mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1409 lines
51 KiB
1409 lines
51 KiB
\ifCpp |
|
\section{Common Interfaces of Feature Detectors} |
|
Feature detectors in OpenCV have wrappers with common interface that enables to switch easily |
|
between different algorithms solving the same problem. All objects that implement keypoint detectors |
|
inherit \cvCppCross{FeatureDetector} interface. |
|
|
|
\cvclass{KeyPoint} |
|
Data structure for salient point detectors. |
|
|
|
\begin{lstlisting} |
|
class KeyPoint |
|
{ |
|
public: |
|
// the default constructor |
|
KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), |
|
class_id(-1) {} |
|
// the full constructor |
|
KeyPoint(Point2f _pt, float _size, float _angle=-1, |
|
float _response=0, int _octave=0, int _class_id=-1) |
|
: pt(_pt), size(_size), angle(_angle), response(_response), |
|
octave(_octave), class_id(_class_id) {} |
|
// another form of the full constructor |
|
KeyPoint(float x, float y, float _size, float _angle=-1, |
|
float _response=0, int _octave=0, int _class_id=-1) |
|
: pt(x, y), size(_size), angle(_angle), response(_response), |
|
octave(_octave), class_id(_class_id) {} |
|
// converts vector of keypoints to vector of points |
|
static void convert(const std::vector<KeyPoint>& keypoints, |
|
std::vector<Point2f>& points2f, |
|
const std::vector<int>& keypointIndexes=std::vector<int>()); |
|
// converts vector of points to the vector of keypoints, where each |
|
// keypoint is assigned the same size and the same orientation |
|
static void convert(const std::vector<Point2f>& points2f, |
|
std::vector<KeyPoint>& keypoints, |
|
float size=1, float response=1, int octave=0, |
|
int class_id=-1); |
|
|
|
// computes overlap for pair of keypoints; |
|
// overlap is a ratio between area of keypoint regions intersection and |
|
// area of keypoint regions union (now keypoint region is circle) |
|
static float overlap(const KeyPoint& kp1, const KeyPoint& kp2); |
|
|
|
Point2f pt; // coordinates of the keypoints |
|
float size; // diameter of the meaningfull keypoint neighborhood |
|
float angle; // computed orientation of the keypoint (-1 if not applicable) |
|
float response; // the response by which the most strong keypoints |
|
// have been selected. Can be used for the further sorting |
|
// or subsampling |
|
int octave; // octave (pyramid layer) from which the keypoint has been extracted |
|
int class_id; // object class (if the keypoints need to be clustered by |
|
// an object they belong to) |
|
}; |
|
|
|
// writes vector of keypoints to the file storage |
|
void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints); |
|
// reads vector of keypoints from the specified file storage node |
|
void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints); |
|
\end{lstlisting} |
|
|
|
\cvclass{FeatureDetector} |
|
Abstract base class for 2D image feature detectors. |
|
|
|
\begin{lstlisting} |
|
class CV_EXPORTS FeatureDetector |
|
{ |
|
public: |
|
virtual ~FeatureDetector(); |
|
|
|
void detect( const Mat& image, vector<KeyPoint>& keypoints, |
|
const Mat& mask=Mat() ) const; |
|
|
|
void detect( const vector<Mat>& images, |
|
vector<vector<KeyPoint> >& keypoints, |
|
const vector<Mat>& masks=vector<Mat>() ) const; |
|
|
|
virtual void read(const FileNode&); |
|
virtual void write(FileStorage&) const; |
|
|
|
static Ptr<FeatureDetector> create( const string& detectorType ); |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{FeatureDetector::detect} |
|
Detect keypoints in an image (first variant) or image set (second variant). |
|
|
|
\cvdefCpp{ |
|
void FeatureDetector::detect( const Mat\& image, |
|
\par vector<KeyPoint>\& keypoints, |
|
\par const Mat\& mask=Mat() ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{image}{The image.} |
|
\cvarg{keypoints}{The detected keypoints.} |
|
\cvarg{mask}{Mask specifying where to look for keypoints (optional). Must be a char matrix |
|
with non-zero values in the region of interest.} |
|
\end{description} |
|
|
|
\cvdefCpp{ |
|
void FeatureDetector::detect( const vector<Mat>\& images, |
|
\par vector<vector<KeyPoint> >\& keypoints, |
|
\par const vector<Mat>\& masks=vector<Mat>() ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{images}{Images set.} |
|
\cvarg{keypoints}{Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].} |
|
\cvarg{masks}{Masks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i]. |
|
Each element of \texttt{masks} vector must be a char matrix with non-zero values in the region of interest.} |
|
\end{description} |
|
|
|
\cvCppFunc{FeatureDetector::read} |
|
Read feature detector object from file node. |
|
|
|
\cvdefCpp{ |
|
void FeatureDetector::read( const FileNode\& fn ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{fn}{File node from which detector will be read.} |
|
\end{description} |
|
|
|
\cvCppFunc{FeatureDetector::write} |
|
Write feature detector object to file storage. |
|
|
|
\cvdefCpp{ |
|
void FeatureDetector::write( FileStorage\& fs ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{fs}{File storage in which detector will be written.} |
|
\end{description} |
|
|
|
\cvCppFunc{FeatureDetector::create} |
|
Feature detector factory that creates \cvCppCross{FeatureDetector} of given type with |
|
default parameters (rather using default constructor). |
|
|
|
\begin{lstlisting} |
|
Ptr<FeatureDetector> FeatureDetector::create( const string& detectorType ); |
|
\end{lstlisting} |
|
|
|
\begin{description} |
|
\cvarg{detectorType}{Feature detector type.} |
|
\end{description} |
|
|
|
Now the following detector types are supported:\\ |
|
\texttt{"FAST"} -- \cvCppCross{FastFeatureDetector},\\ |
|
\texttt{"STAR"} -- \cvCppCross{StarFeatureDetector},\\ |
|
\texttt{"SIFT"} -- \cvCppCross{SiftFeatureDetector}, \\ |
|
\texttt{"SURF"} -- \cvCppCross{SurfFeatureDetector}, \\ |
|
\texttt{"MSER"} -- \cvCppCross{MserFeatureDetector}, \\ |
|
\texttt{"GFTT"} -- \cvCppCross{GfttFeatureDetector}, \\ |
|
\texttt{"HARRIS"} -- \cvCppCross{HarrisFeatureDetector}. \\ |
|
Also combined format is supported: feature detector adapter name (\texttt{"Grid"} -- |
|
\cvCppCross{GridAdaptedFeatureDetector}, \texttt{"Pyramid"} -- |
|
