. */ |
|
COV_MAT_GENERIC=2, |
|
COV_MAT_DEFAULT=COV_MAT_DIAGONAL |
|
}; |
|
|
|
//! Default parameters |
|
enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100}; |
|
|
|
//! The initial step |
|
enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0}; |
|
|
|
/** @brief The class describes %EM training parameters. |
|
*/ |
|
class CV_EXPORTS_W_MAP Params |
|
{ |
|
public: |
|
/** @brief The constructor |
|
|
|
@param nclusters The number of mixture components in the Gaussian mixture model. Default |
|
value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could |
|
determine the optimal number of mixtures within a specified value range, but that is not |
|
the case in ML yet. |
|
@param covMatType Constraint on covariance matrices which defines type of matrices. See |
|
EM::Types. |
|
@param termCrit The termination criteria of the %EM algorithm. The %EM algorithm can be |
|
terminated by the number of iterations termCrit.maxCount (number of M-steps) or when |
|
relative change of likelihood logarithm is less than termCrit.epsilon. Default maximum |
|
number of iterations is EM::DEFAULT_MAX_ITERS=100. |
|
*/ |
|
explicit Params(int nclusters=DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL, |
|
const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, |
|
EM::DEFAULT_MAX_ITERS, 1e-6)); |
|
CV_PROP_RW int nclusters; |
|
CV_PROP_RW int covMatType; |
|
CV_PROP_RW TermCriteria termCrit; |
|
}; |
|
|
|
virtual void setParams(const Params& p) = 0; |
|
virtual Params getParams() const = 0; |
|
/** @brief Returns weights of the mixtures |
|
|
|
Returns vector with the number of elements equal to the number of mixtures. |
|
*/ |
|
virtual Mat getWeights() const = 0; |
|
/** @brief Returns the cluster centers (means of the Gaussian mixture) |
|
|
|
Returns matrix with the number of rows equal to the number of mixtures and number of columns |
|
equal to the space dimensionality. |
|
*/ |
|
virtual Mat getMeans() const = 0; |
|
/** @brief Returns covariation matrices |
|
|
|
Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures, |
|
each matrix is a square floating-point matrix NxN, where N is the space dimensionality. |
|
*/ |
|
virtual void getCovs(std::vector<Mat>& covs) const = 0; |
|
|
|
/** @brief Returns a likelihood logarithm value and an index of the most probable mixture component |
|
for the given sample. |
|
|
|
@param sample A sample for classification. It should be a one-channel matrix of |
|
\f$1 \times dims\f$ or \f$dims \times 1\f$ size. |
|
@param probs Optional output matrix that contains posterior probabilities of each component |
|
given the sample. It has \f$1 \times nclusters\f$ size and CV_64FC1 type. |
|
|
|
The method returns a two-element double vector. Zero element is a likelihood logarithm value for |
|
the sample. First element is an index of the most probable mixture component for the given |
|
sample. |
|
*/ |
|
CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0; |
|
|
|
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ) = 0; |
|
|
|
/** @brief Static method that estimate the Gaussian mixture parameters from a samples set |
|
|
|
This variation starts with Expectation step. Initial values of the model parameters will be |
|
estimated by the k-means algorithm. |
|
|
|
Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take |
|
responses (class labels or function values) as input. Instead, it computes the *Maximum |
|
Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the |
|
parameters inside the structure: \f$p_{i,k}\f$ in probs, \f$a_k\f$ in means , \f$S_k\f$ in |
|
covs[k], \f$\pi_k\f$ in weights , and optionally computes the output "class label" for each |
|
sample: \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most |
|
probable mixture component for each sample). |
|
|
|
The trained model can be used further for prediction, just like any other classifier. The |
|
trained model is similar to the NormalBayesClassifier. |
|
|
|
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a |
|
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type |
|
it will be converted to the inner matrix of such type for the further computing. |
|
