Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

76 lines
3.0 KiB

#/usr/bin/env python
import sys, re, os, time
from string import Template
from hdr_parser import CppHeaderParser
from parse_tree import ParseTree, todict
from filters import *
from jinja2 import Environment, PackageLoader
class MatlabWrapperGenerator(object):
def gen(self, input_files, output_dir):
# parse each of the files and store in a dictionary
# as a separate "namespace"
parser = CppHeaderParser()
ns = {}
for file in input_files:
# get the file name
name = os.path.splitext(os.path.basename(file))[0]
ns[name] = parser.parse(file)
# cleanify the parser output
parse_tree = ParseTree()
parse_tree.build(ns)
# setup the template engine
jtemplate = Environment(loader=PackageLoader('templates', ''), trim_blocks=True, lstrip_blocks=True)
# add the custom filters
jtemplate.filters['toUpperCamelCase'] = toUpperCamelCase
jtemplate.filters['toLowerCamelCase'] = toLowerCamelCase
jtemplate.filters['toUnderCase'] = toUnderCase
jtemplate.filters['comment'] = comment
jtemplate.filters['inputs'] = inputs
jtemplate.filters['ninputs'] = ninputs
jtemplate.filters['outputs'] = outputs
jtemplate.filters['noutputs'] = noutputs
jtemplate.filters['only'] = only
jtemplate.filters['void'] = void
jtemplate.filters['not'] = flip
# load the templates
tfunction = jtemplate.get_template('template_function_base.cpp')
tclassm = jtemplate.get_template('template_class_base.m')
tclassc = jtemplate.get_template('template_class_base.cpp')
tdoc = jtemplate.get_template('template_doc_base.m')
# create the build directory
output_source_dir = output_dir+'/src'
output_private_dir = output_source_dir+'/private'
output_class_dir = output_dir+'/+cv'
if not os.path.isdir(output_source_dir):
os.mkdir(output_source_dir)
if not os.path.isdir(output_private_dir):
os.mkdir(output_private_dir)
if not os.path.isdir(output_class_dir):
os.mkdir(output_class_dir)
# populate templates
for namespace in parse_tree.namespaces:
# functions
for function in namespace.functions:
populated = tfunction.render(fun=function, time=time, includes=namespace.name)
with open(output_source_dir+'/'+function.name+'.cpp', 'wb') as f:
f.write(populated)
# classes
for clss in namespace.classes:
# cpp converter
populated = tclassc.render(clss=clss, time=time)
with open(output_private_dir+'/'+clss.name+'Bridge.cpp', 'wb') as f:
f.write(populated)
# matlab classdef
populated = tclassm.render(clss=clss, time=time)
with open(output_class_dir+'/'+clss.name+'.m', 'wb') as f:
f.write(populated)