\cvCppCross{PyramidAdaptedFeatureDetector}) + feature detector name (see above), |
|
e.g. \texttt{"GridFAST"}, \texttt{"PyramidSTAR"}, etc. |
|
|
|
\cvclass{FastFeatureDetector} |
|
Wrapping class for feature detection using \cvCppCross{FAST} method. |
|
|
|
\begin{lstlisting} |
|
class FastFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
FastFeatureDetector( int threshold=1, bool nonmaxSuppression=true ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{GoodFeaturesToTrackDetector} |
|
Wrapping class for feature detection using \cvCppCross{goodFeaturesToTrack} function. |
|
|
|
\begin{lstlisting} |
|
class GoodFeaturesToTrackDetector : public FeatureDetector |
|
{ |
|
public: |
|
class Params |
|
{ |
|
public: |
|
Params( int maxCorners=1000, double qualityLevel=0.01, |
|
double minDistance=1., int blockSize=3, |
|
bool useHarrisDetector=false, double k=0.04 ); |
|
void read( const FileNode& fn ); |
|
void write( FileStorage& fs ) const; |
|
|
|
int maxCorners; |
|
double qualityLevel; |
|
double minDistance; |
|
int blockSize; |
|
bool useHarrisDetector; |
|
double k; |
|
}; |
|
|
|
GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params= |
|
GoodFeaturesToTrackDetector::Params() ); |
|
GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel, |
|
double minDistance, int blockSize=3, |
|
bool useHarrisDetector=false, double k=0.04 ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{MserFeatureDetector} |
|
Wrapping class for feature detection using \cvCppCross{MSER} class. |
|
|
|
\begin{lstlisting} |
|
class MserFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
MserFeatureDetector( CvMSERParams params=cvMSERParams() ); |
|
MserFeatureDetector( int delta, int minArea, int maxArea, |
|
double maxVariation, double minDiversity, |
|
int maxEvolution, double areaThreshold, |
|
double minMargin, int edgeBlurSize ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{StarFeatureDetector} |
|
Wrapping class for feature detection using \cvCppCross{StarDetector} class. |
|
|
|
\begin{lstlisting} |
|
class StarFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
StarFeatureDetector( int maxSize=16, int responseThreshold=30, |
|
int lineThresholdProjected = 10, |
|
int lineThresholdBinarized=8, int suppressNonmaxSize=5 ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{SiftFeatureDetector} |
|
Wrapping class for feature detection using \cvCppCross{SIFT} class. |
|
|
|
\begin{lstlisting} |
|
class SiftFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
SiftFeatureDetector( |
|
const SIFT::DetectorParams& detectorParams=SIFT::DetectorParams(), |
|
const SIFT::CommonParams& commonParams=SIFT::CommonParams() ); |
|
SiftFeatureDetector( double threshold, double edgeThreshold, |
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES, |
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{SurfFeatureDetector} |
|
Wrapping class for feature detection using \cvCppCross{SURF} class. |
|
|
|
\begin{lstlisting} |
|
class SurfFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
SurfFeatureDetector( double hessianThreshold = 400., int octaves = 3, |
|
int octaveLayers = 4 ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{GridAdaptedFeatureDetector} |
|
Adapts a detector to partition the source image into a grid and detect |
|
points in each cell. |
|
|
|
\begin{lstlisting} |
|
class GridAdaptedFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
/* |
|
* detector Detector that will be adapted. |
|
* maxTotalKeypoints Maximum count of keypoints detected on the image. |
|
* Only the strongest keypoints will be keeped. |
|
* gridRows Grid rows count. |
|
* gridCols Grid column count. |
|
*/ |
|
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, |
|
int maxTotalKeypoints, int gridRows=4, |
|
int gridCols=4 ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{PyramidAdaptedFeatureDetector} |
|
Adapts a detector to detect points over multiple levels of a Gaussian |
|
pyramid. Useful for detectors that are not inherently scaled. |
|
|
|
\begin{lstlisting} |
|
class PyramidAdaptedFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, |
|
int levels=2 ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
%dynamic detectors doc |
|
\input{features2d_dynamic_detectors} |
|
|
|
\section{Common Interfaces of Descriptor Extractors} |
|
Extractors of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily |
|
between different algorithms solving the same problem. This section is devoted to computing descriptors |
|
that are represented as vectors in a multidimensional space. All objects that implement ''vector'' |
|
descriptor extractors inherit \cvCppCross{DescriptorExtractor} interface. |
|
|
|
\cvclass{DescriptorExtractor} |
|
Abstract base class for computing descriptors for image keypoints. |
|
|
|
\begin{lstlisting} |
|
class CV_EXPORTS DescriptorExtractor |
|
{ |
|
public: |
|
virtual ~DescriptorExtractor(); |
|
|
|
void compute( const Mat& image, vector<KeyPoint>& keypoints, |
|
Mat& descriptors ) const; |
|
void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, |
|
vector<Mat>& descriptors ) const; |
|
|
|
virtual void read( const FileNode& ); |
|
virtual void write( FileStorage& ) const; |
|
|
|
virtual int descriptorSize() const = 0; |
|
virtual int descriptorType() const = 0; |
|
|
|
static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType ); |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
In this interface we assume a keypoint descriptor can be represented as a |
|
dense, fixed-dimensional vector of some basic type. Most descriptors used |
|
in practice follow this pattern, as it makes it very easy to compute |
|
distances between descriptors. Therefore we represent a collection of |
|
descriptors as a \cvCppCross{Mat}, where each row is one keypoint descriptor. |
|
|
|
\cvCppFunc{DescriptorExtractor::compute} |
|
Compute the descriptors for a set of keypoints detected in an image (first variant) |
|
or image set (second variant). |
|
|
|
\cvdefCpp{ |
|
void DescriptorExtractor::compute( const Mat\& image, |
|
\par vector<KeyPoint>\& keypoints, |
|
\par Mat\& descriptors ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{image}{The image.} |
|