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for |
|
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. |
|
@param labels The optional output "class label" for each sample: |
|
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable |
|
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. |
|
@param probs The optional output matrix that contains posterior probabilities of each Gaussian |
|
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and |
|
CV_64FC1 type. |
|
@param params The Gaussian mixture params, see EM::Params description |
|
*/ |
|
static Ptr<EM> train(InputArray samples, |
|
OutputArray logLikelihoods=noArray(), |
|
OutputArray labels=noArray(), |
|
OutputArray probs=noArray(), |
|
const Params& params=Params()); |
|
|
|
/** @brief Static method that estimate the Gaussian mixture parameters from a samples set |
|
|
|
This variation starts with Expectation step. You need to provide initial means \f$a_k\f$ of |
|
mixture components. Optionally you can pass initial weights \f$\pi_k\f$ and covariance matrices |
|
\f$S_k\f$ of mixture components. |
|
|
|
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a |
|
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type |
|
it will be converted to the inner matrix of such type for the further computing. |
|
@param means0 Initial means \f$a_k\f$ of mixture components. It is a one-channel matrix of |
|
\f$nclusters \times dims\f$ size. If the matrix does not have CV_64F type it will be |
|
converted to the inner matrix of such type for the further computing. |
|
@param covs0 The vector of initial covariance matrices \f$S_k\f$ of mixture components. Each of |
|
covariance matrices is a one-channel matrix of \f$dims \times dims\f$ size. If the matrices |
|
do not have CV_64F type they will be converted to the inner matrices of such type for the |
|
further computing. |
|
@param weights0 Initial weights \f$\pi_k\f$ of mixture components. It should be a one-channel |
|
floating-point matrix with \f$1 \times nclusters\f$ or \f$nclusters \times 1\f$ size. |
|
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for |
|
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. |
|
@param labels The optional output "class label" for each sample: |
|
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable |
|
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. |
|
@param probs The optional output matrix that contains posterior probabilities of each Gaussian |
|
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and |
|
CV_64FC1 type. |
|
@param params The Gaussian mixture params, see EM::Params description |
|
*/ |
|
static Ptr<EM> train_startWithE(InputArray samples, InputArray means0, |
|
InputArray covs0=noArray(), |
|
InputArray weights0=noArray(), |
|
OutputArray logLikelihoods=noArray(), |
|
OutputArray labels=noArray(), |
|
OutputArray probs=noArray(), |
|
const Params& params=Params()); |
|
|
|
/** @brief Static method that estimate the Gaussian mixture parameters from a samples set |
|
|
|
This variation starts with Maximization step. You need to provide initial probabilities |
|
\f$p_{i,k}\f$ to use this option. |
|
|
|
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a |
|
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type |
|
it will be converted to the inner matrix of such type for the further computing. |
|
@param probs0 |
|
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for |
|
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. |
|
@param labels The optional output "class label" for each sample: |
|
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable |
|
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. |
|
@param probs The optional output matrix that contains posterior probabilities of each Gaussian |
|
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and |
|
CV_64FC1 type. |
|
@param params The Gaussian mixture params, see EM::Params description |
|
*/ |
|
static Ptr<EM> train_startWithM(InputArray samples, InputArray probs0, |
|
OutputArray logLikelihoods=noArray(), |
|
OutputArray labels=noArray(), |
|
OutputArray probs=noArray(), |
|
const Params& params=Params()); |
|
|
|
/** @brief Creates empty %EM model |
