Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
284 lines
11 KiB
284 lines
11 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
/* |
|
Implementation of padding layer, which adds paddings to input blob. |
|
*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "../op_cuda.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include "../ie_ngraph.hpp" |
|
#include "../op_cann.hpp" |
|
|
|
#include <vector> |
|
|
|
#ifdef HAVE_CUDA |
|
#include "../cuda4dnn/primitives/padding.hpp" |
|
using namespace cv::dnn::cuda4dnn; |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
class PaddingLayerImpl CV_FINAL : public PaddingLayer |
|
{ |
|
public: |
|
PaddingLayerImpl(const LayerParams ¶ms) |
|
{ |
|
setParamsFrom(params); |
|
paddingValue = params.get<float>("value", 0); |
|
inputDims = params.get<int>("input_dims", -1); |
|
paddingType = params.get<String>("type", "constant"); |
|
|
|
CV_Assert(params.has("paddings")); |
|
const DictValue& paddingsParam = params.get("paddings"); |
|
CV_Assert((paddingsParam.size() & 1) == 0); |
|
|
|
paddings.resize(paddingsParam.size() / 2); |
|
for (int i = 0; i < paddings.size(); ++i) |
|
{ |
|
paddings[i].first = paddingsParam.get<int>(i * 2); // Pad before. |
|
paddings[i].second = paddingsParam.get<int>(i * 2 + 1); // Pad after. |
|
CV_Assert_N(paddings[i].first >= 0, paddings[i].second >= 0); |
|
} |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert(inputs.size() == 1); |
|
const MatShape& inpShape = inputs[0]; |
|
CV_Assert(inpShape.size() >= paddings.size()); |
|
CV_Assert(inputDims == -1 || inpShape.size() == inputDims || inpShape.size() > paddings.size()); |
|
|
|
outputs.resize(1, inpShape); |
|
int offset = (inputDims == -1 ? 0 : (inpShape.size() > inputDims ? 1 : 0)); |
|
for (int i = 0; i < paddings.size(); ++i) |
|
{ |
|
outputs[0][offset + i] = inpShape[offset + i] + paddings[i].first + paddings[i].second; |
|
} |
|
return false; |
|
} |
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE |
|
{ |
|
std::vector<Mat> inputs; |
|
inputs_arr.getMatVector(inputs); |
|
|
|
// Compute dstRanges. |
|
const MatSize& inpShape = inputs[0].size; |
|
|
|
if (inputDims != -1 && inputs[0].dims != inputDims) |
|
{ |
|
paddings.insert(paddings.begin(), std::make_pair(0, 0)); |
|
} |
|
|
|
dstRanges.resize(paddings.size()); |
|
for (int i = 0; i < paddings.size(); ++i) |
|
{ |
|
dstRanges[i].start = paddings[i].first; |
|
dstRanges[i].end = paddings[i].first + inpShape[i]; |
|
} |
|
|
|
// Add the rest of dimensions. |
|
for (int i = dstRanges.size(); i < inputs[0].dims; ++i) |
|
{ |
|
dstRanges.push_back(Range::all()); |
|
paddings.push_back(std::make_pair(0, 0)); |
|
} |
|
inputDims = -1; // Next time paddings are filled for all the dimensions. |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_INF_ENGINE |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
{ |
|
bool isMyriad = preferableTarget == DNN_TARGET_MYRIAD || preferableTarget == DNN_TARGET_HDDL; |
|
if (isMyriad) |
|
return dstRanges.size() == 4 && paddings[0].first == 0 && paddings[0].second == 0; |
|
|
|
return (dstRanges.size() <= 4 || !isArmComputePlugin()); |
|
} |
|
#endif |
|
return backendId == DNN_BACKEND_OPENCV || |
|
backendId == DNN_BACKEND_CUDA || |
|
backendId == DNN_BACKEND_CANN; |
|
} |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
if (paddingType == "constant") |
|
{ |
|
outputs[0].setTo(paddingValue); |
|
inputs[0].copyTo(outputs[0](dstRanges)); |
|
} |
|
else if (paddingType == "reflect" || paddingType == "edge") |
|
{ |
|
CV_Assert(inputs.size() == 1); |
|
CV_Assert(outputs.size() == 1); |
|
CV_Assert(inputs[0].dims == 4); |
|
CV_Assert(outputs[0].dims == 4); |
|
int borderType = paddingType == "reflect" ? BORDER_REFLECT_101 : BORDER_REPLICATE; |
|
|
|
if (inputs[0].size[0] != outputs[0].size[0] || inputs[0].size[1] != outputs[0].size[1]) |
|
CV_Error(Error::StsNotImplemented, "Only spatial reflection padding is supported."); |
|
|
|
const int inpHeight = inputs[0].size[2]; |
|
const int inpWidth = inputs[0].size[3]; |
|
const int outHeight = outputs[0].size[2]; |
|
const int outWidth = outputs[0].size[3]; |
|
const int padTop = dstRanges[2].start; |
|
const int padBottom = outHeight - dstRanges[2].end; |
|
const int padLeft = dstRanges[3].start; |
|
const int padRight = outWidth - dstRanges[3].end; |
|
CV_CheckLE(padTop, inpHeight, ""); CV_CheckLE(padBottom, inpHeight, ""); |
|
CV_CheckLE(padLeft, inpWidth, ""); CV_CheckLE(padRight, inpWidth, ""); |
|
|
|
for (size_t n = 0; n < inputs[0].size[0]; ++n) |
|
{ |
|
for (size_t ch = 0; ch < inputs[0].size[1]; ++ch) |
|
{ |
|
copyMakeBorder(getPlane(inputs[0], n, ch), |