\cvarg{keypoints}{The keypoints. Keypoints for which a descriptor cannot be computed are removed.} |
|
\cvarg{descriptors}{The descriptors. Row i is the descriptor for keypoint i.} |
|
\end{description} |
|
|
|
\cvdefCpp{ |
|
void DescriptorExtractor::compute( const vector<Mat>\& images, |
|
\par vector<vector<KeyPoint> >\& keypoints, |
|
\par vector<Mat>\& descriptors ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{images}{The image set.} |
|
\cvarg{keypoints}{Input keypoints collection. keypoints[i] is keypoints |
|
detected in images[i]. Keypoints for which a descriptor |
|
can not be computed are removed.} |
|
\cvarg{descriptors}{Descriptor collection. descriptors[i] are descriptors computed for |
|
a set keypoints[i].} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorExtractor::read} |
|
Read descriptor extractor object from file node. |
|
|
|
\cvdefCpp{ |
|
void DescriptorExtractor::read( const FileNode\& fn ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{fn}{File node from which detector will be read.} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorExtractor::write} |
|
Write descriptor extractor object to file storage. |
|
|
|
\cvdefCpp{ |
|
void DescriptorExtractor::write( FileStorage\& fs ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{fs}{File storage in which detector will be written.} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorExtractor::create} |
|
Descriptor extractor factory that creates \cvCppCross{DescriptorExtractor} of given type with |
|
default parameters (rather using default constructor). |
|
|
|
\begin{lstlisting} |
|
Ptr<DescriptorExtractor> |
|
DescriptorExtractor::create( const string& descriptorExtractorType ); |
|
\end{lstlisting} |
|
|
|
\begin{description} |
|
\cvarg{descriptorExtractorType}{Descriptor extractor type.} |
|
\end{description} |
|
|
|
Now the following descriptor extractor types are supported:\\ |
|
\texttt{"SIFT"} -- \cvCppCross{SiftFeatureDetector},\\ |
|
\texttt{"SURF"} -- \cvCppCross{SurfFeatureDetector},\\ |
|
\texttt{"BRIEF"} -- \cvCppCross{BriefFeatureDetector}.\\ |
|
Also combined format is supported: descriptor extractor adapter name (\texttt{"Opponent"} -- |
|
\cvCppCross{OpponentColorDescriptorExtractor}) + descriptor extractor name (see above), |
|
e.g. \texttt{"OpponentSIFT"}, etc. |
|
|
|
\cvclass{SiftDescriptorExtractor} |
|
Wrapping class for descriptors computing using \cvCppCross{SIFT} class. |
|
|
|
\begin{lstlisting} |
|
class SiftDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
SiftDescriptorExtractor( |
|
const SIFT::DescriptorParams& descriptorParams=SIFT::DescriptorParams(), |
|
const SIFT::CommonParams& commonParams=SIFT::CommonParams() ); |
|
SiftDescriptorExtractor( double magnification, bool isNormalize=true, |
|
bool recalculateAngles=true, int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES, |
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE ); |
|
|
|
virtual void read (const FileNode &fn); |
|
virtual void write (FileStorage &fs) const; |
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
protected: |
|
... |
|
} |
|
\end{lstlisting} |
|
|
|
\cvclass{SurfDescriptorExtractor} |
|
Wrapping class for descriptors computing using \cvCppCross{SURF} class. |
|
|
|
\begin{lstlisting} |
|
class SurfDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
SurfDescriptorExtractor( int nOctaves=4, |
|
int nOctaveLayers=2, bool extended=false ); |
|
|
|
virtual void read (const FileNode &fn); |
|
virtual void write (FileStorage &fs) const; |
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
protected: |
|
... |
|
} |
|
\end{lstlisting} |
|
|
|
\cvclass{CalonderDescriptorExtractor} |
|
Wrapping class for descriptors computing using \cvCppCross{RTreeClassifier} class. |
|
|
|
\begin{lstlisting} |
|
template<typename T> |
|
class CalonderDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
CalonderDescriptorExtractor( const string& classifierFile ); |
|
|
|
virtual void read( const FileNode &fn ); |
|
virtual void write( FileStorage &fs ) const; |
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
protected: |
|
... |
|
} |
|
\end{lstlisting} |
|
|
|
\cvclass{OpponentColorDescriptorExtractor} |
|
Adapts a descriptor extractor to compute descripors in Opponent Color Space |
|
(refer to van de Sande et al., CGIV 2008 "Color Descriptors for Object Category Recognition"). |
|
Input RGB image is transformed in Opponent Color Space. Then unadapted descriptor extractor |
|
(set in constructor) computes descriptors on each of the three channel and concatenate |
|
them into a single color descriptor. |
|
|
|
\begin{lstlisting} |
|
class OpponentColorDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor ); |
|
|
|
virtual void read( const FileNode& ); |
|
virtual void write( FileStorage& ) const; |
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{BriefDescriptorExtractor} |
|
Class for computing BRIEF descriptors described in paper of Calonder M., Lepetit V., |
|
Strecha C., Fua P.: ''BRIEF: Binary Robust Independent Elementary Features.'' |
|
11th European Conference on Computer Vision (ECCV), Heraklion, Crete. LNCS Springer, September 2010. |
|
|
|
\begin{lstlisting} |
|
class BriefDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
static const int PATCH_SIZE = 48; |
|
static const int KERNEL_SIZE = 9; |
|
|
|
// bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes. |
|
BriefDescriptorExtractor( int bytes = 32 ); |
|
|
|
virtual void read( const FileNode& ); |
|
virtual void write( FileStorage& ) const; |
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\section{Common Interfaces of Descriptor Matchers} |
|
Matchers of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily |
|
between different algorithms solving the same problem. This section is devoted to matching descriptors |
|
that are represented as vectors in a multidimensional space. All objects that implement ''vector'' |
|
descriptor matchers inherit \cvCppCross{DescriptorMatcher} interface. |
|
|
|
\cvclass{DMatch}\label{cv.class.DMatch} |
|
Match between two keypoint descriptors: query descriptor index, |
|
train descriptor index, train image index and distance between descriptors. |
|