|
|
|
@param params %EM parameters |
|
|
|
The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you |
|
can use one of the EM::train\* methods or load it from file using StatModel::load\<EM\>(filename). |
|
*/ |
|
static Ptr<EM> create(const Params& params=Params()); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Decision Tree * |
|
\****************************************************************************************/ |
|
|
|
/** @brief The class represents a single decision tree or a collection of decision trees. |
|
|
|
The current public interface of the class allows user to train only a single decision tree, however |
|
the class is capable of storing multiple decision trees and using them for prediction (by summing |
|
responses or using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost) |
|
use this capability to implement decision tree ensembles. |
|
|
|
@sa @ref ml_intro_trees |
|
*/ |
|
class CV_EXPORTS_W DTrees : public StatModel |
|
{ |
|
public: |
|
/** Predict options */ |
|
enum Flags { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) }; |
|
|
|
/** @brief The structure contains all the decision tree training parameters. |
|
|
|
You can initialize it by default constructor and then override any parameters directly before |
|
training, or the structure may be fully initialized using the advanced variant of the |
|
constructor. |
|
*/ |
|
class CV_EXPORTS_W_MAP Params |
|
{ |
|
public: |
|
/** @brief Default constructor. */ |
|
Params(); |
|
/** @brief Constructor with parameters */ |
|
Params( int maxDepth, int minSampleCount, |
|
double regressionAccuracy, bool useSurrogates, |
|
int maxCategories, int CVFolds, |
|
bool use1SERule, bool truncatePrunedTree, |
|
const Mat& priors ); |
|
|
|
/** @brief Cluster possible values of a categorical variable into K\<=maxCategories clusters |
|
to find a suboptimal split. |
|
|
|
If a discrete variable, on which the training procedure tries to make a split, takes more |
|
than maxCategories values, the precise best subset estimation may take a very long time |
|
because the algorithm is exponential. Instead, many decision trees engines (including our |
|
implementation) try to find sub-optimal split in this case by clustering all the samples |
|
into maxCategories clusters that is some categories are merged together. The clustering is |
|
applied only in n \> 2-class classification problems for categorical variables with N \> |
|
max_categories possible values. In case of regression and 2-class classification the optimal |
|
split can be found efficiently without employing clustering, thus the parameter is not used |
|
in these cases. Default value is 10.*/ |
|
CV_PROP_RW int maxCategories; |
|
/** @brief The maximum possible depth of the tree. |
|
|
|
That is the training algorithms attempts to split a node while its depth is less than |
|
maxDepth. The root node has zero depth. The actual depth may be smaller if the other |
|
termination criteria are met (see the outline of the training procedure @ref ml_intro_trees |
|
"here"), and/or if the tree is pruned. Default value is INT_MAX.*/ |
|
CV_PROP_RW int maxDepth; |
|
/** If the number of samples in a node is less than this parameter then the node will not be |
|
split. Default value is 10.*/ |
|
CV_PROP_RW int minSampleCount; |
|
/** If CVFolds \> 1 then algorithms prunes the built decision tree using K-fold |
|
cross-validation procedure where K is equal to CVFolds. Default value is 10.*/ |
|
CV_PROP_RW int CVFolds; |
|
/** @brief If true then surrogate splits will be built. |
|
|
|
These splits allow to work with missing data and compute variable importance correctly. |
|
@note currently it's not implemented. Default value is false.*/ |
|
CV_PROP_RW bool useSurrogates; |
|
/** If true then a pruning will be harsher. This will make a tree more compact and more |
|
resistant to the training data noise but a bit less accurate. Default value is true.*/ |
|
CV_PROP_RW bool use1SERule; |
|
/** If true then pruned branches are physically removed from the tree. Otherwise they are |
|
retained and it is possible to get results from the original unpruned (or pruned less |
|
