mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
290 lines
8.3 KiB
290 lines
8.3 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
class AllignedFrameSource : public cv::superres::FrameSource |
|
{ |
|
public: |
|
AllignedFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale); |
|
|
|
void nextFrame(cv::OutputArray frame); |
|
void reset(); |
|
|
|
private: |
|
cv::Ptr<cv::superres::FrameSource> base_; |
|
cv::Mat origFrame_; |
|
int scale_; |
|
}; |
|
|
|
AllignedFrameSource::AllignedFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale) : |
|
base_(base), scale_(scale) |
|
{ |
|
CV_Assert( base_ ); |
|
} |
|
|
|
void AllignedFrameSource::nextFrame(cv::OutputArray frame) |
|
{ |
|
base_->nextFrame(origFrame_); |
|
|
|
if (origFrame_.rows % scale_ == 0 && origFrame_.cols % scale_ == 0) |
|
{ |
|
cv::superres::arrCopy(origFrame_, frame); |
|
} |
|
else |
|
{ |
|
cv::Rect ROI(0, 0, (origFrame_.cols / scale_) * scale_, (origFrame_.rows / scale_) * scale_); |
|
cv::superres::arrCopy(origFrame_(ROI), frame); |
|
} |
|
} |
|
|
|
void AllignedFrameSource::reset() |
|
{ |
|
base_->reset(); |
|
} |
|
|
|
class DegradeFrameSource : public cv::superres::FrameSource |
|
{ |
|
public: |
|
DegradeFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale); |
|
|
|
void nextFrame(cv::OutputArray frame); |
|
void reset(); |
|
|
|
private: |
|
cv::Ptr<cv::superres::FrameSource> base_; |
|
cv::Mat origFrame_; |
|
cv::Mat blurred_; |
|
cv::Mat deg_; |
|
double iscale_; |
|
}; |
|
|
|
DegradeFrameSource::DegradeFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale) : |
|
base_(base), iscale_(1.0 / scale) |
|
{ |
|
CV_Assert( base_ ); |
|
} |
|
|
|
void addGaussNoise(cv::Mat& image, double sigma) |
|
{ |
|
cv::Mat noise(image.size(), CV_32FC(image.channels())); |
|
cvtest::TS::ptr()->get_rng().fill(noise, cv::RNG::NORMAL, 0.0, sigma); |
|
|
|
cv::addWeighted(image, 1.0, noise, 1.0, 0.0, image, image.depth()); |
|
} |
|
|
|
void addSpikeNoise(cv::Mat& image, int frequency) |
|
{ |
|
cv::Mat_<uchar> mask(image.size(), 0); |
|
|
|
for (int y = 0; y < mask.rows; ++y) |
|
{ |
|
for (int x = 0; x < mask.cols; ++x) |
|
{ |
|
if (cvtest::TS::ptr()->get_rng().uniform(0, frequency) < 1) |
|
mask(y, x) = 255; |
|
} |
|
} |
|
|
|
image.setTo(cv::Scalar::all(255), mask); |
|
} |
|
|
|
void DegradeFrameSource::nextFrame(cv::OutputArray frame) |
|
{ |
|
base_->nextFrame(origFrame_); |
|
|
|
cv::GaussianBlur(origFrame_, blurred_, cv::Size(5, 5), 0); |
|
cv::resize(blurred_, deg_, cv::Size(), iscale_, iscale_, cv::INTER_NEAREST); |
|
|
|
addGaussNoise(deg_, 10.0); |
|
addSpikeNoise(deg_, 500); |
|
|
|
cv::superres::arrCopy(deg_, frame); |
|
} |
|
|
|
void DegradeFrameSource::reset() |
|
{ |
|
base_->reset(); |
|
} |
|
|
|
double MSSIM(const cv::Mat& i1, const cv::Mat& i2) |
|
{ |
|
const double C1 = 6.5025; |
|
const double C2 = 58.5225; |
|
|
|
const int depth = CV_32F; |
|
|
|
cv::Mat I1, I2; |
|
i1.convertTo(I1, depth); |
|
i2.convertTo(I2, depth); |
|
|
|
cv::Mat I2_2 = I2.mul(I2); // I2^2 |
|
cv::Mat I1_2 = I1.mul(I1); // I1^2 |
|
cv::Mat I1_I2 = I1.mul(I2); // I1 * I2 |
|
|
|
cv::Mat mu1, mu2; |
|
cv::GaussianBlur(I1, mu1, cv::Size(11, 11), 1.5); |
|
cv::GaussianBlur(I2, mu2, cv::Size(11, 11), 1.5); |
|
|
|
cv::Mat mu1_2 = mu1.mul(mu1); |
|
cv::Mat mu2_2 = mu2.mul(mu2); |
|
cv::Mat mu1_mu2 = mu1.mul(mu2); |
|
|
|
cv::Mat sigma1_2, sigma2_2, sigma12; |