|
|
\begin{lstlisting} |
|
struct DMatch |
|
{ |
|
DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), |
|
distance(std::numeric_limits<float>::max()) {} |
|
DMatch( int _queryIdx, int _trainIdx, float _distance ) : |
|
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), |
|
distance(_distance) {} |
|
DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) : |
|
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), |
|
distance(_distance) {} |
|
|
|
int queryIdx; // query descriptor index |
|
int trainIdx; // train descriptor index |
|
int imgIdx; // train image index |
|
|
|
float distance; |
|
|
|
// less is better |
|
bool operator<( const DMatch &m ) const; |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{DescriptorMatcher}\label{cv.class.DescriptorMatcher} |
|
Abstract base class for matching keypoint descriptors. It has two groups |
|
of match methods: for matching descriptors of one image with other image or |
|
with image set. |
|
|
|
\begin{lstlisting} |
|
class DescriptorMatcher |
|
{ |
|
public: |
|
virtual ~DescriptorMatcher(); |
|
|
|
virtual void add( const vector<Mat>& descriptors ); |
|
|
|
const vector<Mat>& getTrainDescriptors() const; |
|
virtual void clear(); |
|
bool empty() const; |
|
virtual bool isMaskSupported() const = 0; |
|
|
|
virtual void train(); |
|
|
|
/* |
|
* Group of methods to match descriptors from image pair. |
|
*/ |
|
void match( const Mat& queryDescriptors, const Mat& trainDescriptors, |
|
vector<DMatch>& matches, const Mat& mask=Mat() ) const; |
|
void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, |
|
vector<vector<DMatch> >& matches, int k, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
/* |
|
* Group of methods to match descriptors from one image to image set. |
|
*/ |
|
void match( const Mat& queryDescriptors, vector<DMatch>& matches, |
|
const vector<Mat>& masks=vector<Mat>() ); |
|
void knnMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, |
|
int k, const vector<Mat>& masks=vector<Mat>(), |
|
bool compactResult=false ); |
|
void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, |
|
float maxDistance, const vector<Mat>& masks=vector<Mat>(), |
|
bool compactResult=false ); |
|
|
|
virtual void read( const FileNode& ); |
|
virtual void write( FileStorage& ) const; |
|
|
|
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0; |
|
|
|
static Ptr<DescriptorMatcher> create( const string& descriptorMatcherType ); |
|
|
|
protected: |
|
vector<Mat> trainDescCollection; |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{DescriptorMatcher::add} |
|
Add descriptors to train descriptor collection. If collection \texttt{trainDescCollection} is not empty |
|
the new descriptors are added to existing train descriptors. |
|
|
|
\cvdefCpp{ |
|
void add( const vector<Mat>\& descriptors ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{descriptors}{Descriptors to add. Each \texttt{descriptors[i]} is a set of descriptors |
|
from the same (one) train image.} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorMatcher::getTrainDescriptors} |
|
Returns constant link to the train descriptor collection (i.e. \texttt{trainDescCollection}). |
|
|
|
\cvdefCpp{ |
|
const vector<Mat>\& getTrainDescriptors() const; |
|
} |
|
|
|
\cvCppFunc{DescriptorMatcher::clear} |
|
Clear train descriptor collection. |
|
|
|
\cvdefCpp{ |
|
void DescriptorMatcher::clear(); |
|
} |
|
|
|
\cvCppFunc{DescriptorMatcher::empty} |
|
Return true if there are not train descriptors in collection. |
|
|
|
\cvdefCpp{ |
|
bool DescriptorMatcher::empty() const; |
|
} |
|
|
|
\cvCppFunc{DescriptorMatcher::isMaskSupported} |
|
Returns true if descriptor matcher supports masking permissible matches. |
|
|
|
\cvdefCpp{ |
|
bool DescriptorMatcher::isMaskSupported(); |
|
} |
|
|
|
\cvCppFunc{DescriptorMatcher::train} |
|
Train descriptor matcher (e.g. train flann index). In all methods to match the method train() |
|
is run every time before matching. Some descriptor matchers (e.g. BruteForceMatcher) have empty |
|
implementation of this method, other matchers realy train their inner structures (e.g. FlannBasedMatcher |
|
trains flann::Index) |
|
|
|
\cvdefCpp{ |
|
void DescriptorMatcher::train(); |
|
} |
|
|
|
\cvCppFunc{DescriptorMatcher::match} |
|
Find the best match for each descriptor from a query set with train descriptors. |
|
Supposed that the query descriptors are of keypoints detected on the same query image. |
|
In first variant of this method train descriptors are set as input argument and |
|
supposed that they are of keypoints detected on the same train image. In second variant |
|
of the method train descriptors collection that was set using \texttt{add} method is used. |
|
Optional mask (or masks) can be set to describe which descriptors can be matched. |
|
\texttt{queryDescriptors[i]} can be matched with \texttt{trainDescriptors[j]} only if |
|
\texttt{mask.at<uchar>(i,j)} is non-zero. |
|
|
|
\cvdefCpp{ |
|
void DescriptorMatcher::match( const Mat\& queryDescriptors, |
|
\par const Mat\& trainDescriptors, |
|
\par vector<DMatch>\& matches, |
|
\par const Mat\& mask=Mat() ) const; |
|
} |
|
\cvdefCpp{ |
|
void DescriptorMatcher::match( const Mat\& queryDescriptors, |
|
\par vector<DMatch>\& matches, |
|
\par const vector<Mat>\& masks=vector<Mat>() ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{queryDescriptors}{Query set of descriptors.} |
|
\cvarg{trainDescriptors}{Train set of descriptors. This will not be added to train descriptors collection |
|
stored in class object.} |
|
\cvarg{matches}{Matches. If some query descriptor masked out in \texttt{mask} no match will be added for this descriptor. |
|
So \texttt{matches} size may be less query descriptors count.} |
|
\cvarg{mask}{Mask specifying permissible matches between input query and train matrices of descriptors.} |
|
\cvarg{masks}{The set of masks. Each \texttt{masks[i]} specifies permissible matches between input query descriptors |
|
and stored train descriptors from i-th image (i.e. \texttt{trainDescCollection[i])}.} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorMatcher::knnMatch} |
|
Find the k best matches for each descriptor from a query set with train descriptors. |