aggressively) tree. Default value is true.*/ |
|
CV_PROP_RW bool truncatePrunedTree; |
|
/** @brief Termination criteria for regression trees. |
|
|
|
If all absolute differences between an estimated value in a node and values of train samples |
|
in this node are less than this parameter then the node will not be split further. Default |
|
value is 0.01f*/ |
|
CV_PROP_RW float regressionAccuracy; |
|
/** @brief The array of a priori class probabilities, sorted by the class label value. |
|
|
|
The parameter can be used to tune the decision tree preferences toward a certain class. For |
|
example, if you want to detect some rare anomaly occurrence, the training base will likely |
|
contain much more normal cases than anomalies, so a very good classification performance |
|
will be achieved just by considering every case as normal. To avoid this, the priors can be |
|
specified, where the anomaly probability is artificially increased (up to 0.5 or even |
|
greater), so the weight of the misclassified anomalies becomes much bigger, and the tree is |
|
adjusted properly. |
|
|
|
You can also think about this parameter as weights of prediction categories which determine |
|
relative weights that you give to misclassification. That is, if the weight of the first |
|
category is 1 and the weight of the second category is 10, then each mistake in predicting |
|
the second category is equivalent to making 10 mistakes in predicting the first category. |
|
Default value is empty Mat.*/ |
|
CV_PROP_RW Mat priors; |
|
}; |
|
|
|
/** @brief The class represents a decision tree node. |
|
*/ |
|
class CV_EXPORTS Node |
|
{ |
|
public: |
|
Node(); |
|
double value; //!< Value at the node: a class label in case of classification or estimated |
|
//!< function value in case of regression. |
|
int classIdx; //!< Class index normalized to 0..class_count-1 range and assigned to the |
|
//!< node. It is used internally in classification trees and tree ensembles. |
|
int parent; //!< Index of the parent node |
|
int left; //!< Index of the left child node |
|
int right; //!< Index of right child node |
|
int defaultDir; //!< Default direction where to go (-1: left or +1: right). It helps in the |
|
//!< case of missing values. |
|
int split; //!< Index of the first split |
|
}; |
|
|
|
/** @brief The class represents split in a decision tree. |
|
*/ |
|
class CV_EXPORTS Split |
|
{ |
|
public: |
|
Split(); |
|
int varIdx; //!< Index of variable on which the split is created. |
|
bool inversed; //!< If true, then the inverse split rule is used (i.e. left and right |
|
//!< branches are exchanged in the rule expressions below). |
|
float quality; //!< The split quality, a positive number. It is used to choose the best split. |
|
int next; //!< Index of the next split in the list of splits for the node |
|
float c; /**< The threshold value in case of split on an ordered variable. |
|
The rule is: |
|
@code{.none} |
|
if var_value < c |
|
then next_node <- left |
|
else next_node <- right |
|
@endcode */ |
|
int subsetOfs; /**< Offset of the bitset used by the split on a categorical variable. |
|
The rule is: |
|
@code{.none} |
|
if bitset[var_value] == 1 |
|
then next_node <- left |
|
else next_node <- right |
|
@endcode */ |
|
}; |
|
|
|
/** @brief Sets the training parameters |
|
*/ |
|
virtual void setDParams(const Params& p); |
|
/** @brief Returns the training parameters |
|
*/ |
|
virtual Params getDParams() const; |
|
|
|
/** @brief Returns indices of root nodes |
|
*/ |
|
virtual const std::vector<int>& getRoots() const = 0; |
|
/** @brief Returns all the nodes |
|
|
|
all the node indices are indices in the returned vector |
|
*/ |
|
virtual const std::vector<Node>& getNodes() const = 0; |
|
/** @brief Returns all the splits |
|
|
|
all the split indices are indices in the returned vector |
|
*/ |
|
virtual const std::vector<Split>& getSplits() const = 0; |
|
/** @brief Returns all the bitsets for categorical splits |
|
|
|
Split::subsetOfs is an offset in the returned vector |
|
*/ |
|
virtual const std::vector<int>& getSubsets() const = 0; |
|
|
|
/** @brief Creates the empty model |
|
|
|