|
getPlane(outputs[0], n, ch), |
|
padTop, padBottom, padLeft, padRight, |
|
borderType); |
|
} |
|
} |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unknown padding type: " + paddingType); |
|
} |
|
|
|
#ifdef HAVE_CUDA |
|
Ptr<BackendNode> initCUDA( |
|
void *context_, |
|
const std::vector<Ptr<BackendWrapper>>& inputs, |
|
const std::vector<Ptr<BackendWrapper>>& outputs |
|
) override |
|
{ |
|
auto context = reinterpret_cast<csl::CSLContext*>(context_); |
|
|
|
cuda4dnn::PaddingType ptype; |
|
if (paddingType == "constant") |
|
ptype = PaddingType::CONSTANT; |
|
else if (paddingType == "reflect") |
|
ptype = PaddingType::REFLECTION101; |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unsupported padding mode"); |
|
|
|
return make_cuda_node<cuda4dnn::PaddingOp>(preferableTarget, std::move(context->stream), ptype, paddingValue, dstRanges); |
|
} |
|
#endif |
|
|
|
#ifdef HAVE_CANN |
|
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs, |
|
const std::vector<Ptr<BackendWrapper> > &outputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
auto x = inputs[0].dynamicCast<CannBackendWrapper>(); |
|
|
|
// create operator |
|
auto op = std::make_shared<ge::op::PadV3>(name); |
|
|
|
// set attributes |
|
op->set_attr_mode(paddingType.c_str()); |
|
|
|
// set inputs |
|
// set inputs : x |
|
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp(); |
|
op->set_input_x_by_name(*op_x, x->name.c_str()); |
|
auto x_desc = x->getTensorDesc(); |
|
op->update_input_desc_x(*x_desc); |
|
// set inputs : paddings |
|
std::vector<int> pads; |
|
for (int i = 0; i < paddings.size(); i++) |
|
{ |
|
pads.push_back(paddings[i].first); |
|
pads.push_back(paddings[i].second); |
|
} |
|
std::vector<int> pads_shape{(int)pads.size()}; |
|
Mat paddings_mat(pads_shape, CV_32S, &pads[0]); |
|
auto op_const_paddings = std::make_shared<CannConstOp>(paddings_mat.data, paddings_mat.type(), pads_shape, cv::format("%s_paddings", name.c_str())); |
|
op->set_input_paddings(*(op_const_paddings->getOp())); |
|
op->update_input_desc_paddings(*(op_const_paddings->getTensorDesc())); |
|
// set inputs : constant_values |
|
std::vector<int> constant_values_shape{1}; |
|
Mat constant_values_mat(1, 1, CV_32F, Scalar(paddingValue)); |
|
auto op_const_constant_values = std::make_shared<CannConstOp>(constant_values_mat.data, constant_values_mat.type(), constant_values_shape, cv::format("%s_constant_values", name.c_str())); |
|
op->set_input_constant_values(*(op_const_constant_values->getOp())); |
|
op->update_input_desc_constant_values(*(op_const_constant_values->getTensorDesc())); |
|
|
|
// set outputs |
|
auto output_y_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT); |
|
op->update_output_desc_y(*output_y_desc); |
|
|
|
return Ptr<BackendNode>(new CannBackendNode(op)); |
|
} |
|
#endif |
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node; |
|
std::vector<int64_t> begins(paddings.size(), 0), ends(paddings.size(), 0); |
|
for (int i = 0; i < paddings.size(); ++i) |
|
{ |
|
begins[i] = static_cast<int64_t>(paddings[i].first); |
|
ends[i] = static_cast<int64_t>(paddings[i].second); |
|
} |
|
auto padding_below = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{begins.size()}, begins.data()); |
|
auto padding_above = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{ends.size()}, ends.data()); |
|
auto pad_mode = paddingType == "constant" ? ngraph::op::PadMode::CONSTANT : ngraph::op::PadMode::REFLECT; // SYMMETRIC |
|
auto arg_pad_value = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{}, &paddingValue);; |
|
|
|
auto pad = paddingType == "constant" ? |
|
std::make_shared<ngraph::op::v1::Pad>(ieInpNode, padding_below, padding_above, arg_pad_value, pad_mode) : |
|
std::make_shared<ngraph::op::v1::Pad>(ieInpNode, padding_below, padding_above, pad_mode); |
|
return Ptr<BackendNode>(new InfEngineNgraphNode(pad)); |
|
} |
|
#endif |
|
|
|
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales, |
|
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE |
|
{ |
|
float outputScale = scales[1][0]; |
|
int outputZp = zeropoints[1][0]; |
|
float padValue = outputZp + std::round(params.get<float>("value", 0)/outputScale); |
|
params.set("value", padValue); |
|
return true; |
|
} |
|
|
|
private: |
|
std::vector<std::pair<int, int> > paddings; // Pairs pad before, pad after. |
|
std::vector<Range> dstRanges; |
|
int inputDims; |
|
float paddingValue; |
|
std::string paddingType; |
|
}; |
|
|
|
Ptr<PaddingLayer> PaddingLayer::create(const LayerParams ¶ms) |
|
{ |
|
return Ptr<PaddingLayer>(new PaddingLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|