|
Found k (or less if not possible) matches are returned in distance increasing order. |
|
Details about query and train descriptors see in \cvCppCross{DescriptorMatcher::match}. |
|
|
|
\cvdefCpp{ |
|
void DescriptorMatcher::knnMatch( const Mat\& queryDescriptors, |
|
\par const Mat\& trainDescriptors, |
|
\par vector<vector<DMatch> >\& matches, |
|
\par int k, const Mat\& mask=Mat(), |
|
\par bool compactResult=false ) const; |
|
} |
|
\cvdefCpp{ |
|
void DescriptorMatcher::knnMatch( const Mat\& queryDescriptors, |
|
\par vector<vector<DMatch> >\& matches, int k, |
|
\par const vector<Mat>\& masks=vector<Mat>(), |
|
\par bool compactResult=false ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{queryDescriptors, trainDescriptors, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.} |
|
\cvarg{matches}{Mathes. Each \texttt{matches[i]} is k or less matches for the same query descriptor.} |
|
\cvarg{k}{Count of best matches will be found per each query descriptor (or less if it's not possible).} |
|
\cvarg{compactResult}{It's used when mask (or masks) is not empty. If \texttt{compactResult} is false |
|
\texttt{matches} vector will have the same size as \texttt{queryDescriptors} rows. If \texttt{compactResult} |
|
is true \texttt{matches} vector will not contain matches for fully masked out query descriptors.} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorMatcher::radiusMatch} |
|
Find the best matches for each query descriptor which have distance less than given threshold. |
|
Found matches are returned in distance increasing order. Details about query and train |
|
descriptors see in \cvCppCross{DescriptorMatcher::match}. |
|
|
|
\cvdefCpp{ |
|
void DescriptorMatcher::radiusMatch( const Mat\& queryDescriptors, |
|
\par const Mat\& trainDescriptors, |
|
\par vector<vector<DMatch> >\& matches, |
|
\par float maxDistance, const Mat\& mask=Mat(), |
|
\par bool compactResult=false ) const; |
|
} |
|
\cvdefCpp{ |
|
void DescriptorMatcher::radiusMatch( const Mat\& queryDescriptors, |
|
\par vector<vector<DMatch> >\& matches, |
|
\par float maxDistance, |
|
\par const vector<Mat>\& masks=vector<Mat>(), |
|
\par bool compactResult=false ); |
|
} |
|
\begin{description} |
|
\cvarg{queryDescriptors, trainDescriptors, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.} |
|
\cvarg{matches, compactResult}{See in \cvCppCross{DescriptorMatcher::knnMatch}.} |
|
\cvarg{maxDistance}{The threshold to found match distances.} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorMatcher::clone} |
|
Clone the matcher. |
|
|
|
\cvdefCpp{ |
|
Ptr<DescriptorMatcher> \\ |
|
DescriptorMatcher::clone( bool emptyTrainData ) const; |
|
} |
|
\begin{description} |
|
\cvarg{emptyTrainData}{If emptyTrainData is false the method create deep copy of the object, i.e. copies |
|
both parameters and train data. If emptyTrainData is true the method create object copy with current parameters |
|
but with empty train data..} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorMatcher::create} |
|
Descriptor matcher factory that creates \cvCppCross{DescriptorMatcher} of |
|
given type with default parameters (rather using default constructor). |
|
|
|
\begin{lstlisting} |
|
Ptr<DescriptorMatcher> |
|
DescriptorMatcher::create( const string& descriptorMatcherType ); |
|
\end{lstlisting} |
|
|
|
\begin{description} |
|
\cvarg{descriptorMatcherType}{Descriptor matcher type.} |
|
\end{description} |
|
Now the following matcher types are supported: \texttt{"BruteForce"} (it uses \texttt{L2}), \texttt{"BruteForce-L1"}, |
|
\texttt{"BruteForce-Hamming"}, \texttt{"BruteForce-HammingLUT"}, \texttt{"FlannBased"}. |
|
|
|
\cvclass{BruteForceMatcher}\label{cv.class.BruteForceMatcher} |
|
Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest |
|
descriptor in the second set by trying each one. This descriptor matcher supports masking |
|
permissible matches between descriptor sets. |
|
|
|
\begin{lstlisting} |
|
template<class Distance> |
|
class BruteForceMatcher : public DescriptorMatcher |
|
{ |
|
public: |
|
BruteForceMatcher( Distance d = Distance() ); |
|
virtual ~BruteForceMatcher(); |
|
|
|
virtual bool isMaskSupported() const; |
|
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const; |
|
protected: |
|
... |
|
} |
|
\end{lstlisting} |
|
|
|
For efficiency, BruteForceMatcher is templated on the distance metric. |
|
For float descriptors, a common choice would be \texttt{L2<float>}. Class of supported distances are: |
|
|
|
\begin{lstlisting} |
|
template<typename T> |
|
struct Accumulator |
|
{ |
|
typedef T Type; |
|
}; |
|
|
|
template<> struct Accumulator<unsigned char> { typedef unsigned int Type; }; |
|
template<> struct Accumulator<unsigned short> { typedef unsigned int Type; }; |
|
template<> struct Accumulator<char> { typedef int Type; }; |
|
template<> struct Accumulator<short> { typedef int Type; }; |
|
|
|
/* |
|
* Squared Euclidean distance functor |
|
*/ |
|
template<class T> |
|
struct L2 |
|
{ |
|
typedef T ValueType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
ResultType operator()( const T* a, const T* b, int size ) const; |
|
}; |
|
|
|
/* |
|
* Manhattan distance (city block distance) functor |
|
*/ |
|
template<class T> |
|
struct CV_EXPORTS L1 |
|
{ |
|
typedef T ValueType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
ResultType operator()( const T* a, const T* b, int size ) const; |
|
... |
|
}; |
|
|
|
/* |
|
* Hamming distance (city block distance) functor |
|
*/ |
|
struct HammingLUT |
|
{ |
|
typedef unsigned char ValueType; |
|
typedef int ResultType; |
|
|
|
ResultType operator()( const unsigned char* a, const unsigned char* b, |
|
int size ) const; |
|
... |
|
}; |
|
|
|
struct Hamming |
|
{ |
|
typedef unsigned char ValueType; |
|
typedef int ResultType; |
|
|
|
ResultType operator()( const unsigned char* a, const unsigned char* b, |
|
int size ) const; |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{FlannBasedMatcher} |
|
Flann based descriptor matcher. This matcher trains \cvCppCross{flann::Index} on |
|
train descriptor collection and calls it's nearest search methods to find best matches. |
|
So this matcher may be faster in cases of matching to large train collection than |