The static method creates empty decision tree with the specified parameters. It should be then |
|
trained using train method (see StatModel::train). Alternatively, you can load the model from |
|
file using StatModel::load\<DTrees\>(filename). |
|
*/ |
|
static Ptr<DTrees> create(const Params& params=Params()); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Random Trees Classifier * |
|
\****************************************************************************************/ |
|
|
|
/** @brief The class implements the random forest predictor. |
|
|
|
@sa @ref ml_intro_rtrees |
|
*/ |
|
class CV_EXPORTS_W RTrees : public DTrees |
|
{ |
|
public: |
|
/** @brief The set of training parameters for the forest is a superset of the training |
|
parameters for a single tree. |
|
|
|
However, random trees do not need all the functionality/features of decision trees. Most |
|
noticeably, the trees are not pruned, so the cross-validation parameters are not used. |
|
*/ |
|
class CV_EXPORTS_W_MAP Params : public DTrees::Params |
|
{ |
|
public: |
|
/** @brief Default constructor. */ |
|
Params(); |
|
/** @brief Constructor with parameters. */ |
|
Params( int maxDepth, int minSampleCount, |
|
double regressionAccuracy, bool useSurrogates, |
|
int maxCategories, const Mat& priors, |
|
bool calcVarImportance, int nactiveVars, |
|
TermCriteria termCrit ); |
|
|
|
/** If true then variable importance will be calculated and then it can be retrieved by |
|
RTrees::getVarImportance. Default value is false.*/ |
|
CV_PROP_RW bool calcVarImportance; |
|
/** The size of the randomly selected subset of features at each tree node and that are used |
|
to find the best split(s). If you set it to 0 then the size will be set to the square root |
|
of the total number of features. Default value is 0.*/ |
|
CV_PROP_RW int nactiveVars; |
|
/** The termination criteria that specifies when the training algorithm stops - either when |
|
the specified number of trees is trained and added to the ensemble or when sufficient |
|
accuracy (measured as OOB error) is achieved. Typically the more trees you have the better |
|
the accuracy. However, the improvement in accuracy generally diminishes and asymptotes pass |
|
a certain number of trees. Also to keep in mind, the number of tree increases the prediction |
|
time linearly. Default value is TermCriteria(TermCriteria::MAX_ITERS + TermCriteria::EPS, |
|
50, 0.1)*/ |
|
CV_PROP_RW TermCriteria termCrit; |
|
}; |
|
|
|
virtual void setRParams(const Params& p) = 0; |
|
virtual Params getRParams() const = 0; |
|
|
|
/** @brief Returns the variable importance array. |
|
|
|
The method returns the variable importance vector, computed at the training stage when |
|
Params::calcVarImportance is set to true. If this flag was set to false, the empty matrix is |
|
returned. |
|
*/ |
|
virtual Mat getVarImportance() const = 0; |
|
|
|
/** @brief Creates the empty model |
|
|
|
Use StatModel::train to train the model, StatModel::train to create and train the model, |
|
StatModel::load to load the pre-trained model. |
|
*/ |
|
static Ptr<RTrees> create(const Params& params=Params()); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Boosted tree classifier * |
|
\****************************************************************************************/ |
|
|
|
/** @brief Boosted tree classifier derived from DTrees |
|
|
|
@sa @ref ml_intro_boost |
|
*/ |
|
class CV_EXPORTS_W Boost : public DTrees |
|
{ |
|
public: |
|
/** @brief Parameters of Boost trees. |
|
|
|
The structure is derived from DTrees::Params but not all of the decision tree parameters are |
|
supported. In particular, cross-validation is not supported. |
|
|
|
All parameters are public. You can initialize them by a constructor and then override some of |
|
them directly if you want. |
|
*/ |
|
class CV_EXPORTS_W_MAP Params : public DTrees::Params |
|
{ |
|
public: |
|
CV_PROP_RW int boostType; //!< Type of the boosting algorithm. See Boost::Types. |
|
//!< Default value is Boost::REAL. |
|
CV_PROP_RW int weakCount; //!< The number of weak classifiers. Default value is 100. |
|
/** A threshold between 0 and 1 used to save computational time. Samples with summary weight |
|