|
|
|
cv::GaussianBlur(I1_2, sigma1_2, cv::Size(11, 11), 1.5); |
|
sigma1_2 -= mu1_2; |
|
|
|
cv::GaussianBlur(I2_2, sigma2_2, cv::Size(11, 11), 1.5); |
|
sigma2_2 -= mu2_2; |
|
|
|
cv::GaussianBlur(I1_I2, sigma12, cv::Size(11, 11), 1.5); |
|
sigma12 -= mu1_mu2; |
|
|
|
cv::Mat t1, t2; |
|
cv::Mat numerator; |
|
cv::Mat denominator; |
|
|
|
// t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2)) |
|
t1 = 2 * mu1_mu2 + C1; |
|
t2 = 2 * sigma12 + C2; |
|
numerator = t1.mul(t2); |
|
|
|
// t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2)) |
|
t1 = mu1_2 + mu2_2 + C1; |
|
t2 = sigma1_2 + sigma2_2 + C2; |
|
denominator = t1.mul(t2); |
|
|
|
// ssim_map = numerator./denominator; |
|
cv::Mat ssim_map; |
|
cv::divide(numerator, denominator, ssim_map); |
|
|
|
// mssim = average of ssim map |
|
cv::Scalar mssim = cv::mean(ssim_map); |
|
|
|
if (i1.channels() == 1) |
|
return mssim[0]; |
|
|
|
return (mssim[0] + mssim[1] + mssim[3]) / 3; |
|
} |
|
|
|
class SuperResolution : public testing::Test |
|
{ |
|
public: |
|
void RunTest(cv::Ptr<cv::superres::SuperResolution> superRes); |
|
}; |
|
|
|
void SuperResolution::RunTest(cv::Ptr<cv::superres::SuperResolution> superRes) |
|
{ |
|
const std::string inputVideoName = cvtest::TS::ptr()->get_data_path() + "car.avi"; |
|
const int scale = 2; |
|
const int iterations = 100; |
|
const int temporalAreaRadius = 2; |
|
|
|
ASSERT_FALSE( superRes.empty() ); |
|
|
|
const int btvKernelSize = superRes->getInt("btvKernelSize"); |
|
|
|
superRes->set("scale", scale); |
|
superRes->set("iterations", iterations); |
|
superRes->set("temporalAreaRadius", temporalAreaRadius); |
|
|
|
cv::Ptr<cv::superres::FrameSource> goldSource(new AllignedFrameSource(cv::superres::createFrameSource_Video(inputVideoName), scale)); |
|
cv::Ptr<cv::superres::FrameSource> lowResSource(new DegradeFrameSource( |
|
cv::makePtr<AllignedFrameSource>(cv::superres::createFrameSource_Video(inputVideoName), scale), scale)); |
|
|
|
// skip first frame |
|
cv::Mat frame; |
|
|
|
lowResSource->nextFrame(frame); |
|
goldSource->nextFrame(frame); |
|
|
|
cv::Rect inner(btvKernelSize, btvKernelSize, frame.cols - 2 * btvKernelSize, frame.rows - 2 * btvKernelSize); |
|
|
|
superRes->setInput(lowResSource); |
|
|
|
double srAvgMSSIM = 0.0; |
|
const int count = 10; |
|
|
|
cv::Mat goldFrame, superResFrame; |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
goldSource->nextFrame(goldFrame); |
|
ASSERT_FALSE( goldFrame.empty() ); |
|
|
|
superRes->nextFrame(superResFrame); |
|
ASSERT_FALSE( superResFrame.empty() ); |
|
|
|
const double srMSSIM = MSSIM(goldFrame(inner), superResFrame); |
|
|
|
srAvgMSSIM += srMSSIM; |
|
} |
|
|
|
srAvgMSSIM /= count; |
|
|
|
EXPECT_GE( srAvgMSSIM, 0.5 ); |
|
} |
|
|
|
TEST_F(SuperResolution, BTVL1) |
|
{ |
|
RunTest(cv::superres::createSuperResolution_BTVL1()); |
|
} |
|
|
|
#if defined(HAVE_CUDA) && defined(HAVE_OPENCV_GPUARITHM) && defined(HAVE_OPENCV_GPUWARPING) && defined(HAVE_OPENCV_GPUFILTERS) |
|
|
|
TEST_F(SuperResolution, BTVL1_GPU) |
|
{ |
|
RunTest(cv::superres::createSuperResolution_BTVL1_GPU()); |
|
} |
|
|
|
#endif |
|
|
|
#if defined(HAVE_OPENCV_OCL) && defined(HAVE_OPENCL) |
|
|
|
TEST_F(SuperResolution, BTVL1_OCL) |
|
{ |
|
std::vector<cv::ocl::Info> infos; |
|
cv::ocl::getDevice(infos); |
|
RunTest(cv::superres::createSuperResolution_BTVL1_OCL()); |
|
} |
|
|
|
#endif
|
|
|