|
brute force matcher. \texttt{FlannBasedMatcher} does not support masking permissible |
|
matches between descriptor sets, because \cvCppCross{flann::Index} does not |
|
support this. |
|
|
|
\begin{lstlisting} |
|
class FlannBasedMatcher : public DescriptorMatcher |
|
{ |
|
public: |
|
FlannBasedMatcher( |
|
const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(), |
|
const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() ); |
|
|
|
virtual void add( const vector<Mat>& descriptors ); |
|
virtual void clear(); |
|
|
|
virtual void train(); |
|
virtual bool isMaskSupported() const; |
|
|
|
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\section{Common Interfaces of Generic Descriptor Matchers} |
|
Matchers of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily |
|
between different algorithms solving the same problem. This section is devoted to matching descriptors |
|
that can not be represented as vectors in a multidimensional space. \texttt{GenericDescriptorMatcher} |
|
is a more generic interface for descriptors. It does not make any assumptions about descriptor representation. |
|
Every descriptor with \cvCppCross{DescriptorExtractor} interface has a wrapper with |
|
\texttt{GenericDescriptorMatcher} interface (see \cvCppCross{VectorDescriptorMatcher}). |
|
There are descriptors such as One way descriptor and Ferns that have \texttt{GenericDescriptorMatcher} |
|
interface implemented, but do not support \cvCppCross{DescriptorExtractor}. |
|
|
|
\cvclass{GenericDescriptorMatcher} |
|
Abstract interface for a keypoint descriptor extracting and matching. |
|
There is \cvCppCross{DescriptorExtractor} and \cvCppCross{DescriptorMatcher} |
|
for these purposes too, but their interfaces are intended for descriptors |
|
represented as vectors in a multidimensional space. \texttt{GenericDescriptorMatcher} |
|
is a more generic interface for descriptors. |
|
As \cvCppCross{DescriptorMatcher}, \texttt{GenericDescriptorMatcher} has two groups |
|
of match methods: for matching keypoints of one image with other image or |
|
with image set. |
|
|
|
\begin{lstlisting} |
|
class GenericDescriptorMatcher |
|
{ |
|
public: |
|
GenericDescriptorMatcher(); |
|
virtual ~GenericDescriptorMatcher(); |
|
|
|
virtual void add( const vector<Mat>& images, |
|
vector<vector<KeyPoint> >& keypoints ); |
|
|
|
const vector<Mat>& getTrainImages() const; |
|
const vector<vector<KeyPoint> >& getTrainKeypoints() const; |
|
virtual void clear(); |
|
|
|
virtual void train() = 0; |
|
|
|
virtual bool isMaskSupported() = 0; |
|
|
|
void classify( const Mat& queryImage, |
|
vector<KeyPoint>& queryKeypoints, |
|
const Mat& trainImage, |
|
vector<KeyPoint>& trainKeypoints ) const; |
|
void classify( const Mat& queryImage, |
|
vector<KeyPoint>& queryKeypoints ); |
|
|
|
/* |
|
* Group of methods to match keypoints from image pair. |
|
*/ |
|
void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
const Mat& trainImage, vector<KeyPoint>& trainKeypoints, |
|
vector<DMatch>& matches, const Mat& mask=Mat() ) const; |
|
void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
const Mat& trainImage, vector<KeyPoint>& trainKeypoints, |
|
vector<vector<DMatch> >& matches, int k, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
const Mat& trainImage, vector<KeyPoint>& trainKeypoints, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
/* |
|
* Group of methods to match keypoints from one image to image set. |
|
*/ |
|
void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() ); |
|
void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
|
|
virtual void read( const FileNode& ); |
|
virtual void write( FileStorage& ) const; |
|
|
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::add} |
|
Adds images and keypoints from them to the train collection (descriptors are supposed to be calculated here). |
|
If train collection is not empty new image and keypoints from them will be added to |
|
existing data. |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::add( const vector<Mat>\& images, |
|
\par vector<vector<KeyPoint> >\& keypoints ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{images}{Image collection.} |
|
\cvarg{keypoints}{Point collection. Assumes that \texttt{keypoints[i]} are keypoints |
|
detected in an image \texttt{images[i]}. } |
|
\end{description} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::getTrainImages} |
|
Returns train image collection. |
|
|
|
\begin{lstlisting} |
|
const vector<Mat>& GenericDescriptorMatcher::getTrainImages() const; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::getTrainKeypoints} |
|
Returns train keypoints collection. |
|
|
|
\begin{lstlisting} |
|
const vector<vector<KeyPoint> >& |
|
GenericDescriptorMatcher::getTrainKeypoints() const; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::clear} |
|
Clear train collection (iamges and keypoints). |
|
|
|
\begin{lstlisting} |
|
void GenericDescriptorMatcher::clear(); |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::train} |
|
Train the object, e.g. tree-based structure to extract descriptors or |
|
to optimize descriptors matching. |
|
|
|
\begin{lstlisting} |
|
void GenericDescriptorMatcher::train(); |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::isMaskSupported} |
|
Returns true if generic descriptor matcher supports masking permissible matches. |
|
|
|
\begin{lstlisting} |
|
void GenericDescriptorMatcher::isMaskSupported(); |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::classify} |
|
Classifies query keypoints under keypoints of one train image qiven as input argument |
|
(first version of the method) or train image collection that set using |
|
\cvCppCross{GenericDescriptorMatcher::add} (second version). |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::classify( \par const Mat\& queryImage, |
|
\par vector<KeyPoint>\& queryKeypoints, |
|
\par const Mat\& trainImage, |
|
\par vector<KeyPoint>\& trainKeypoints ) const; |
|
} |
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::classify( const Mat\& queryImage, |
|
\par vector<KeyPoint>\& queryKeypoints ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{queryImage}{The query image.} |