\f$\leq 1 - weight_trim_rate\f$ do not participate in the *next* iteration of training. Set |
|
this parameter to 0 to turn off this functionality. Default value is 0.95.*/ |
|
CV_PROP_RW double weightTrimRate; |
|
|
|
/** @brief Default constructor */ |
|
Params(); |
|
/** @brief Constructor with parameters */ |
|
Params( int boostType, int weakCount, double weightTrimRate, |
|
int maxDepth, bool useSurrogates, const Mat& priors ); |
|
}; |
|
|
|
/** @brief Boosting type |
|
|
|
Gentle AdaBoost and Real AdaBoost are often the preferable choices. |
|
*/ |
|
enum Types { |
|
DISCRETE=0, //!< Discrete AdaBoost. |
|
REAL=1, //!< Real AdaBoost. It is a technique that utilizes confidence-rated predictions |
|
//!< and works well with categorical data. |
|
LOGIT=2, //!< LogitBoost. It can produce good regression fits. |
|
GENTLE=3 //!< Gentle AdaBoost. It puts less weight on outlier data points and for that |
|
//!<reason is often good with regression data. |
|
}; |
|
|
|
/** @brief Returns the boosting parameters */ |
|
virtual Params getBParams() const = 0; |
|
/** @brief Sets the boosting parameters */ |
|
virtual void setBParams(const Params& p) = 0; |
|
|
|
/** @brief Creates the empty model |
|
|
|
Use StatModel::train to train the model, StatModel::train\<Boost\>(traindata, params) to create |
|
and train the model, StatModel::load\<Boost\>(filename) to load the pre-trained model. |
|
*/ |
|
static Ptr<Boost> create(const Params& params=Params()); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Gradient Boosted Trees * |
|
\****************************************************************************************/ |
|
|
|
/*class CV_EXPORTS_W GBTrees : public DTrees |
|
{ |
|
public: |
|
struct CV_EXPORTS_W_MAP Params : public DTrees::Params |
|
{ |
|
CV_PROP_RW int weakCount; |
|
CV_PROP_RW int lossFunctionType; |
|
CV_PROP_RW float subsamplePortion; |
|
CV_PROP_RW float shrinkage; |
|
|
|
Params(); |
|
Params( int lossFunctionType, int weakCount, float shrinkage, |
|
float subsamplePortion, int maxDepth, bool useSurrogates ); |
|
}; |
|
|
|
enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS}; |
|
|
|
virtual void setK(int k) = 0; |
|
|
|
virtual float predictSerial( InputArray samples, |
|
OutputArray weakResponses, int flags) const = 0; |
|
|
|
static Ptr<GBTrees> create(const Params& p); |
|
};*/ |
|
|
|
/****************************************************************************************\ |
|
* Artificial Neural Networks (ANN) * |
|
\****************************************************************************************/ |
|
|
|
/////////////////////////////////// Multi-Layer Perceptrons ////////////////////////////// |
|
|
|
/** @brief Artificial Neural Networks - Multi-Layer Perceptrons. |
|
|
|
Unlike many other models in ML that are constructed and trained at once, in the MLP model these |
|
steps are separated. First, a network with the specified topology is created using the non-default |
|
constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is |
|
trained using a set of input and output vectors. The training procedure can be repeated more than |
|
once, that is, the weights can be adjusted based on the new training data. |
|
|
|
Additional flags for StatModel::train are available: ANN_MLP::TrainFlags. |
|
|
|
@sa @ref ml_intro_ann |
|
*/ |
|
class CV_EXPORTS_W ANN_MLP : public StatModel |
|
{ |
|
public: |
|
/** @brief Parameters of the MLP and of the training algorithm. |
|
*/ |
|
struct CV_EXPORTS_W_MAP Params |
|
{ |
|
/** @brief Default constructor */ |
|
Params(); |
|
/** @brief Constructor with parameters |
|
@note param1 sets Params::rp_dw0 for RPROP and Paramss::bp_dw_scale for BACKPROP. |
|
@note param2 sets Params::rp_dw_min for RPROP and Params::bp_moment_scale for BACKPROP. |
|
*/ |
|
Params( const Mat& layerSizes, int activateFunc, double fparam1, double fparam2, |
|
TermCriteria termCrit, int trainMethod, double param1, double param2=0 ); |
|
|
|
/** Available training methods */ |
|
enum TrainingMethods { |
|
BACKPROP=0, //!< The back-propagation algorithm. |
|
RPROP=1 //!< The RPROP algorithm. See @cite RPROP93 for details. |
|
}; |
|
|
|