|
\cvarg{queryKeypoints}{Keypoints from the query image.} |
|
\cvarg{trainImage}{The train image.} |
|
\cvarg{trainKeypoints}{Keypoints from the train image.} |
|
\end{description} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::match} |
|
Find best match for query keypoints to the training set. In first version of method |
|
one train image and keypoints detected on it - are input arguments. In second version |
|
query keypoints are matched to training collectin that set using |
|
\cvCppCross{GenericDescriptorMatcher::add}. As in \cvCppCross{DescriptorMatcher::match} |
|
the mask can be set. |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::match( |
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints, |
|
\par const Mat\& trainImage, vector<KeyPoint>\& trainKeypoints, |
|
\par vector<DMatch>\& matches, const Mat\& mask=Mat() ) const; |
|
} |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::match( |
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints, |
|
\par vector<DMatch>\& matches, |
|
\par const vector<Mat>\& masks=vector<Mat>() ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{queryImage}{Query image.} |
|
\cvarg{queryKeypoints}{Keypoints detected in \texttt{queryImage}.} |
|
\cvarg{trainImage}{Train image. This will not be added to train image collection |
|
stored in class object.} |
|
\cvarg{trainKeypoints}{Keypoints detected in \texttt{trainImage}. They will not be added to train points collection |
|
stored in class object.} |
|
\cvarg{matches}{Matches. If some query descriptor (keypoint) masked out in \texttt{mask} |
|
no match will be added for this descriptor. |
|
So \texttt{matches} size may be less query keypoints count.} |
|
\cvarg{mask}{Mask specifying permissible matches between input query and train keypoints.} |
|
\cvarg{masks}{The set of masks. Each \texttt{masks[i]} specifies permissible matches between input query keypoints |
|
and stored train keypointss from i-th image.} |
|
|
|
\end{description} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::knnMatch} |
|
Find the knn best matches for each keypoint from a query set with train keypoints. |
|
Found knn (or less if not possible) matches are returned in distance increasing order. |
|
Details see in \cvCppCross{GenericDescriptorMatcher::match} and \cvCppCross{DescriptorMatcher::knnMatch}. |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::knnMatch( |
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints, |
|
\par const Mat\& trainImage, vector<KeyPoint>\& trainKeypoints, |
|
\par vector<vector<DMatch> >\& matches, int k, |
|
\par const Mat\& mask=Mat(), bool compactResult=false ) const; |
|
} |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::knnMatch( |
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints, |
|
\par vector<vector<DMatch> >\& matches, int k, |
|
\par const vector<Mat>\& masks=vector<Mat>(), |
|
\par bool compactResult=false ); |
|
} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::radiusMatch} |
|
Find the best matches for each query keypoint which have distance less than given threshold. |
|
Found matches are returned in distance increasing order. Details see in |
|
\cvCppCross{GenericDescriptorMatcher::match} and \cvCppCross{DescriptorMatcher::radiusMatch}. |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::radiusMatch( |
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints, |
|
\par const Mat\& trainImage, vector<KeyPoint>\& trainKeypoints, |
|
\par vector<vector<DMatch> >\& matches, float maxDistance, |
|
\par const Mat\& mask=Mat(), bool compactResult=false ) const; |
|
|
|
|
|
} |
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::radiusMatch( |
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints, |
|
\par vector<vector<DMatch> >\& matches, float maxDistance, |
|
\par const vector<Mat>\& masks=vector<Mat>(), |
|
\par bool compactResult=false ); |
|
} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::read} |
|
Reads matcher object from a file node. |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::read( const FileNode\& fn ); |
|
} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::write} |
|
Writes match object to a file storage |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::write( FileStorage\& fs ) const; |
|
} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::clone} |
|
Clone the matcher. |
|
|
|
\cvdefCpp{ |
|
Ptr<GenericDescriptorMatcher>\\ |
|
GenericDescriptorMatcher::clone( bool emptyTrainData ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{emptyTrainData}{If emptyTrainData is false the method create deep copy of the object, i.e. copies |
|
both parameters and train data. If emptyTrainData is true the method create object copy with current parameters |
|
but with empty train data.} |
|
\end{description} |
|
|
|
\cvclass{OneWayDescriptorMatcher} |
|
Wrapping class for computing, matching and classification of descriptors using \cvCppCross{OneWayDescriptorBase} class. |
|
|
|
\begin{lstlisting} |
|
class OneWayDescriptorMatcher : public GenericDescriptorMatcher |
|
{ |
|
public: |
|
class Params |
|
{ |
|
public: |
|
static const int POSE_COUNT = 500; |
|
static const int PATCH_WIDTH = 24; |
|
static const int PATCH_HEIGHT = 24; |
|
static float GET_MIN_SCALE() { return 0.7f; } |
|
static float GET_MAX_SCALE() { return 1.5f; } |
|
static float GET_STEP_SCALE() { return 1.2f; } |
|
|
|
Params( int poseCount = POSE_COUNT, |
|
Size patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT), |
|
string pcaFilename = string(), |
|
string trainPath = string(), string trainImagesList = string(), |
|
float minScale = GET_MIN_SCALE(), float maxScale = GET_MAX_SCALE(), |
|
float stepScale = GET_STEP_SCALE() ); |
|
|
|
int poseCount; |
|
Size patchSize; |
|
string pcaFilename; |
|
string trainPath; |
|
string trainImagesList; |
|
|
|
float minScale, maxScale, stepScale; |
|
}; |
|
|
|
OneWayDescriptorMatcher( const Params& params=Params() ); |
|
virtual ~OneWayDescriptorMatcher(); |
|
|
|
void initialize( const Params& params, const Ptr<OneWayDescriptorBase>& base=Ptr<OneWayDescriptorBase>() ); |
|
|
|
// Clears keypoints storing in collection and OneWayDescriptorBase |