/** Integer vector specifying the number of neurons in each layer including the input and |
|
output layers. The very first element specifies the number of elements in the input layer. |
|
The last element - number of elements in the output layer. Default value is empty Mat.*/ |
|
CV_PROP_RW Mat layerSizes; |
|
/** The activation function for each neuron. Currently the default and the only fully |
|
supported activation function is ANN_MLP::SIGMOID_SYM. See ANN_MLP::ActivationFunctions.*/ |
|
CV_PROP_RW int activateFunc; |
|
/** The first parameter of the activation function, \f$\alpha\f$. Default value is 0. */ |
|
CV_PROP_RW double fparam1; |
|
/** The second parameter of the activation function, \f$\beta\f$. Default value is 0. */ |
|
CV_PROP_RW double fparam2; |
|
|
|
/** Termination criteria of the training algorithm. You can specify the maximum number of |
|
iterations (maxCount) and/or how much the error could change between the iterations to make |
|
the algorithm continue (epsilon). Default value is TermCriteria(TermCriteria::MAX_ITER + |
|
TermCriteria::EPS, 1000, 0.01).*/ |
|
CV_PROP_RW TermCriteria termCrit; |
|
/** Training method. Default value is Params::RPROP. See ANN_MLP::Params::TrainingMethods.*/ |
|
CV_PROP_RW int trainMethod; |
|
|
|
// backpropagation parameters |
|
/** BPROP: Strength of the weight gradient term. The recommended value is about 0.1. Default |
|
value is 0.1.*/ |
|
CV_PROP_RW double bpDWScale; |
|
/** BPROP: Strength of the momentum term (the difference between weights on the 2 previous |
|
iterations). This parameter provides some inertia to smooth the random fluctuations of the |
|
weights. It can vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so |
|
is good enough. Default value is 0.1.*/ |
|
CV_PROP_RW double bpMomentScale; |
|
|
|
// rprop parameters |
|
/** RPROP: Initial value \f$\Delta_0\f$ of update-values \f$\Delta_{ij}\f$. Default value is 0.1.*/ |
|
CV_PROP_RW double rpDW0; |
|
/** RPROP: Increase factor \f$\eta^+\f$. It must be \>1. Default value is 1.2.*/ |
|
CV_PROP_RW double rpDWPlus; |
|
/** RPROP: Decrease factor \f$\eta^-\f$. It must be \<1. Default value is 0.5.*/ |
|
CV_PROP_RW double rpDWMinus; |
|
/** RPROP: Update-values lower limit \f$\Delta_{min}\f$. It must be positive. Default value is FLT_EPSILON.*/ |
|
CV_PROP_RW double rpDWMin; |
|
/** RPROP: Update-values upper limit \f$\Delta_{max}\f$. It must be \>1. Default value is 50.*/ |
|
CV_PROP_RW double rpDWMax; |
|
}; |
|
|
|
/** possible activation functions */ |
|
enum ActivationFunctions { |
|
/** Identity function: \f$f(x)=x\f$ */ |
|
IDENTITY = 0, |
|
/** Symmetrical sigmoid: \f$f(x)=\beta*(1-e^{-\alpha x})/(1+e^{-\alpha x}\f$ |
|
@note |
|
If you are using the default sigmoid activation function with the default parameter values |
|
fparam1=0 and fparam2=0 then the function used is y = 1.7159\*tanh(2/3 \* x), so the output |
|
will range from [-1.7159, 1.7159], instead of [0,1].*/ |
|
SIGMOID_SYM = 1, |
|
/** Gaussian function: \f$f(x)=\beta e^{-\alpha x*x}\f$ */ |
|
GAUSSIAN = 2 |
|
}; |
|
|
|
/** Train options */ |
|
enum TrainFlags { |
|
/** Update the network weights, rather than compute them from scratch. In the latter case |
|
the weights are initialized using the Nguyen-Widrow algorithm. */ |
|
UPDATE_WEIGHTS = 1, |
|
/** Do not normalize the input vectors. If this flag is not set, the training algorithm |
|
normalizes each input feature independently, shifting its mean value to 0 and making the |
|
standard deviation equal to 1. If the network is assumed to be updated frequently, the new |
|
training data could be much different from original one. In this case, you should take care |
|
of proper normalization. */ |
|
NO_INPUT_SCALE = 2, |
|
/** Do not normalize the output vectors. If the flag is not set, the training algorithm |
|
normalizes each output feature independently, by transforming it to the certain range |
|
depending on the used activation function. */ |
|
NO_OUTPUT_SCALE = 4 |
|
}; |
|
|
|
virtual Mat getWeights(int layerIdx) const = 0; |
|
|
|
/** @brief Sets the new network parameters */ |
|
virtual void setParams(const Params& p) = 0; |
|
|
|
/** @brief Retrieves the current network parameters */ |