|
virtual void clear(); |
|
|
|
virtual void train(); |
|
|
|
virtual bool isMaskSupported(); |
|
|
|
virtual void read( const FileNode &fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{FernDescriptorMatcher} |
|
Wrapping class for computing, matching and classification of descriptors using \cvCppCross{FernClassifier} class. |
|
|
|
\begin{lstlisting} |
|
class FernDescriptorMatcher : public GenericDescriptorMatcher |
|
{ |
|
public: |
|
class Params |
|
{ |
|
public: |
|
Params( int nclasses=0, |
|
int patchSize=FernClassifier::PATCH_SIZE, |
|
int signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE, |
|
int nstructs=FernClassifier::DEFAULT_STRUCTS, |
|
int structSize=FernClassifier::DEFAULT_STRUCT_SIZE, |
|
int nviews=FernClassifier::DEFAULT_VIEWS, |
|
int compressionMethod=FernClassifier::COMPRESSION_NONE, |
|
const PatchGenerator& patchGenerator=PatchGenerator() ); |
|
|
|
Params( const string& filename ); |
|
|
|
int nclasses; |
|
int patchSize; |
|
int signatureSize; |
|
int nstructs; |
|
int structSize; |
|
int nviews; |
|
int compressionMethod; |
|
PatchGenerator patchGenerator; |
|
|
|
string filename; |
|
}; |
|
|
|
FernDescriptorMatcher( const Params& params=Params() ); |
|
virtual ~FernDescriptorMatcher(); |
|
|
|
virtual void clear(); |
|
|
|
virtual void train(); |
|
|
|
virtual bool isMaskSupported(); |
|
|
|
virtual void read( const FileNode &fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{VectorDescriptorMatcher} |
|
Class used for matching descriptors that can be described as vectors in a finite-dimensional space. |
|
|
|
\begin{lstlisting} |
|
class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher |
|
{ |
|
public: |
|
VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher ); |
|
virtual ~VectorDescriptorMatcher(); |
|
|
|
virtual void add( const vector<Mat>& imgCollection, |
|
vector<vector<KeyPoint> >& pointCollection ); |
|
virtual void clear(); |
|
virtual void train(); |
|
virtual bool isMaskSupported(); |
|
|
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
Example of creating: |
|
\begin{lstlisting} |
|
VectorDescriptorMatcher matcher( new SurfDescriptorExtractor, |
|
new BruteForceMatcher<L2<float> > ); |
|
\end{lstlisting} |
|
|
|
\section{Drawing Function of Keypoints and Matches} |
|
\cvCppFunc{drawMatches} |
|
This function draws matches of keypints from two images on output image. |
|
Match is a line connecting two keypoints (circles). |
|
|
|
\cvdefCpp{ |
|
void drawMatches( const Mat\& img1, const vector<KeyPoint>\& keypoints1, |
|
\par const Mat\& img2, const vector<KeyPoint>\& keypoints2, |
|
\par const vector<DMatch>\& matches1to2, Mat\& outImg, |
|
\par const Scalar\& matchColor=Scalar::all(-1), |
|
\par const Scalar\& singlePointColor=Scalar::all(-1), |
|
\par const vector<char>\& matchesMask=vector<char>(), |
|
\par int flags=DrawMatchesFlags::DEFAULT ); |
|
} |
|
|
|
\cvdefCpp{ |
|
void drawMatches( const Mat\& img1, const vector<KeyPoint>\& keypoints1, |
|
\par const Mat\& img2, const vector<KeyPoint>\& keypoints2, |
|
\par const vector<vector<DMatch> >\& matches1to2, Mat\& outImg, |
|
\par const Scalar\& matchColor=Scalar::all(-1), |
|
\par const Scalar\& singlePointColor=Scalar::all(-1), |
|
\par const vector<vector<char>>\& matchesMask= |
|
\par vector<vector<char> >(), |
|
\par int flags=DrawMatchesFlags::DEFAULT ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{img1}{First source image.} |
|
\cvarg{keypoints1}{Keypoints from first source image.} |
|
\cvarg{img2}{Second source image.} |
|
\cvarg{keypoints2}{Keypoints from second source image.} |
|
\cvarg{matches}{Matches from first image to second one, i.e. \texttt{keypoints1[i]} |
|
has corresponding point \texttt{keypoints2[matches[i]]}. } |
|
\cvarg{outImg}{Output image. Its content depends on \texttt{flags} value |
|
what is drawn in output image. See below possible \texttt{flags} bit values. } |
|
\cvarg{matchColor}{Color of matches (lines and connected keypoints). |
|
If \texttt{matchColor==Scalar::all(-1)} color will be generated randomly.} |
|
\cvarg{singlePointColor}{Color of single keypoints (circles), i.e. keypoints not having the matches. |
|
If \texttt{singlePointColor==Scalar::all(-1)} color will be generated randomly.} |
|
\cvarg{matchesMask}{Mask determining which matches will be drawn. If mask is empty all matches will be drawn. } |
|
\cvarg{flags}{Each bit of \texttt{flags} sets some feature of drawing. |
|
Possible \texttt{flags} bit values is defined by \texttt{DrawMatchesFlags}, see below. } |
|
\end{description} |
|
|
|
\begin{lstlisting} |
|
struct DrawMatchesFlags |
|
{ |
|
enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create), |
|
// i.e. existing memory of output image may be reused. |
|
// Two source image, matches and single keypoints |
|
// will be drawn. |
|
// For each keypoint only the center point will be |
|
// drawn (without the circle around keypoint with |
|
// keypoint size and orientation). |
|
DRAW_OVER_OUTIMG = 1, // Output image matrix will not be |
|
// created (Mat::create). Matches will be drawn |
|
// on existing content of output image. |
|
NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn. |
|
DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around |
|
// keypoint with keypoint size and orientation will |
|
// be drawn. |
|
}; |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{drawKeypoints} |
|
Draw keypoints. |
|
|
|
\cvdefCpp{ |
|
void drawKeypoints( const Mat\& image, |
|
\par const vector<KeyPoint>\& keypoints, |
|
\par Mat\& outImg, const Scalar\& color=Scalar::all(-1), |
|
\par int flags=DrawMatchesFlags::DEFAULT ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{image}{Source image.} |
|
\cvarg{keypoints}{Keypoints from source image.} |
|
\cvarg{outImg}{Output image. Its content depends on \texttt{flags} value |
|
what is drawn in output image. See possible \texttt{flags} bit values. } |
|
\cvarg{color}{Color of keypoints}. |
|
\cvarg{flags}{Each bit of \texttt{flags} sets some feature of drawing. |
|
Possible \texttt{flags} bit values is defined by \texttt{DrawMatchesFlags}, |
|
see above in \cvCppCross{drawMatches}. } |
|
\end{description} |
|
|
|
\fi
|
|
|