|
virtual Params getParams() const = 0; |
|
|
|
/** @brief Creates empty model |
|
|
|
Use StatModel::train to train the model, StatModel::train\<ANN_MLP\>(traindata, params) to |
|
create and train the model, StatModel::load\<ANN_MLP\>(filename) to load the pre-trained model. |
|
Note that the train method has optional flags: ANN_MLP::TrainFlags. |
|
*/ |
|
static Ptr<ANN_MLP> create(const Params& params=Params()); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Logistic Regression * |
|
\****************************************************************************************/ |
|
|
|
/** @brief Implements Logistic Regression classifier. |
|
|
|
@sa @ref ml_intro_lr |
|
*/ |
|
class CV_EXPORTS LogisticRegression : public StatModel |
|
{ |
|
public: |
|
class CV_EXPORTS Params |
|
{ |
|
public: |
|
/** @brief Constructor */ |
|
Params(double learning_rate = 0.001, |
|
int iters = 1000, |
|
int method = LogisticRegression::BATCH, |
|
int normalization = LogisticRegression::REG_L2, |
|
int reg = 1, |
|
int batch_size = 1); |
|
double alpha; //!< learning rate. |
|
int num_iters; //!< number of iterations. |
|
/** Kind of regularization to be applied. See LogisticRegression::RegKinds. */ |
|
int norm; |
|
/** Enable or disable regularization. Set to positive integer (greater than zero) to enable |
|
and to 0 to disable. */ |
|
int regularized; |
|
/** Kind of training method used. See LogisticRegression::Methods. */ |
|
int train_method; |
|
/** Specifies the number of training samples taken in each step of Mini-Batch Gradient |
|
Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It |
|
has to take values less than the total number of training samples. */ |
|
int mini_batch_size; |
|
/** Termination criteria of the algorithm */ |
|
TermCriteria term_crit; |
|
}; |
|
|
|
//! Regularization kinds |
|
enum RegKinds { |
|
REG_L1 = 0, //!< %L1 norm |
|
REG_L2 = 1 //!< %L2 norm. Set Params::regularized \> 0 when using this kind |
|
}; |
|
|
|
//! Training methods |
|
enum Methods { |
|
BATCH = 0, |
|
MINI_BATCH = 1 //!< Set Params::mini_batch_size to a positive integer when using this method. |
|
}; |
|
|
|
/** @brief Predicts responses for input samples and returns a float type. |
|
|
|
@param samples The input data for the prediction algorithm. Matrix [m x n], where each row |
|
contains variables (features) of one object being classified. Should have data type CV_32F. |
|
@param results Predicted labels as a column matrix of type CV_32S. |
|
@param flags Not used. |
|
*/ |
|
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0; |
|
|
|
/** @brief This function returns the trained paramters arranged across rows. |
|
|
|
For a two class classifcation problem, it returns a row matrix. It returns learnt paramters of |
|
the Logistic Regression as a matrix of type CV_32F. |
|
*/ |
|
virtual Mat get_learnt_thetas() const = 0; |
|
|
|
/** @brief Creates empty model. |
|
|
|
@param params The training parameters for the classifier of type LogisticRegression::Params. |
|
|
|
Creates Logistic Regression model with parameters given. |
|
*/ |
|
static Ptr<LogisticRegression> create( const Params& params = Params() ); |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Auxilary functions declarations * |
|
\****************************************************************************************/ |
|
|
|
/** @brief Generates _sample_ from multivariate normal distribution |
|
|
|
@param mean an average row vector |
|
@param cov symmetric covariation matrix |
|
@param nsamples returned samples count |
|
@param samples returned samples array |
|
*/ |
|
CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples); |
|
|
|
/** @brief Generates sample from gaussian mixture distribution */ |
|
CV_EXPORTS void randGaussMixture( InputArray means, InputArray covs, InputArray weights, |
|
int nsamples, OutputArray samples, OutputArray sampClasses ); |
|
|
|
/** @brief Creates test set */ |
|
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses, |
|
OutputArray samples, OutputArray responses); |
|
|
|
//! @} ml |
|
|
|
} |
|
} |
|
|
|
#endif // __cplusplus |
|
#endif // __OPENCV_ML_HPP__ |
|
|
|
/* End of file. */
|
|
|